
Simulation Modelling Practice and Theory 42 (2014) 107–118
Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/ locate/s impat
Reliability–redundancy allocation problem with cold-standby
redundancy strategy
1569-190X/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2013.12.013

⇑ Corresponding author. Tel.: +98 9131564886.
E-mail address: m.abouei@in.iut.ac.ir (M. Abouei Ardakan).
Mostafa Abouei Ardakan ⇑, Ali Zeinal Hamadani
Department of Industrial and Systems Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 September 2013
Received in revised form 10 December 2013
Accepted 15 December 2013
Available online 21 January 2014

Keywords:
Reliability optimization
Reliability–redundancy allocation problem
Cold-standby redundancy strategy
Genetic algorithm
This paper considers the mixed-integer non-linear optimization of reliability–redundancy
allocation problem (RRAP) to determine simultaneous reliability and redundancy level of
components. In the RRAP, it is necessary to create a trade-off between component reliabil-
ities and the number of redundant components with the aim of maximizing system reli-
ability through component reliability choices and component redundancy levels. RRAPs
have been generally formulated by considering an active redundancy strategy. A large
number of solution methods have been developed to deal with these problems. In this
paper, a cold-standby strategy for redundant components is used, for the first time, to
model the RRAP; a modified genetic algorithm is developed to solve the proposed non-lin-
ear mixed-integer problem; and three famous benchmark problems are used for compar-
ison. The results indicate that the cold-standby strategy exhibits a better performance and
yields higher reliability values compared to the previous studies.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

High-reliability systems play crucial roles in modern industry. System reliability may be enhanced by: (a) raising com-
ponent reliability, (b) providing redundant components in parallel, (c) using a combination of enhanced component reliabil-
ity and redundant components provisioned in parallel, and (d) reassigning interchangeable components [1]. The second and
third options are called redundancy allocation problem (RAP) and reliability–redundancy allocation problem (RRAP), respec-
tively. In RAPs, there are discrete component choices with known characteristics such as reliability, cost, and weight, where
the aim is to find the optimal/near optimal number of redundancies in each subsystem in order to maximize the overall sys-
tem reliability subject to some constraints. The reliability–redundancy allocation problem (RRAP) is the problem of maxi-
mizing system reliability through component reliability choices and component redundancy, which forms a difficult but
realistic optimization problem in which component reliability is not given but treated as a design variable while component
cost, weight, volume, etc. are defined in advance as increasing non-linear functions of component reliability [2].

In reliability studies, either of two different strategies, called active and standby, may be considered for determining how
the redundant components must be used. In the active strategy, all redundant components simultaneously start to operate
from time zero although only one is required at any particular time. The standby redundancy may take one of the three cold,
warm, or hot variant forms. In the cold variant, the redundant components are protected from operational stresses associ-
ated with system operation so that no component fails before its start. The components in the warm-standby redundancy are
affected by operational stresses more than those in the cold variant. Finally, in the hot-standby redundancy, component fail-
ure does not depend on whether the component is idle or in operation. The mathematical formulation for the hot-standby

http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2013.12.013&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2013.12.013
mailto:m.abouei@in.iut.ac.ir
http://dx.doi.org/10.1016/j.simpat.2013.12.013
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat


108 M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118
strategy is the same as that with the active redundancy case. In the standby redundancy strategy, the redundant components
are sequentially used in the system at failure times of operating components by switching to one of the redundant compo-
nents in order to continue system operation [3,4].

Activation of a standby redundant component in case of online component failure in standby strategies requires a switch-
ing system that is based on one of two scenarios. In the first scenario (S1), the failure detection and switching hardware/soft-
ware is continually monitoring system performance to detect a failure and to activate the redundant component. It is
assumed that switch failure can occur at any time and that switch reliability is a non-increasing function of time (qi(t))
which does not depend on the number of switching required. In the second scenario (S2), failure of switching will happen
with a constant probability, (qi), when the switch is required [5].

Reliability–redundancy allocation problems (RRAP) have been generally formulated by considering the active redundancy
strategy and using different solution methods. For this purpose, exact optimization methods such as dynamic programming
[6], branch-and-bound approach [6,7], and implicit enumeration [8] have been used to maximize system reliability. Hikita
et al. [9] developed a surrogate constraint method to solve the RRAP. They developed a dynamic programming to solve sin-
gle-constrained surrogate problems. However, this method requires that either the objective function be separable or the
surrogate problem be formulated as a multi-stage decision making problem. Their approach is only useful for special struc-
tures which include parallel-series and series–parallel designs [10].

Since RAP and RRAP have been proved to be NP-hard optimization problems [11,12], they are too difficult and time-con-
suming to solve using traditional optimization methods, especially when the problem size is large. For this reason, numerous
meta-heuristic algorithms such as genetic algorithm [4,13–17], Tabu search [18,19], ant colony optimization [20–23], arti-
ficial immune system [10,24,25], artificial neural networks [26], artificial bee colony algorithm [27,28], particle swarm opti-
mization [29], Memetic algorithm [30] and a combination of these algorithms [31] have been widely employed over the past
decade for solving reliability optimization problems.

Recently, Yeh and Hsieh [28] developed a penalty guided artificial bee colony algorithm (ABC) for solving the reliability–
redundancy allocation problems. In order to improve the solutions, they also proposed a local search for their ABC algorithm.
Hsieh and You [10] developed a two-phase approach based on immune algorithm to solve the same problem. According to
this approach, an immune algorithm (IA) is developed in the first phase to solve the problem, followed by a new procedure in
the second phase to improve the solutions. Wu et al. [32] presented an improved particle swarm optimization (IPSO) algo-
rithm for the RRAP. Zou et al. [33] developed an effective global harmony search algorithm (EGHS) to solve the RRAP. The
EGHS algorithm combined the harmony search algorithm (HS) with the concepts of swarm intelligence in particle swarm
optimization (PSO) algorithm to solve the problem. Wang and Li [34] proposed a differential evolution (DE) algorithm com-
bined with a harmony search (HS) algorithm.

