
Ann Oper Res
DOI 10.1007/s10479-012-1146-x

Strategies for protecting supply chain networks against
facility and transportation disruptions: an improved
Benders decomposition approach

Nader Azad · Georgios K.D. Saharidis ·
Hamid Davoudpour · Hooman Malekly ·
Seyed Alireza Yektamaram

© Springer Science+Business Media, LLC 2012

Abstract Disruptions rarely occur in supply chains, but their negative financial and tech-
nical impacts make the recovery process very slow. In this paper, we propose a capacitated
supply chain network design (SCND) model under random disruptions both in facility and
transportation, which seeks to determine the optimal location and types of distribution cen-
ters (DC) and also the best plan to assign customers to each opened DC. Unlike other studies
in the extent literature, we use new concepts of reliability to model the strategic behavior of
DCs and customers at the network: (1) Failure of DCs might be partial, i.e. a disrupted DC
might still be able to serve with a portion of its initial capacity (2) The lost capacity of a
disrupted DC shall be provided from a non-disrupted one and (3) The lost capacity fraction
of a disrupted DC depends on its initial investment amount in the design phase.

In order to solve the proposed model optimally, a modified version of Benders’ De-
composition (BD) is applied. This modification tackles the difficulties of the BD’s master
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problem (MP), which ultimately improves the solution time of BD significantly. The clas-
sical BD approach results in low density cuts in some cases, Covering Cut Bundle (CCB)
generation addresses this issue by generating a bundle of cuts instead of a single cut, which
could cover more decision variables of the MP. Our inspiration to improve the CCB genera-
tion led to a new method, namely Maximum Density Cut (MDC) generation. MDC is based
on the observation that in some cases CCB generation is cumbersome to solve in order to
cover all decision variables of the MP rather than to cover part of them. Thus the MDC
method generates a cut to cover the remaining decision variables which are not covered by
CCB. Numerical experiments demonstrate the practicability of the proposed model to be
promising in the SCND area, also the modified BD approach decreases the number of BD
iterations and improves the CPU times, significantly.

Keywords Supply chain network · Facility location · Random disruption risks · Benders
decomposition

1 Introduction

Risk management is a structured approach to manage threatening uncertain events through a
sequence of human activities. These activities consist of risk assessment, strategies develop-
ment to manage it, and mitigation of its impact using managerial resources. The strategies
include risk transferring (usually to another party), risk avoidance, negative effect reduction,
and the acceptance of some or all consequences of a particular risk. The objective of risk
management is to reduce the impacts of different risks in a preselected domain, to a level
accepted by the decision maker. Risks may refer to numerous types of threats caused by en-
vironment, technology, humans, organizations and politics. Some risk management strate-
gies tackle risks of disruptions in the network, which might be caused by natural sources or
planned operations (e.g. earthquakes, terrorist attacks, etc.).

In this regard, supply chain risk management attempts to reduce supply chain’s vulner-
ability by a coordinated comprehensive approach, involving all supply chain stakeholders,
which identifies and analyzes the risk of failure points within the supply chain.

An example of disruptions caused by natural disasters, which is the focus of this study,
is the recent tragedy in Japan.

On March 11, 2011, Tokyo was struck by a 9.0-magnitude earthquake, followed by a
massive tsunami. As of early April, the death count was over 14000, with an additional
13500 persons still missing. The tsunami also triggered the most serious nuclear incident
since the 1986 Chernobyl disaster as it caused a disruption in the power supply of a cool-
ing system at a major reactor complex at Fukushima. Damage to public infrastructure and
private capital stock, as estimated by Japanese authorities, is roughly $200–300 billion, or
3–5 percent of Japanese GDP. The supply chains of many international companies were also
affected dramatically, including those in the steel, automotive, electronics and chemical in-
dustries, e.g. General Motors had to halt the production of vehicles at several plants, due to
parts shortages from Japanese suppliers. Also Toyota had to suspend production of parts in
the mother country that were intended to be shipped overseas. Finally, most Japanese auto-
motive assembly plants remain closed. The resulting slowdowns and cessation of operations
by so many companies has raised questions regarding supply chain disruption risk and how
to manage it.

As can be seen, disruption risks in supply chain might impose great impacts in today’s
economical environment. Companies are often used to deal with operational risks of supply
chains; whereas many suffer much heavily from supply chain disruptions risks.
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Within the literature, there are some mitigation approaches to deal with supply chain
disruptions: (i) Tactical plans, which are mostly propounded as a particular driver of the
supply chain. For instance, Parlar and Berkin (1991), Parlar (1997) and Mohebbi (2004)
recommended inventory control strategies. Kulkarni et al. (2004), Tomlin and Wang (2005)
and Tomlin (2006) considered flexible strategies in the configurations of supply chain and
Kraiselburd et al. (2004), Martinez-de-Albeniz and Simchi-Levi (2005) and Chopra et al.
(2007) endorsed some procurement strategies for contraction in the supply chain. In fact,
common methods of this category employ buffer-oriented methods to manage disruption
risks, although buffering may concern time, capacity or inventory. These methods represent
only a shield against risks and contribute to raise overall costs. (ii) Strategic plans, which
consist of a wide range of managerial strategies (e.g. demand, product and information man-
agement). Many researchers such as Chopra and Sodhi (2004), Kleindorfer and Saad (2005),
Elkins et al. (2005), Wagner and Bode (2006), Tang (2006), Craighead et al. (2007) and Oke
and Gopalakrishnan (2009), have studied this issue. Plans in this category more effectively
reduce supply chain’s disruption risks. Also they deeply analyze risk sources which are
crucial to the choice of disruption mitigation strategies. Sources of disruption risks can be
segmented into two categories: random disruption risks which may occur at any physical
point of supply chain network, e.g. natural hazards (earthquakes, etc.), whereas, premed-
itated disruption risks are deliberately planned to inflict the supply chain with maximum
damages. Terrorist attacks and labor union strikes are the examples of these risks. Random
disruption risks can be modeled reasonably to follow a probability distribution, whereas pre-
meditated disruption risks need to be modeled in a different manner reflecting the “game”
that is played between the interdictor of the network and the defender of the network. The
structural design of the supply chain greatly affects how these kinds of disruption risks in-
fluence the network. Consequently, in order to mitigate both kinds of risks, undertaking
appropriate strategic plans to improve structural design of the supply chain, becomes more
important.

Thus, we turn the scope of this paper to explore the supply chain network design (SCND)
under random disruption risks and propose strategies reduce their impacts. To hedge against
network disruptions, providing a robust-designed network is one of the most striking ways.

Therefore, this paper aims to make a contribution to the area of random disruption risk
management in SCNDs. Resilience (the ability to adapt to disruptive phenomena), is a key
feature of a SCND that equips it with the ability to withstand the adverse effects of disrup-
tive events. In this paper we emphasize on a mathematical model which aims to make the
components of SCND collaborate to deal with random risk topic. Therefore, we first lay out
a theoretical framework to mathematically characterize the notion of this strategy, and ana-
lyze the advantages it offers over an existing strategy. Besides underlining the importance of
this strategy to achieve resilience in SCND, this research has resulted in the identification of
new research questions along the way. The pursuit of these questions should help shedding
further light on the challenges associated with random disruption risk management.

The remainder of the paper is organized as follows. Section 2 briefly reviews the rele-
vant literature. Section 3 presents the mathematical formulation of the problem. Section 4
describes a decomposition based solution approach for the model. Section 5 presents the
computational experiments and results. Section 6 concludes the paper and presents the fu-
ture work perspectives.
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2 Literature review

In this section, we present an overview of the literature for SCND under random disruption
risks (for premeditated disruption risks, we address, Church et al. 2004; Church and Scaparra
2006; Scaparra and Church 2008; Altner et al. 2010; Liberatore et al. 2011, 2012). The
objective is to design a supply chain network which operates efficiently with the lowest
possible cost, both at normal and disruption situations. The origination of SCND under
random disruption risks looks back to network reliability theory (Colbourn 1987; Shier 1991
and Shooman 2002), which is concerned with maximizing the probability that a link remains
connected after random failures. The primary purpose in designing reliable networks is often
to maximize the demand coverage. For a review of SCND problems considering disruption
risks see Snyder et al. (2006) and Klibi et al. (2010).

Drezner (1987) is one of the papers that studied the facility location under random disrup-
tion risks and suggested two models. In the first one, a reliable classical p-median problem
was assumed, which considers a given probability for the failure of facilities. The objec-
tive was to minimize the expected demand-weighted travel distance. The second model, is
called the (p, q)-center problem; in which p facilities must be located by a means of a mini-
max objective cost function with the assumption that at most q facilities may fail. In both
problems, customers are assumed to be chosen from the nearest non-disrupted facility. He
proposed a neighborhood search heuristic approach for both problems. An efficient method
based on space filling curves to solve the reliable p-median problem is proposed in Lee
(2001).