Valian and Valian [35] proposed a cuckoo search (CS) algorithm and used some well-known benchmark problems to test
the performance of the algorithms in solving the reliability redundancy-allocation problem. In a different study, Valian et al.
[36] presented an improved cuckoo search algorithm by enhancing the accuracy and convergence rate of the cuckoo search
algorithm. Afonso et al. [37] proposed a modified version of the imperialist competitive algorithm (ICA) and compared the
results obtained from their proposed ICA with the best-known results of different benchmarks reported in the literature to
demonstrate the capability of their proposed algorithm.

As it is clear from the literature, all the previous studies of the reliability–redundancy allocation problem have considered
the active strategy for redundant components and their efforts have been directed at improving system reliability by devel-
oping novel, modified, or combined meta-heuristic algorithms. In the present study, however, the cold-standby strategy is
used for the first time and a new mathematical formulation is presented for the problem under the non-linear constraints of
weight, cost, and volume.

The rest of the paper is organized as follows. In Section 2, the formulation of the RRAP, the mathematical formulation of
the cold-standby strategy, and three benchmark problems are presented. Section 3 presents the GA developed for solving the
proposed non-linear models. Section 4 considers the experimental results to demonstrate the advantages of the cold-standby
strategy and the efficiency of the proposed methodology. Finally, conclusions are presented in Section 5.

2. Formulation of the reliability–redundancy allocation problem

The objective of reliability optimization is to improve system reliability. The reliability–redundancy allocation problems
are useful for system designs that are largely assembled and manufactured using off-the-shelf components, and that have
high reliability requirements [29]. A reliability–redundancy allocation problem is generally formulated with the objective
of maximizing system reliability under some non-linear constraints. Therefore, in this paper, the RRAP is considered with
the objective of maximizing system reliability subject to the multiple non-linear constraints of weight, cost, and volume.
The mixed-integer non-linear programming model of RRAP is generally formulated as follows:
Maximize Rs ¼ f ðr;nÞ ð1Þ
subject to gjðr;nÞ 6 lj j ¼ 1;2; . . . ; k ð2Þ

0 6 ri 6 1; ri 2 R; ni 2 Zþ; 1 6 i 6 m



M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118 109
where Rs is the reliability of the system; gj is the jth constraint; r = (r1, r2, r3, . . . , rm) is the vector of the component reliabil-
ities for the system; n = (n1, n2, n3, . . . , nm) is the vector of the redundancy allocation for the system; ri and ni are the reliabil-
ity and the number of components in the ith subsystem, respectively; f(�) is the objective function for the overall system
reliability; l is the resource limitation vector; and m is the number of subsystems in the system. The goal is to determine
the number of components and each component’s reliability in each subsystem in order to maximize the reliability of the
whole system. The problem belongs to the category of constrained mixed-integer non-linear optimization problems.

2.1. System reliability with cold-standby redundancy strategy

Coit [5] presents a mathematical formulation as in Eq. (3) for the reliability of a subsystem with cold-standby strategy and
perfect switching. This equation is a general form that is appropriate for any distribution of component time-to-failure.
RiðtÞ ¼ riðtÞ þ
Xni�1

x¼1

Z t

0
riðt � uÞf ðxÞi ðuÞdu ð3Þ
where ri(t) is the reliability at time t for the component used in subsystem i; ni is the number of components in subsystem i,
and f ðxÞi ðtÞ is the pdf for the xth failure arrival for subsystem i, i.e. the sum of x iid component failure times.

In order to determine the reliability of the subsystems with imperfect switching, Ri(t), Eqs. (4) and (5) are presented for
two scenarios as follows [5]:

Scenario 1 (S1): Continuous detection and switching:
RiðtÞ ¼ riðtÞ þ
Xni�1

x¼1

Z t

0
qiðuÞriðt � uÞf ðxÞi ðuÞdu ð4Þ
Scenario 2 (S2): Switch activation only in response to a failure:
RiðtÞ ¼ riðtÞ þ
Xni�1

x¼1

qx
i

Z t

0
riðt � uÞf ðxÞi ðuÞdu ð5Þ
where qi(t) and qi are failure-detection/switching reliabilities at time t for S1 and S2, respectively. This paper only investi-
gates the continuous detection and switching (S1). As mentioned by Coit [5], it is difficult to determine a closed form for
equations similar to Eq. (4). Therefore, a convenient lower bound on subsystem reliability, eRiðtÞ, can be determined as
follows:
eRiðtÞ ¼ riðtÞ þ qiðtÞ
Xni�1

x¼1

Z t

0
riðt � uÞf ðxÞi ðuÞdu ð6Þ
This is an estimation for Eq. (4) because qiðtÞ 6 qiðuÞ for all u 6 t.
Coit [5] has developed these mathematical models for calculating the standby strategy in a general form. He also used

Eq. (6) with Erlang distribution for the redundancy allocation problem. However, as all the non-linear constraints in the reli-
ability–redundancy allocation problem are derived by considering the exponential time-to-failure [38], in this paper Eq. (6)
has been extended based on the exponential distribution and implemented in this problem. If the component time-to-failure
is exponential, then Eq. (6) can be represented by considering the occurrences of subsystem failures as a homogeneous Poisson
process prior to the nith failure. In this case, the reliability of the subsystem is the probability that there are strictly less than ni

failures, which is Poisson distributed. Therefore,
Z t

0
riðt � uÞf ðxÞi ðuÞdu ¼ e�ki tðkitÞx

x!
ð7Þ
and
eRiðtÞ ¼ riðtÞ þ qiðtÞ
Xni�1

x¼1

e�ki tðkitÞx

x!
ð8Þ
where ki is the component failure rate (the exponential distribution parameter) and t is the mission time. Unlike in all pre-
vious studies, ri is not a decision variable in the present study because the component failure rate needs to be known in the
cold-standby strategy for the component reliability, ri, to be easily calculated. Therefore, ki and ni are two decision variables
in the model and ri is calculated on the basis of ki. In the next subsections, three famous benchmarks in the reliability–
redundancy optimization are presented.