Snyder and Daskin (2005) studied SCND under random disruptions, based on classical
facility location problems, in which a distribution center (DC) may fail (because of a dis-
ruption occurrence) with a given probability. They assumed that when a DC fails, it can no
more provide any product, and the customers assigned to it, must be reassigned to a non-
disrupted DC. Their objective was to minimize a weighted sum of nominal costs by ignoring
disruptions and also the expected cost of disruption situation where the expected additional
transportation cost was accounted for disrupted DCs. In their model customers are assigned
to several DCs, one of which is the “primary” DC that serves it under regular situation (with-
out disruption), the others serve it if the primary DC fails and so on (Non-linear probability
term). They made the simplifying assumption that all DCs have the same disruption prob-
ability. This assumption allows the expected transportation cost to be expressed as a linear
function of the decision variables. They used the Lagrangian relaxation algorithm to solve
the problem.

One important simplifying assumption of Snyder and Daskin (2005) model is that all DCs
have the same disruption probability. Without this assumption, calculating expected trans-
portation cost in disruption situation becomes significantly complicated. Snyder and Daskin
(2006) developed their previous work and considered the site dependent disruption proba-
bility. They used the scenario approach to formulate the problem. Also they introduced the
concept of stochastic p-robustness where the relative regret is always less than p for any pos-
sible scenario. As the scenario approach enumerates all of the disruption scenarios, one of
its issues is the exponential growth of the problem size by an increase in the number of DCs.
Berman et al. (2007) proposed a p-median problem, in which the objective function was
to minimize the demand-weighted transportation cost. They considered site dependent dis-
ruption probabilities in DCs. The resulting model, which they call the median problem with
unreliable facilities uses non-linear terms to calculate the expected transportation cost in
disruption situation. The authors presented a greedy heuristic to solve the problem. Berman
et al. (2009) developed their previous work and assumed that customers do not know which
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DCs are disrupted and must travel from a DC to another until they find a non-disrupted one.
They applied a heuristic algorithm to solve the problem.

Cui et al. (2010) also proposed a formulation for the problem with site-dependent disrup-
tion probabilities. Unlike the model by Berman et al. (2007) which consists of compound
multiplied decision variables, the only non-linear term of their model is a product of a sin-
gle continuous and a single discrete decision variable and continuum approximation (CA)
was used to formulate the model. In this approximation approach customers are scattered
uniformly throughout some geographical area, and the parameters are expressed as a func-
tion of the location. Replacing explicit disruption probabilities with probabilities depending
on the location allows the expected transportation cost or distance to be calculated without
using any assignment decision. Lagrangian relaxation was used to solve the model. Qi et al.
(2010) studied the SCND under random disruptions considering inventory control decisions.
They assumed that when a retailer is disrupted, any inventory on hand at the retailer is de-
stroyed and also the unmet demands of customers assigned to a retailer are backlogged with
a penalty cost. The resulting model was a concave minimization problem and the Lagrangian
relaxation algorithm was implemented to solve it.

Li and Ouyang (2010) studied the SCND under random disruption risks, in which the dis-
ruption probabilities are assumed to be site-dependent and also geographically correlated.
They also used CA to formulate the model. Lim et al. (2010) proposed the SCND under
random disruptions with the option of strengthening selected DCs. The disruption probabil-
ities are assumed to be site-dependent. By considering two types of DCs (namely unreliable
and reliable), they used the reliable backup DCs assumption to formulate their model. The
disruption occurs in unreliable DCs. Reliable DCs are those that are strengthened against
disruptions by a financial investment and disruptions does not affect them, the so-called
hardening strategy. Like previous works in this area, they assumed that when a disruption
occurs, an unreliable DC completely fails. In their model the customers in disruption situ-
ation are assigned to the nearest reliable DCs. Same as many studies in the literature, the
Lagrangian relaxation was used for solving the problem. Peng et al. (2011) developed a ca-
pacitated version of SCND under random disruptions with stochastic p-robustness criteria
and site dependent disruption probabilities. Similar to Snyder and Daskin (2006), they used
the scenario approach to formulate the problem. A hybrid metaheuristic algorithm which is
based on genetics algorithm, local improvement search, and the shortest augmenting path
method was used to solve the model.

While the above studies can be motivated from a modeling standpoint, there are three
clear and related critiques. (1) Why does the literature ignore capacity issue1 (although unca-
pacitated models provide important features for SCND)? (2) Why the literature is interested
on dealing with a fully disrupted DC? (3) What if disruptions were not limited to DCs and
they could cut off the DCs/customers’ transportation connections? These issues might be
too limiting to capture preferences adequately in disruption situation, because in scenarios
in which the network crashes, we would likely desire guarantees that are inherently different
than those in situations in which the network performs well. One popular assumption among
previous models in the literature is that they assume that a disrupted DC cannot fulfill a part
of their assigned demand with its available resources. This assumption is not applicable in
real world situations since each DC might fail partially and still be able to serve below its
expected capacity. Therefore we consider a capacity failure fraction (CFF) for DCs. The
CFF has not been considered in the literature so far, because DCs have been assumed to be
uncapacitated as mentioned.

1Except Peng et al. (2011).
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Fig. 1 SCND considering random disruption risks based on (a) CFF and goods sharing strategy
(b) Re-assignment of customers strategy

In this regard, literature assume that the solution to deal with disruption is the reassign-
ment of customers to non-disrupted DCs, although this approach does charge the network
with excessive costs. In other words, by CFF we postulate that customers of a disrupted DC
are not assigned to other DCs necessarily, since the capacity lost in the disrupted DC will
be amended from a non-disrupted DC. We call this approach Goods sharing strategy. Thus,
CFF can be supplied by non-disrupted DCs, and customers reassignment patterns will not be
changed accordingly. Figure 1 shows the SCND considering random disruption risks based
on reassignment of customers strategy (previous approaches) and goods sharing strategy
(the proposed strategy).

Another concern of SCND is the DCs/customers connection failures during disruption
event, which has been disregarded in the literature. However, discovering a way to solve this
problem is important, transportation mode, finds how to bridge this break (see Table 1).
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To guard against the risks associated with potential DC failures, it is likely to construct
more reliable and robust networks with decreased CFFs. One straightforward way of ac-
complishing this is through the use of redundant or backup serving models which Lim et
al. (2010) considered recently. They proposed an approach, namely hardening strategy, in
which fully reliable backup DCs are taken into account so as to DCs be operative during
disruptions by a means of an initial financial investment in the network. In this paper we
extend this view and assume that the CFF of a non-disrupted DC depends on the primary
robustness investment. We call this strategy the soft-hardening strategy. To achieve this goal,
a soft-hardening strategic model including investment level concept is developed in order to
design more robust DCs.

The advantages of these strategies are stated in Sect. 5. In summary, we explicitly con-
sider the following four contributions of a distribution network with the mentioned charac-
teristics:

i. The CFF is presented to determine the lost amount of capacity as a result of disruption.
ii. The goods sharing strategy is presented to make a better use of customers’ demands

availability.
iii. The transportation mode is presented to avoid incurring excessive cost to the network

in disruption event.
iv. The soft-hardening strategy is presented to make the network more robust by financial

investment.

The formal form of our formulation is a mixed-integer linear program. In some cases,
standard commercial solvers can be used to solve it directly. However, due to the large num-
ber of variables and constraints involved in this problem, direct usage of standard solvers is
inefficient. On the other hand, the special structure of the problem naturally leads to consid-
eration of a decomposition method for efficient solution schemes. In regards of these con-
siderations, we developed an accelerated algorithm based on Benders decomposition (BD)
method. To our knowledge this is the first time that BD is employed to solve the SCND
under random disruption risk problems.

3 Problem description

The SCND is a traditional problem which companies are dealing with. SCND problems are
concerned with determining logistics infrastructure over a long-term strategic planning pe-
riod. The strategic decisions include determining the location and the capacity of DCs along
with the suitable assignment of customers to them. The objective is to provide the most
effective solution that minimizes total costs while providing customers with the highest
possible service level. Moreover, acquiring this objective highly depends on disruption and
reliability topics. To prepare a setting for our modeling framework, we consider a general
supply chain network which aims to satisfy the demands of several customers. The distri-
bution network may comprise two types of facilities2 (i.e. reliable DCs, unreliable DCs).
No restrictions are imposed on the number of different DC types and on the transportation
links used by the company for shipping its goods. In other words, goods can be transported
between any types of DC both for inbound link (from reliable DC to unreliable DC) and

2Lim et al. (2010) defined that disruptions occur at unreliable DCs, and reliable DCs are the outsourcing ones
which are secured against disruption and assumed to be uncapacitated.
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outbound link (from DC to customer). The reliable outbound links (reliable DCs to cus-
tomers) are protected against disruption, since they have been outsourced beforehand. For
unreliable outbound links (unreliable DCs to customers), two types of transportation modes
are assumed: (i) safe transportation modes, and (ii) unsafe transportation modes. Disrup-
tions occur on unsafe modes, while safe modes are protected against disruptions since they
have been outsourced in advance.3 Therefore, customers are assigned in two ways: (i) pri-
mary assignment, and (ii) secondary assignment. The former, is about the usual situation
when no disruptions are present and could be either safe or unsafe. Conversely, the latter
is used during the disruption situation and could be dealt with only by safe transportation
mode. Naturally, cost of using safe mode is more than unsafe mode, also cost of using safe
mode in the secondary assignment is more than primary assignment, since in disruption sit-
uations, emergency services will be required and therefore the cost of transportation modes
increase.4

On the other hand, supply chain operations in such a network are mainly dedicated to
distribution events with the purpose of satisfying known demands. Thus, due to the strategic
nature of the problem, any description of the underlying production system in each DC is
not considered.