2.2. Problem 1 (P1): Series system

The first problem (P1) is a mixed-integer non-linear programming problem for a series system with five subsystems. The
problem formulation is as follows:



110 M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118
Maximize f ðr;nÞ ¼
Ym
i¼1

Riðni; tÞ ð9Þ

Subject to :

g1ðr;nÞ ¼
Xm

i¼1

wi � v2
i � n2

i 6 V ð10Þ

g2ðr;nÞ ¼
Xm

i¼1

ai � �
1000
ln ri

� �bi

� ½ni þ e0:25ni � 6 C ð11Þ

g3ðr;nÞ ¼
Xm

i¼1

wi � ni � e0:25ni 6W ð12Þ

0 6 ri 6 1; ri 2 R; ni 2 Zþ; 1 6 i 6 m ð13Þ
Fig. 1 shows this series system. The same problem was considered by [9,10,25,28,32,35–37,39,40].
In Eq. (9), the objective function contains the redundancy level and the reliability of the component used in each subsys-

tem to achieve maximum system reliability. Ri(ni, t) in (9) is calculated based on Eq. (8). Eqs. (10)–(12) consider the limita-
tions on system volume, cost, and weight, respectively. The constraint given by (10) is a combination of weight, redundancy
allocation, and volume; (11) is a cost constraint; and (12) is a weight constraint [37]. In this context, V is the upper limit of
the sum of the subsystem’s product of volume and weight, C is the upper limit on the cost of the system, and W is the upper
limit on the weight of the system. Furthermore, wi is the weight of each component in subsystem i, vi is the volume of each
component in subsystem i, and ci is the cost of each component in subsystem i; ni e Z+, where Z+ is the discrete space of po-
sitive integers, and 0 6 ri 6 1, ri e R, 1 6 i 6 m. The parameters bi and ai are physical features of the ith system component.
2.3. Problem 2 (P2): Series–parallel system

The second problem (P2) is a mixed-integer non-linear programming problem for a series–parallel system with five sub-
systems. The problem formulation is as follows:
Maximize f ðr;nÞ ¼ 1� ð1� R1ðtÞ � R2ðtÞÞð1� ðR3ðtÞ þ R4ðtÞ � R3ðtÞ � R4ðtÞÞ � R5ðtÞÞ ð14Þ
Subject to :

g1ðr;nÞ 6 V ; g2ðr;nÞ 6 C; g3ðr;nÞ 6W

0 6 ri 6 1; ri 2 R; ni 2 Zþ; 1 6 i 6 m
where Ri is calculated based on Eq. (8) and the condition on the variables are the same as those in P1. Fig. 2 shows this series–
parallel system. This same problem was considered by [9,10,25,28,32,34–37,40]. It need be mentioned that the reliability
function for this system as f ðr;nÞ ¼ 1� ð1� R1R2Þð1� ð1� R3Þð1� R4ÞR5Þ reported by Chen [25] and Afonso et al. [37] is
wrong, and that the right problem formulation is as in Eq. (14) [32].
2.4. Problem 3 (P3): Complex (bridge) system

The third test problem (P3) is a mixed-integer non-linear programming problem for a complex bridge structure with five
subsystems. The problem formulation is as follows:
Maximize f ðr;nÞ ¼ R1ðtÞ � R2ðtÞ þ R3ðtÞ � R4ðtÞ þ R1ðtÞ � R4ðtÞ � R5ðtÞ � þR2ðtÞ � R3ðtÞ � R5ðtÞ
� R1ðtÞ � R2ðtÞ � R3ðtÞ � R4ðtÞ � R1ðtÞ � R2ðtÞ � R3ðtÞ � R5ðtÞ � R1ðtÞ � R2ðtÞ � R4ðtÞ � R5ðtÞ ð15Þ
� R1ðtÞ � R3ðtÞ � R4ðtÞ � R5ðtÞ � R2ðtÞ � R3ðtÞ � R4ðtÞ � R5ðtÞ þ 2R1ðtÞ � R2ðtÞ � R3ðtÞ � R4ðtÞ � R5ðtÞ

Subject to :

g1ðr;nÞ 6 V ; g2ðr;nÞ 6 C; g3ðr;nÞ 6W

0 6 ri 6 1; ri 2 R; ni 2 Zþ; 1 6 i 6 m
where Ri is calculated based on Eq. (8) and the conditions on the variables are the same as those in P1. Fig. 3 shows this
complex system. This same problem was also considered by [9,10,25,29,32–37,40].
1 2 3 4 5

Fig. 1. Series system (test problem 1).



1 2

3

4

5

Fig. 2. Series–parallel system (test problem 2).

1 2

5

3 4

Fig. 3. Complex bridge system (test problem 3).

M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118 111
3. Solution method: Genetic algorithm

Genetic algorithm, as one of the most effective and powerful evolutionary algorithms, was first introduced by Holland
[41]. In this paper, a modified version of this algorithm is developed to solve the proposed reliability–redundancy allocation
problems. To use the genetic algorithm in its best form, features of the algorithm should be initially designed based on the
problem traits. Therefore, the following subsections will describe the proper design of the genetic algorithm to be imple-
mented in the proposed model. These features include the chromosome structure (solution encoding), fitness function, initial
population, selection of parents for generating a new population, crossover, mutation, and stopping criteria.

In order to produce the initial population, Pop chromosomes are generated randomly and legally. Furthermore, the GA
process is terminated after a predefined number of iterations (MaxGen). Other features of the algorithm are as follows:
3.1. Chromosome definition

In the proposed GA, the solution encoding (chromosome) is presented as a 2 � s matrix where s is the number of subsys-
tems and the first and second rows of this matrix represent the selected failure rate, ki, for the components in each subsys-
tem and the redundancy level for the subsystems, respectively. Fig. 4 presents a chromosome structure considered for this
problem with s = 5.