In this paper, associated costs are explained in two categories: the reliability costs, which
result from fixed opening/operating costs of the network and the other, are transportation
costs specified for DCs’ locations. It is clear that the fixed cost of an operating reliable DC is
more than that of an unreliable one. The final objective is to find the optimal network design
with minimum sum of the mentioned costs under given side constraints.

Other strategic assumptions are as follow:

i. Capacity failure fraction (CFF): The amount of the capacity of a disrupted unreliable
DC. An unreliable DC does not fully fail in disruption situation and it loses only a
portion of its capacity i.e. it could support some demands.

ii. Soft-hardening strategy: The amount of the capacity, the unreliable DC loses during
disruption depends on the amount of initial investment for opening and operating, i.e.
the CFF of an unreliable DC can remain robust by a means of additional investments.

iii. Goods sharing: The reliable DC can share its goods with unreliable DCs to compensate
their lost capacity in disruption condition.

3.1 Notations

3.1.1 Indices and sets

k index of customers; k ∈ K

j Index of potential locations of DCs; j ∈ J

n Index of available investment levels for opening and operating unreliable DCs; n ∈ N

r Index of available unsafe transportation modes between DCs and customers; r ∈ R

3For example, consider a company which intends to supply its customers located in three different area zones.
This must be planned in three particular modes: truck, rail and air in which the experience shows that many
accidents (disruptions) have happened so far. Thus, this transportation strategy seems excessively risky. One
proper safe strategy is to get assistance from outsources (similar to reliable DCs in Lim et al. 2010) in order
to prevent the massive cost that company may be charged with; this is what we call safe transportation mode.
4If safe transportation mode in the primary assignment is used, there will be no need to use the secondary
assignment, because the safe mode is also safe in disruption situation.
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3.1.2 Parameters

Dk Demand of customer k

f Ujn Fixed cost of opening and operating unreliable DC at j with investment level n

f Rj Fixed cost of opening and operating reliable DC at j

ejkr Transportation cost from unreliable DC at j to customer k with unsafe transportation
mode r

dpjk Transportation cost in the primary assignment from unreliable DC at j to customer k

with safe transportation mode
dbjk Transportation cost in the secondary assignment from unreliable DC at j to customer

k with safe transportation mode
drjk Transportation cost from reliable DC at j to customer k

Cij Transportation cost from reliable DC at i to unreliable DC at j (i �= j)

κj Capacity of unreliable DC at j

τjn Percentage of total capacity of disrupted unreliable DC at j opened with investment
level n

qj Disruption probability in unreliable DC at j

πjkr Disruption probability between DC at j and customer k when the unsafe transporta-
tion mode r is used

3.1.3 Decision variables

XUjn 1, if unreliable DC is opened at j with investment level n;0, otherwise
XRj 1, if reliable DC is opened at j ;0, otherwise
YRjk 1, if customer k is assigned to reliable DC at j ;0, otherwise
YMjkr 1, if customer k is assigned to unreliable DC at j with unsafe transportation mode r

in the primary assignment; 0, otherwise
YSjk 1, if customer k is assigned to unreliable DC at j with safe transportation mode in

the primary assignment; 0, otherwise
Tij Amount of shipped goods from reliable DC at i to unreliable DC at j at disruption

situation (i �= j)

3.2 Problem formulation

Min
∑

j

∑

n

f UjnXUjn +
∑

j

f RjXRj +
∑

j

∑

k

drjkDkYRjk

+
∑

j

∑

k

∑

r

(1 − πjkr )ejkrDkYMjkr +
∑

j

∑

k

dpjkDkYSjk

+
∑

j

∑

k

∑

r

πjkrdbjkDkYMjkr +
∑

i

∑

j

∑

n

qjCijXUjnTij (1)

st.
∑

j

(∑

r

YMjkr + YSjk + YRjk

)
= 1 ∀k (2)

∑

j

XRj ≥ 1 (3)

XRj +
∑

n

XUjn ≤ 1 ∀j (4)