This figure demonstrates a solution in which the first subsystem (s = 1) uses two components with a failure rate equal to
0.001 in parallel, the second subsystem uses four components with a failure rate equal to 0.045, and the last subsystem uses
one component with a failure rate equal to 0.00105. Fig. 5 presents the structure of this solution in the series system (P1).
3.2. Fitness function

The fitness function is equal to the sum of the objective function (reliability) and the penalty of constraint violation. In
other words, the problem constraint is added to the objective function in such a way that if one solution exceeds the con-
straint limit, a relatively large amount of penalty is added to the objective function. This penalty provides the feasibility of
the final solution while keeping the search in the infeasible space of the problem. The search in the infeasible space leads to
an appropriate diversity for the genetic algorithm. In this paper, in order to add the penalties of constraints violation to the
objective function, first the objective function is transformed to minimization of unreliability then additive penalty function
is applied as Eq. (16). Now, because of minimization structure of the objective function, these added penalties decrease the
probability of selecting the violated solution during the algorithm process. In this way, after some iteration, the violated
solutions are expected to be eliminated from the population.
1 2 3 4 5

.001 .045 .0094 .0205 .00105

Number of components 2 4 2 3 1

Failure rate

Fig. 4. Chromosome representation (solution encoding).



i=1 i=2 i=3 i=4 i=5

Fig. 5. Chromosome representation (solution encoding).

112 M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118
Minimize URs ¼ ð1� RsÞ þ
X3

i¼1

PiðxÞ ð16Þ
In this equation, Rs and URs are the total reliability and unreliability of the system, respectively; Pi(x) is the penalty value
related to the ith constraint which takes a positive value in case of violation. In this paper, violation of a constraint like
giðr; nÞ 6 li is performed through the function giðr;nÞ

li
� 1. Therefore, PiðxÞ ¼ M �max 0; giðr;nÞ

li
� 1

n o
, where M is a sufficiently

large number.

3.3. Selection

In order to select the required chromosomes for crossover and mutation operators, tournament selection is used based on
the following steps. The fitness function is calculated for all existing chromosomes (Pop) in the present population and then,
from the Pop chromosomes, k chromosomes are selected randomly and compared with each other based on the fitness func-
tion. A chromosome with the largest fitness function is selected as the parent for generating a new population. This proce-
dure will be repeated Pop times until Pop parents are selected for the next generation. After the selection process, the
crossover and mutation operators will be used.

3.4. Crossover

The crossover operator is applied with a predefined rate of rC. By using two crossover operators, four offspring will be
generated from each two selected parents. From these four offspring, two premier ones will be selected based on their fitness
values to be transferred to the next generation. As a result, there will be Pop new chromosomes at the end of the crossover
operation. In order to produce these four offspring from the two selected parents, three crossover operators are defined, two
of which are used for each test problem.

These three operators are the double-point crossover, a modified version of the max–min crossover [4], and a new cross-
over operator. The double-point and max–min crossover are shown in Figs. 6 and 7, respectively. In the max–min crossover,
the subsystems with the lowest and highest reliabilities amongst the candidate solutions are determined and all the relative
genes for each parent are exchanged with the same genes in the other parent. The third operator performs as follows:

Consider xP as a selected chromosome in the present population and xP
i as the ith component of xP. Also, suppose that xBest

is the best chromosome in the population and that xBest
i represents the ith component of this solution. The new chromosome

will be defined based on following equation:
xnew
i ¼ xP

i þ rand � xBest
i � xP

i

� �
; 8i ð17Þ
In this equation, rand is a random value.

3.5. Mutation

After the crossover operation, the mutation operator will be employed with a predefined rate of rM. The main purpose of
applying the mutation operator is to increase diversity and to avoid being trapped into a local optimum. In order to perform
the mutation, rM. 100% of the chromosomes are randomly selected and the gene values are changed with a probability of PM.
Fig. 6. Double point crossover operator.



. : .85 .95 .87 .90 .70 .85 .80 .87 .90 .99

: .001 .045 .0094 .0205 .00105 .001 .005 .0094 .0205 .0137

2 4 2 3 1 2 2 2 3 4

max min

Sub systems reliab

Failure rate

Number of components

Sub systems reliab .90 .70.: .96 .80 .65 .45 .99 .96 .80 .65

: .041 .005 .0514 .095 .0137 .041 .005 .0514 .0205 .0105

: 5 2 1 1 4 5 2 1 3 1

min max

Failure rate

Number of components

–

–

Fig. 7. Max–min crossover operator.

Fig. 8. Max–min mutation operator.

Table 1
Crossover and mutation operators in each test problem.

Operators problem no. Crossover Mutation

Double point Max–min New Simple Max–min New

P1
P2
P3

M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118 113
Note that the new gene’s values are randomly generated between the lower and upper bounds of the variables. Then, the
fitness function is calculated for the mutated chromosome and compared with the fitness function of the pre-mutation chro-
mosome. If the fitness function of the new chromosome is better than the previous one, the previous chromosome will be
replaced by the newly generated offspring; otherwise, the previous chromosome remains as the superior one. In this paper,
the max–min mutation operator developed by Tavakkoli-Moghaddam et al. [4] is used. In this operator, for each candidate
solution, the subsystems with the highest and lowest reliabilities are randomly mutated. The values of genes for these sub-
systems are randomly changed at a mutation rate of PM. Furthermore, another mutation operator is used which is the same
as the max–min mutation with the only difference that in this operator, two random subsystems, rather than subsystems
with maximum and minimum reliabilities, are selected to be mutated. As an example, the max–min mutation is depicted
in Fig. 8.

Crossover and mutation operators transfer one generation to the next. For this purpose, the Pop best solutions amongst
the previous generation and the new offspring are retained to form the next generation. As already mentioned, a combina-
tion of the crossover and mutation operators is used for each test problem. Table 1 demonstrates this combination for each
test problem.
4. Experimental results

In this Section, the results obtained by the proposed GA are presented for the three benchmark problems described in
Section 2. The simulations were implemented for each problem in MATLAB environment on an Intel Core 2 Duo CPU2.66 GHz
PC with 3 GB of RAM under a 32-bits Windows operating system. Preliminary numerical tests were used to set the values of
the genetic algorithm parameters. Different data were randomly generated and used to calibrate the parameters. Once the
values of the parameters had been set for these preliminary data, they were used for the variations of the problem instances
to be solved in this paper. The following parameters were used in the proposed GA: a population size of 500, maximum gen-
eration (MaxGen) equal to 40 runs, k = 4, rC = 0.8, rM = 0.3, and PM = 0.2. The switching reliability is considered to be 0.99 in
the mission time, it means that qi(t) = 0.99. This value of switching reliability is used in the previous studies such as [2,4,5].



114 M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118
In order to obtain a better understanding of the proposed algorithm, each test problem was evaluated over 5 independent
runs. The input parameters for the series and complex (bridge) systems (P1 and P3) are shown in Table 2and those for the
series–parallel system (P2) are presented in Table 3.
Table 2
Data used in series and complex bridge systems.

Stage 105 � ai bi wi � v2
i

wi V C W

1 2.330 1.5 1 7 110 175 200
2 1.450 1.5 2 8
3 0.541 1.5 3 8
4 8.050 1.5 4 6
5 1.950 1.5 2 9

Table 3
Data used in series–parallel systems.

Stage 105 � ai bi wi � v2
i

wi V C W

1 2.500 1.5 2 3.5 180 175 100
2 1.450 1.5 4 4.0
3 0.541 1.5 5 4.0
4 0.541 1.5 8 3.5
5 2.100 1.5 4 4.5

Table 4
Different runs of proposed GA for series system.

Parameter Run #1 Run #2 Run #3 Run #4 Run #5 STD

Rs 0.96957251 0.96949763 0.96950107 0.96820142 0.96957758 5.98581E�04
ki 0.00026619 0.00026791 0.00026121 0.00028628 0.00026841

0.00011796 0.00012267 0.00011843 0.00011721 0.00011931
0.00008811 0.00009014 0.00009354 0.00010897 0.00008840
0.00037080 0.00035360 0.00035951 0.00032495 0.00036600
0.00025370 0.00025964 0.00026252 0.00028245 0.00025356

n (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3)
r 0.76629197 0.76497899 0.77012204 0.75105245 0.76459335

0.88873470 0.88455745 0.88831636 0.88939536 0.88752892
0.91565985 0.91380683 0.91069820 0.89676142 0.91539527
0.69018313 0.70215628 0.69801819 0.72256119 0.69350544
0.77592300 0.77133168 0.76911345 0.75393410 0.77603145

Slack (g1) 27 27 27 27 27
Slack (g2) 0.00000511 0.00132501 0.00009664 0.00016629 0.00002478
Slack (g3) 7.51891824 7.51891824 7.51891824 7.51891824 7.51891824

Table 5
Different runs of proposed GA for series–parallel system.

Parameter Run #1 Run #2 Run #3 Run #4 Run #5 STD

Rs 0.999988249 0.999988243 0.999988183 0.999984630 0.999988224 1.60776E�06
ki 0.000192558 0.000184630 0.000190962 0.000218509 0.000187741

0.000171006 0.000161603 0.000155218 0.000099861 0.000163980
0.000096320 0.000099501 0.000124554 0.000202271 0.000100256
0.000106807 0.000106898 0.000091938 0.000289820 0.000105741
0.000144491 0.000152923 0.000152832 0.000133194 0.000148347

n (3, 3, 2, 1, 3) (3, 3, 2, 1, 3) (3, 3, 1, 2, 3) (3, 2, 2, 3, 3) (3, 3, 1, 2, 3)
r 0.824846726 0.831411488 0.826163745 0.803716235 0.828829523

0.842816570 0.850778906 0.856228310 0.904963136 0.848758789
0.908173083 0.905289070 0.882890356 0.816873233 0.904605868
0.898699000 0.898616953 0.912161652 0.748398488 0.899657410
0.865463014 0.858195436 0.858273837 0.875295691 0.862131961

Slack (g1) 62 62 53 18 53
Slack (g2) 0.000064145 0.000182880 0.000020252 0.000151000 0.000001979
Slack (g3) 6.104140278 6.104140278 7.110848840 0.583959096 7.110848840



Table 6
Different runs of proposed GA for complex bridge system.

Parameter Run #1 Run #2 Run #3 Run #4 Run #5 STD

Rs 0.99997304 0.99997402 0.99997369 0.99997413 0.99997405 4.47953E�07
ki 0.00021390 0.00022154 0.00022860 0.00021744 0.00022566

0.00018236 0.00014970 0.00016632 0.00015412 0.00014950
0.00013199 0.00014554 0.00013647 0.00014232 0.00013862
0.00029705 0.00031615 0.00029787 0.00031802 0.00032495
0.00031301 0.00028430 0.00030351 0.00026897 0.00024029

n (3, 3, 3, 3, 1) (3, 3, 3, 3, 1) (3, 3, 3, 3, 1) (3, 3, 3, 3, 1) (3, 3, 3, 3, 1)
r 0.80743162 0.80128617 0.79564329 0.80457234 0.79799199

0.83330218 0.86096397 0.84677624 0.85717305 0.86113517
0.87635075 0.86455106 0.87243372 0.86734683 0.87055869
0.74301048 0.72894917 0.74239993 0.72759162 0.72256091
0.73124088 0.75254340 0.73821892 0.76416666 0.78639900

Slack (g1) 18 18 18 18 18
Slack (g2) 0.00004397 0.00000001 0.00000805 0.00006867 0.00001866
Slack (g3) 4.26476980 4.26476980 4.26476980 4.26476980 4.26476980

M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118 115
Tables 4–6 show the simulation results of all the five runs of the proposed GA for the benchmarks P1, P2 and P3, respec-
tively. Furthermore, these Tables provide the standard deviation (STD) values of the objective functions in the 5 different
runs for each test problem. Clearly, the STDs are small, indicating the robustness of the proposed GA in all the test problems.

In Tables 4–6, ki is the exponential distribution parameter (failure rate) for the components of subsystem i, ni is the num-
ber of components in subsystem i, and ri is the reliability at mission time (1000 h) for the components used in subsystem i
which is calculated in terms of ki. The slack represents unused resources.

In Fig. 9(a–c), the trends show the progress of the best run among the 5 runs in each problem. During the early iterations,
the proposed GA exhibits a fast convergence rate while in the last iterations, it stagnates slowly, which indicates no fitness
improvements occurring during the latter evolutionary process.
Fig. 9. Optimization curves of three test problems using proposed GA.