Ann Oper Res

∑

k

Dk

(∑

r

YMjkr + YSjk

)
≤

∑

n

κjXUjn ∀j (5)

YRjk ≤ XRj ∀j, k (6)

Tij ≤
∑

k

Dk · XRi ∀i, j (7)

Tij ≤ κj

∑

n

XUjn ∀i, j (8)

∑

i

Tij + κj

(∑

n

(1 − τjn)XUjn

)
≥

∑

k

Dk

(∑

r

YMjkr + YSjk

)
∀j (9)

XRj,XUjn,YMjkr , YSjk, YRjk ∈ {0,1} ∀j,n, k, r (10)

Tij ≥ 0 ∀i, j (11)

Objective function (1) aims to minimize the total fixed cost of opening DCs, cost of trans-
portation from DCs to customers, and expected cost of disruption situation. The 1st and 2nd
terms represent the fixed cost of locating unreliable and reliable DCs, respectively. The 3rd
term indicates the cost of assigning customers to reliable DCs. The 4th and 5th terms state
the expected cost of assigning customers to unreliable DCs in primary assignment if unsafe
and safe transportation modes are used, respectively. The 6th term interprets the expected
cost of assigning customers to unreliable DCs in disruption situation (secondary assignment)
if unsafe mode in primary assignment is adapted. Finally the 7th term depicts the expected
costs of shipping goods from reliable to unreliable DCs during disruption in unreliable DCs.

Constraint (2) ensures that each customer is assigned exactly to one DC and one trans-
portation mode. Constraint (3) guarantees that networks cannot be designed without a re-
liable DC, since at least one reliable DC is required to enforce goods sharing strategy in
the disruption situation. Constraint (4) states that reliable and unreliable DCs cannot be lo-
cated at same potential node j , simultaneously. Constraint (5) ensures that the demands of
customers assigned to an opened unreliable DC cannot exceed its capacity. Constraint (6)
links the location and allocation variables of reliable DCs, i.e. customers cannot be assigned
to a reliable DC at potential node j , unless a reliable DC is opened there. Constraint (7)
with respect to goods sharing strategy, ensures that in a disruption situation, goods cannot
be shipped from potential node i, unless a reliable DC is opened at it. Constraint (8) with
respect to goods sharing strategy, ensures that in a disruption situation, goods cannot be
shipped to potential node j , unless an unreliable DC is opened at it. Constraint (9) addresses
both goods sharing and soft-hardening strategies, which states that for each unreliable DC
at j , sum of the shipped goods from reliable DCs and its total available capacity after dis-
ruption, should not be lower than the total demands of its assigned customers. Constraint
(10) enforces the integrality restrictions on the binary variables and finally constraint (11)
enforces the non-negativity restrictions on the corresponding decision variables. Note that
in constraint (4) the value of

∑
n XUjn is either 0 or 1, therefore when it takes value 0, then

by constraint (8) the value of Tij will be zero, so we can drop the factor
∑

n XUjn from the
last term of the objective function (1), subsequently the model turns into a linear program
with

∑
i

∑
j qjCijTij .

4 Solution approach

Due to the large number of variables and constraints involved in the proposed model, direct
usage of standard solvers is inefficient. On the other hand, Benders decomposition (BD)
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approach has proven to be a powerful technique for solving such problems, i.e. large scale
mixed-integer problems. In this regard, we develop an accelerated BD method to solve the
model. In this section, first we introduce the BD method, and then briefly review the back-
ground of the method. Finally, the proposed solution approach is presented to solve the
model.

4.1 Benders decomposition algorithm

BD is an appropriate decomposition approach when the problem under study is consid-
ered as a problem with complicating variables (Conejo et al. 2006). Complicating decision
variables could be variables which make the problem non-convex, such as integer decision
variables and/or a group of decision variables which appear in all or most of the constraints.
We briefly recall the idea of the BD algorithm (Benders 1962) considering, without loss of
generality the following linear problem:

Initial Problem (IP)

Min cT x + dT y

st.

Ax + By ≤ b

x ∈ �n
+, y ∈ Z

q
+

Where c ∈ �n, d ∈ �q , b ∈ �m, A and B are m × n and m × q matrices, respectively. The
decision variables are partitioned into two sets x and y. For a fixed y (y = ȳ), IP takes the
following form:

Primal Slave Problem (PSP)

f (x) = Min cTx + dT ȳ

st.