116 M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118
The maximum reliability obtained by the cold-standby strategy (see Tables 4–6) was then used to compare its perfor-
mance with those reported in the literature. Tables 7–9 present a comparison between the best results obtained in this paper
and those reported in previous studies. Maximum Possible Improvement (MPI) index was used to measure the significance
of the improvements made by using the cold-standby strategy as compared to the previous best-known solutions that con-
sidered the active strategy. This index, which has been used in many previous studies including Yeh and Hsieh [28], Coelho
[29], Wu et al. [32], Zou et al. [33], Wang and Li [34], Valian and Valian [35], and Valian et al. [36], is given by:
Table 7
Compar

Param

Rs

n
r

MPI (
Slack
Slack
Slack

a Infe

Table 8
Compar

Param

Rs

n
r

MPI (
Slack
Slack
Slack

Table 9
Compar

Param

Rs

n

r

MPI (
Slack
Slack
Slack

a In C
b In C
MPI ð%Þ ¼ ½RsðNew ApproachÞ � RsðOtherÞ�=½1� RsðOtherÞ� ð18Þ
where RsðNew ApproachÞ represents the best system reliability obtained by the proposed approach and Rs(Other) represents
the best system reliability obtained by any other method reported in the literature. Tables 6–9 indicate that the cold-standby
ison of best result for the series system with other results presented in literature.

eter Hikita
et al. [39]

Hikita
et al. [9]

Hsieh
et al. [40]

Chen [25] Hsieh and
You [10]

Wu et al. [32] Yeh and
Hsieh [28]

Valian and
Valian [35]
and Valian
et al. [36]

Afonso
et al. [37]

Abouei and
Hamadani

0.931451 0.931363 0.931578 0.931678 0.931682340 0.931680 0.9316820 0.931682387 0.93167939 0.96957758
(3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3) (3, 2, 2, 3, 3)
0.774887 0.777143 0.779427 0.779266 0.779462304 0.78037307 0.779399 0.779416938 0.779874 0.76459335
0.870065 0.867514 0.869482 0.872513 0.871883456 0.87178343 0.871837 0.871833278 0.872057 0.88752892
0.898549 0.896696 0.902674 0.902634 0.902800879 0.90240890 0.902885 0.902885082 0.903426 0.91539527
0.716524 0.717739 0.714038 0.710648 0.711350168 0.71147356 0.711403 0.711393868 0.71096 0.69350544
0.791368 0.793889 0.786896 0.788406 0.787861587 0.78738760 0.787800 0.787803712 0.786902 0.77603145

%) 55.6194495 55.6763502 55.5370735 55.4719950 55.4691663 55.4706915 55.4693879 55.4691357 55.4710891
(g1) 27 27 27 27 27 27 27 27 27 27
(g2) 0.108244 0.0000 0.121454 0.001559 0.0000005284 0.000101 �0.0002184a 0.000000265 0.000099 0.00002478
(g3) 7.518918 7.518918 7.518918 7.518918 7.518918 7.518918 7.5189182 7.518918241 7.518918 7.51891824

asible.

ison of best result for the series–parallel system with other results presented in literature.

eter Hikita
et al. [39]

Hsieh
et al. [40]

Chen [25] Yeh and
Hsieh [28]

Wu et al.
[32]

Hsieh and
You [10]

Valian and
Valian [35]
and Valian
et al. [36]

Wang and
Li [34]

Afonso
et al. [37]

Abouei
and
Hamadani

0.999968750 0.999974180 0.999976580 0.999977310 0.999976640 0.999976649 0.999976649 0.999976650 0.999976610 0.999988249
(3, 3, 1, 2, 3) (2, 2, 2, 2, 4) (2, 2, 2, 2, 4) (2, 2, 2, 2, 4) (2, 2, 2, 2, 4) (2, 2, 2, 2, 4) (2, 2, 2, 2, 4) (2, 2, 2, 2, 4) (2, 2, 2, 2, 4) (3, 3, 2, 1, 3)
0.83819295 0.785452 0.812485 0.8197457 0.81918526 0.819591561 0.819927087 0.819596000 0.82201264 0.824846726
0.85506525 0.842998 0.843155 0.8450080 0.84366421 0.844951068 0.845267657 0.845000000 0.84365640 0.842816570
0.87885933 0.885333 0.897385 0.8954581 0.89472992 0.895428548 0.895491554 0.895514000 0.89129092 0.908173083
0.91140223 0.917958 0.894516 0.9009032 0.89537628 0.895522339 0.895440692 0.895519000 0.89869886 0.898699000
0.85035522 0.870318 0.870590 0.8684069 0.86912724 0.868490229 0.868318775 0.868456000 0.86824939 0.865463014

%) 62.3979 54.4901 49.8264 48.2121 49.6975 49.6781 49.6781 49.6760 49.7620 –
(g1) 53 40 40 40 40 40 40 40 40 62
(g2) 0.000011 1.194440 0.002627 -1.469522 0.000561 0.000000 0.0000161 0.0000070 0.000396 0.00006415
(g3) 7.110849 1.609289 1.609289 1.609289 1.609289 1.609289 1.6092890 1.6092890 1.609289 6.10414028

ison of best result for the complex bridge system with other results presented in literature.

eter Hikita
et al. [9]

Hsieh
et al. [40]

Chen [25] Coelho
[29]

Wu et al.
[32]

Hsieh and
You [10]

Zou et al.
[33]

Valian and
Valian [35]
and Valian
et al. [36]

Wang and
Li [34]

Afonso
et al. [37]

Abouei and
Hamadani

0.99978937 0.99987916 0.99988921 0.99988957 0.99988963 0.9998893505 0.9998896 0.99988964 0.99988964 0.99988963 0.99997413
(3,3, 2, 3, 2) (3, 3, 3, 3,

1)
(3, 3, 3, 3,
1)

(3, 3, 2, 4, 1) (3, 3, 2, 4, 1) (3, 3, 3, 3, 1) (3, 3, 2, 4, 1) (3, 3, 2, 4, 1) (3, 3, 2, 4, 1) (3, 3, 2, 4,
1)

(3, 3, 3, 3, 1)

0.81448276 0.814090 0.812485 0.826678 0.82868361 0.816624176 0.82983999 0.82809404 0.82812427 0.82764257 0.80457234
0.82138254 0.864614 0.867661 0.857172 0.85802567 0.868767396 0.85798911 0.85800449 0.85784692 0.85747845 0.85717305
0.89615152 0.890291 0.861221 0.914629 0.91364616 0.858748781 0.91333926 0.91416292 0.91420816 0.91419677 0.86734683
0.71309103 0.701190 0.713852 0.648918 0.64803407 0.710279379 0.64674479 0.64790779 0.64808425 0.64927379 0.72759162
0.81409107 0.734731 0.756699 0.715290 0.70227595 0.753429200 0.70310972 0.70456598 0.70411685 0.704092 0.76416666

%) 87.7155 78.5875 76.6451 76.5690 76.5563 76.6155 76.5626 76.5541 76.5541 76.5563 –
(g1) 27 18 18 5 5 18 5 5 5 5 18
(g2) 0.00001 0.376347 0.001146a 0.00116843b 0.00000359 0.00000 0.00000594 0.000079290 0.000000593 0.00004428 0.00006867
(g3) 10.572475 4.26477 4.26477 1.560466 1.56046629 4.26477 1.56046629 1.560466288 1.560466000 1.56046629 4.26476980

hen [25] it was reported 0.001494.
oelho [29] it was reported 0.00000359.



M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118 117
strategy used for the redundant components led to remarkable improvements in the reliability levels of all the three bench-
mark problems compared to those achieved in other studies which considered the active strategy. The MPI index for our ap-
proach led to values greater than 55.4%, 48.2%, and 76.5% for P1, P2, and P3, respectively. Also, comparison with the values
obtained in other studies such as Yeh and Hsieh [28], Coelho [29], Wu et al. [32], Zou et al. [33], Wang and Li [34], Valian and
Valian [35], and Valian et al. [36], reveals that the values obtained in the present study are rather large, indicating the advan-
tage of the cold-standby strategy compared to its active counterpart.

5. Concluding remarks

The reliability–redundancy allocation problems (RRAPs) have been traditionally formulated by considering the active
strategy. In this paper, the RRAP was considered with a cold-standby strategy for redundant components. In order to eval-
uate the efficiency of the proposed strategy, three well-known benchmark problems were considered and a new mathemat-
ical formulation was developed for calculating the value for system reliability under the cold-standby strategy. The problems
were formulated as non-linear integer programming models subject to a number of given non-linear constraints. In general,
RRAPs are not easy to solve, especially for large size instances. In this paper, a modified version of the genetic algorithm (GA)
was, therefore, developed as an effective meta-heuristic algorithm for RRAP. Numerical results demonstrated that the cold-
standby redundancy strategy led to a higher reliability compared to its active counterpart. This strategy was shown to offer
greater flexibility for system designers and reliability analysts and led to considerable improvements in the reliability of
complex systems. For future studies, developing other solution methodologies may be suggested for the proposed strategy
to achieve better results. Another interesting extension may be the case where both active and cold-standby strategies are
simultaneously used in the system.

References

[1] W. Kuo, R. Prasad, An annotated overview of system reliability optimization, IEEE Trans. Reliab. 49 (2) (2000) 176–187.
[2] D.W. Coit, Maximization of system reliability with a choice of redundancy strategies, IIE Trans. 35 (6) (2003) 535–544.
[3] C.E. Ebling, An Introduction to Reliability Maintainability Engineering, McGraw-Hill, New York, 1997.
[4] R. Tavakkoli-Moghaddam, J. Safari, F. Sassani, Reliability optimization of series–parallel systems with a choice of redundancy strategies using a genetic

algorithm, Reliab. Eng. Syst. Saf. 93 (2008) 550–556.
[5] D.W. Coit, Cold standby redundancy optimization for non-repairable systems, IIE Trans. 33 (2001) 471–478.
[6] W. Kuo, R. Prasad, F.A. Tillman, C.L. Hwang, Optimal Reliability Design: Fundamentals and Applications, Cambridge University Press, Cambridge, 2001.
[7] W. Kuo, H. Lin, Z. Xu, W. Zhang, Reliability optimization with the Lagrange multiplier and branch-and-bound technique, IEEE Trans. Reliab. 36 (1987)

624–630.
[8] V.R. Prasad, W. Kuo, Reliability optimization of coherent system, IEEE Trans. Reliab. 49 (2000) 323–330.
[9] M. Hikita, Y. Nakagawa, H. Harihisa, Reliability optimization of systems by a surrogate constraints algorithm, IEEE Trans. Reliab. 41 (1992) 473–480.

[10] Y.C. Hsieh, P.C. You, An effective immune based two-phase approach for the optimal reliability–redundancy allocation problem, Appl. Math. Comput.
218 (2011) 1297–1307.

[11] M.S. Chern, On the computational complexity of reliability redundancy allocation in a series system, Oper. Res. Lett. 11 (1992) 309–315.
[12] C. Ha, W. Kuo, Reliability redundancy allocation: an improved realization for non convex nonlinear programming problems, Eur. J. Oper. Res. 171

(2006) 24–38.
[13] P. Giuggioli, M. Marseguerra, E. Zio, Multi objective optimization by genetic algorithms: application to safety systems, Reliab. Eng. Syst. Saf. 72 (1)

(2001) 59–74.
[14] S. Martorell, A. Sanchez, S. Carlos, V. Serradell, Alternative and challenges in optimizing industrial safety using genetic algorithms, Reliab. Eng. Syst. Saf.