Ax ≤ b − Bȳ

x ∈ �n
+

In BD we decompose the IP into sub-problem (SP) and master problem (MP). The former
is a restriction of IP and provides an upper bound (UB) in the case of minimization, while
the latter is a relaxation of IP and provides a lower bound (LB):

Master Problem (MP)

F(y, z) = Min z

st.

viT (b − By) ≤ 0

ujT
(b − By) + dT y − z ≤ 0

}
Benders Cuts

z ≥ 0, y ∈ Z
q
+

Where vi is the vector that corresponds to the extreme ray i and uj is the vector that corre-
sponds to the extreme point j of the dual of SP. In each iteration of the BD algorithm, the
SP is solved for a different value of y (y = ȳ) which is updated by the optimal solution of
MP obtained in the previous iteration. Notice that in the first iteration of the algorithm an
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arbitrary value is given to y. In practice instead of solving SP the dual of SP is solved in
each iteration which has the following form:

Dual Slave Problem (DSP)

f ′(u) = MinuT (b − Bȳ)

st.

AT u ≥ c

u ∈ �m
−

In each iteration the objective function of DSP is updated using the optimal solution of
MP obtained in the previous iteration. Notice that the solution space of DSP remains the
same. In each iteration the BD algorithm produces a cut called the Benders cut which is
added to MP. The cut is produced from the optimal extreme point (or extreme ray) of DSP
solution space. Two different types of cuts can be produced in BD algorithm:

• Case 1: If the optimal value of DSP is unbounded then the following feasibility cut is
added to MP: viT (b − By) ≤ 0 where vi is the vector that corresponds to extreme ray i.

• Case 2: If the optimal value of DSP is bounded and the optimality condition is not satisfied
then the following optimality cut is added to MP: ujT

(b − By) + dT y − z ≤ 0 where uj

is the vector that corresponds to extreme point j .

The convergence criterion is satisfied when the difference between the UB obtained by
the best optimal solution of SP and the LB obtained by the solution of the last MP is less
than or equal to the parameter ε (UB − LB ≤ ε), where ε is 0.01 %.

In our case, the SP is essentially a minimization problem that determines the optimum
values of the goods sharing variables for a fixed location and assignment of DCs and cus-
tomers, respectively, and it can be stated as:

Min
∑

i

∑

j

qjCijTij

st.

Tij ≤
∑

k

DkXRi

Tij ≤ κj

∑

n

XUjn ∀i, j

∑

i

Tij ≥
∑

k

Dk

(∑

r

YMjkr + YSjk

)
− κj

(∑

n

(1 − τjn)XUjn

)
∀j

Tij ≥ 0 ∀i, j

As mentioned before, the MP includes the integer variables of the original model in addition
to an auxiliary continuous variable introduced to incorporate Benders cut via the solution of
DSP. The MP of the proposed model can be stated as:

Min
∑

j

∑

n

f UjnXUjn +
∑

j

f RjXRj +
∑

j

∑

k

drjkDkYRjk

+
∑

j

∑

k

∑

r

(1 − πjkr )ejkrDkYMjkr +
∑

j

∑

k

dpjkDkYSjk
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+
∑

j

∑

k

∑

r

πjkrdbjkDkYMjkr + ψ

st.

(2)–(6), (10)

Where ψ is a continuous variable that plays the role of continuous objective (1), in the main
problem.

According to the nature of our model, the SP is always feasible for given y = ȳ. In this
case the DSP’s polyhedron is bounded and one may consider only the extreme points of this
polyhedron. Therefore we have only optimality cuts in each iteration of BD.

4.2 Background of acceleration methods in BD

In some cases a direct application of the classical BD does not lead to fast convergence
(Saharidis et al. 2009). The literature mostly debates about the BD that it has not been
uniformly successful in all the applications and has some deficiencies, e.g. Magnanti and
Wong (1981) observed that the straightforward implementation of BD in network design
problems often converged very slowly.

In fact, the main issues associated with the slow convergence of BD are (i) the solution of
MP and SP, and (ii) the quality of the BD cuts produced in each iteration. As discussed in the
previous subsection, during the application of classical BD, two problems are solved in each
iteration, i.e. the MP and the DSP. McDaniel and Devine (1977) and Cote and Laughton
(1984) proposed a new strategy when the MP is hard to be solved optimally. McDaniel
and Devine (1977) proposed the generation of cuts using the solution of the MP relaxing the
integrality constraint. Cote and Laughton (1984) presented an algorithm where the MP is not
solved to optimality and for the development of SP the first integer feasible solution is used.
Zakeri et al. (1998) proposed the generation of inexact cuts for multi-stage stochastic linear
programs based on deriving suboptimal solutions to SP, while maintaining the convergence
property of the algorithm. The suboptimal solution is obtained by applying a primal-dual
interior-point method.