86 (1) (2004) 25–38.
[15] J.E. Ramirez, D.W. Coit, A. Konank, Redundancy allocation for series–parallel systems using a max–min approach, IEE Trans. 36 (9) (2004) 891–898.
[16] M. Marseguerra, E. Zio, S. Martorell, Basics of genetic algorithms optimization for RAMS applications, Reliab. Eng. Syst. Saf. 91 (9) (2006) 977–991.
[17] I.D. Lins, E.L. Droguett, Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and

discrete event simulation, Simul. Model. Pract. Theory 19 (2011) 362–381.
[18] S.K. Konak, A.E. Smith, D.W. Coit, Efficiently solving the redundancy allocation problem using tabu search, IIE Trans. 35 (6) (2003) 515–526.
[19] M. Ouzineb, M. Nourelfath, M. Gendreau, Tabu search for the redundancy allocation problem of homogenous series–parallel multi-state systems,

Reliab. Eng. Syst. Saf. 93 (8) (2008) 1257–1272.
[20] Y.C. Liang, A.E. Smith, An ant colony optimization algorithm for the redundancy allocation problem, IEEE Trans. Reliab. 53 (3) (2004) 417–423.
[21] N. Nahas, M. Nourelfath, Ant system for reliability optimization of a series system with multiple-choice and budget constraints, Reliab. Eng. Syst. Saf.

87 (1) (2005) 1–12.
[22] M. Samrout, F. Yalaoui, E. Chatelet, N. Cheboo, New methods to minimize the preventive maintenance cost of series–parallel systems using ant colony

optimization, Reliab. Eng. Syst. Saf. 89 (3) (2005) 346–354.
[23] N. Nahas, M. Nourelfath, D.A. Kadi, Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series–parallel

systems, Reliab. Eng. Syst. Saf. 92 (2) (2007) 211–222.
[24] T.C. Chen, P.S. You, Immune algorithms-based approach for redundant reliability problems with multiple component choices, Comput. Ind. 56 (2)

(2005) 195–205.
[25] T.C. Chen, IAs based approach for reliability redundancy allocation problems, Appl. Math. Comput. 182 (2) (2006) 1556–1567.
[26] A. Habib, R. Alsieidi, G. Youssef, Reliability analysis of a consecutive r-out-of-n: F system based on neural networks, Chaos, Soliton. Fract. 39 (2009)

610–624.
[27] T.J. Hsieh, W.C. Yeh, Penalty guided bees search for redundancy allocation problems with a mix of components in series–parallel systems, Comput.

Oper. Res. 39 (2012) 2688–2704.
[28] W.C. Yeh, T.J. Hsieh, Solving reliability redundancy allocation problems using an artificial bee colony algorithm, Comput. Oper. Res. 38 (2011) 1465–

1473.
[29] L.S. Coelho, An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications, Reliab. Eng.

Syst. Saf. 94 (4) (2009) 830–837.
[30] A. Pourdarvish, Z. Ramezani, standby redundancy allocation in a multi-level series system by memetic algorithm, Int. J. Reliab. Qual. Saf. Eng. 20 (3)

(2013) 1340007 (16 pages).
[31] M. Ouzineb, M. Nourelfath, M. Gendreaua, An efficient heuristic for reliability design optimization problems, Comput. Oper. Res. 37 (2012) 223–235.

http://refhub.elsevier.com/S1569-190X(13)00193-7/h0005
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0010
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0015
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0015
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0020
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0020
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0025
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0030
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0030
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0035
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0035
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0040
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0045
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0050
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0050
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0055
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0060
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0060
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0065
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0065
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0070
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0070
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0075
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0080
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0085
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0085
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0090
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0095
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0095
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0100
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0105
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0105
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0110
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0110
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0115
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0115
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0120
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0120
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0125
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0130
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0130
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0135
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0135
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0140
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0140
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0145
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0145
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0150
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0150
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0155


118 M. Abouei Ardakan, A. Zeinal Hamadani / Simulation Modelling Practice and Theory 42 (2014) 107–118
[32] P. Wu, L. Gao, D. Zou, S. Li, An improved particle swarm optimization algorithm for reliability problems, ISA Trans. 50 (2011) 71–81.
[33] D. Zou, L. Gao, S. Li, P. Wu, An effective global harmony search algorithm for reliability problems, Expert Syst. Appl. 38 (2011) 4642–4648.
[34] L. Wang, L. Li, A coevolutionary differential evolution with harmony search for reliability–redundancy optimization, Expert Syst. Appl. 39 (2012) 5271–

5278.
[35] E. Valian, E. Valian, A cuckoo search algorithm by Lévy flights for solving reliability redundancy allocation problems, Eng. Optim. 1080 (2012), http://

dx.doi.org/10.1080/0305215X.2012.729055.
[36] E. Valian, S. Tavakoli, S. Mohanna, A. Haghi, Improved cuckoo search for reliability optimization problems, Comput. Ind. Eng. 64 (2013) 459–468.
[37] L.D. Afonso, V.C. Mariani, L.S. Coelho, Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability–

redundancy optimization, Expert Syst. Appl. 40 (2013) 3794–3802.
[38] A.K. Dhingra, Optimal apportionment of reliability & redundancy in series systems under multiple objectives, IEEE Trans. Reliab. 41 (4) (1992) 576–

582.
[39] M.Y. Hikita, Y. Nakagawa, K. Nakashima, H. Narihisa, Reliability optimization of system by a surrogate constraints algorithm, IEEE Trans. Reliab. 7

(1978) 325–328.
[40] Y.C. Hsieh, T.C. Chen, D.L. Bricker, Genetic algorithms for reliability design problems, Microelectron. Reliab. 38 (1998) 1599–1605.
[41] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan, 1975.

http://refhub.elsevier.com/S1569-190X(13)00193-7/h0160
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0165
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0170
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0170
http://dx.doi.org/10.1080/0305215X.2012.729055
http://dx.doi.org/10.1080/0305215X.2012.729055
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0180
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0185
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0185
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0190
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0190
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0195
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0195
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0200
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0205
http://refhub.elsevier.com/S1569-190X(13)00193-7/h0205

	Reliability–redundancy allocation problem with cold-standby redundancy strategy
	1 Introduction
	2 Formulation of the reliability–redundancy allocation problem
	2.1 System reliability with cold-standby redundancy strategy
	2.2 Problem 1 (P1): Series system
	2.3 Problem 2 (P2): Series–parallel system
	2.4 Problem 3 (P3): Complex (bridge) system

	3 Solution method: Genetic algorithm
	3.1 Chromosome definition
	3.2 Fitness function
	3.3 Selection
	3.4 Crossover
	3.5 Mutation

	4 Experimental results
	5 Concluding remarks
	References