The weak lower bounds (in case of minimization) obtained by the MP is another reason
leading to slow convergence of BD algorithm. The development and introduction of valid
inequalities to MP, eliminating a priori a number of infeasible solutions, is a successful
strategy to speed-up BD algorithm producing stronger lower bounds. Cordeau et al. (2006)
introduced a new formulation of the logistics network design problem encountered in de-
terministic, single-country and single-period contexts where BD algorithm is applied and a
series of valid inequalities are presented as the part of the solution methodology. Cordeau
et al. (2000) also used BD algorithm to solve the locomotive and car assignment problem
where three sets of valid inequalities are developed based on the special characteristic of
the problem and accelerated the convergence when added to MP. Andreas and Smith (2009)
presented a series of valid inequalities for the sub-tour elimination in order to ensure the
existence of feasible solutions, each time the SP is resolved. Saharidis et al. (2009) have
developed a series of valid inequalities for the optimal scheduling of crude oil in a refinery
network where BD was applied in order to solve large instances of the problem. Finally,
Saharidis et al. (2011) presented a series of valid inequalities which are the first attempt
to generalize, the previously developed valid inequalities to be applicable to the general
fixed-charged network design problem.

The other important issue regarding the efficiency of the BD algorithm is the quality of
Benders cuts. The classical BD algorithm implementation is based on the generation of cuts
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using the optimal solution of current DSP. BD algorithm could converge in one iteration if
all Benders cuts were added to MP in the beginning of the algorithm. Therefore producing
multi-generation of good quality cuts can accelerate the BD algorithm. Magnanti and Wong
(1981) proposed a multi-generation of cuts procedure to accelerate the BD algorithm, using
what they refer to as Pareto-optimal cuts. A cut is defined as Pareto-optimal if no other cut
dominates it. Later on Papadakos (2008) proved that it is not necessary to use a core point
of MP solution space in order to produce a Pareto cut improving the convergence rate of the
algorithm. Rei et al. (2006) investigated how local branching can be used in order to improve
both the lower and upper bounds of BD algorithm. The authors showed that how Benders
feasibility cuts can be strengthened or replaced by local branching constraints. A new multi-
generation of cuts strategy referred to as maximum feasible subsystem (MFS) cut generation
was proposed by Saharidis and Ierapetritou (2010) based on a maximal feasibility of sub-
system of Benders SP when a Benders feasibility cut is generated and optimal Benders cuts
are difficult to be achieved within the iterations of the algorithm. Sherali and Lunday (2011)
proposed the generation of maximal non-dominated cuts utilizing a preemptively small per-
turbation of the right-hand-side of the Benders SP, as well as a complimentary strategy that
generates an additional cut in each iteration via an alternative emphasis on decision variable
weights. Recently, Saharidis et al. (2010) presented a new method referred to as covering
cut bundle (CCB) generation which implements in a novel way of multiple constraints gen-
eration idea.

4.3 Proposed solution method

As discussed in the previous subsection, one of the important issues regarding the efficiency
of BD algorithm is the quality of Benders cuts. The question is what characteristics a cut
should possess in order to have faster convergence of the algorithm. One of the main reasons
that make BD algorithm convergence slow is the form of the produced Benders cuts. If it
was possible to define a priori the extreme points and extreme rays of the solution space of
DSP, that correspond to active constraints in the optimal solution, then we could produce all
these cuts simultaneously, and add them to MP and solve the augmented MP only once. The
solution of this MP would be the optimal solution of IP. Thus the goal must be producing
additional “good” cuts which can help the convergence of the algorithm. A good cut is
defined as a cut which significantly restricts the solution space of MP.

As previously noted, we have the possibility from the first iteration of the BD algorithm
to produce all the possible cuts, because the solution space of the DSP is not affected by
the solution of MP. Using all extreme points and rays, we obtain an equivalent version of
IP which is likely more complicated to be solved optimally. A suitable method in order to
converge to optimal solution faster than the classical BD algorithm is to maintain a tradeoff
between the number of iterations and the number of cuts produced in each iteration. This
balance is based on the idea that increasing the number of cuts decreases the number of iter-
ations, but MP becomes more complicated to be solved optimally and extra time is needed
to generate the additional cuts.

The CCB method is based on this idea (Saharidis et al. 2010). Its main objective is to
cover decision variables of MP by generating additional bundle of cuts in each iteration.
In this paper, we present a method referred to as maximum density cut (MDC) generation
which is based on the idea that it is computationally expensive to cover all decision variables
in the bundle of cuts and for this reason we suggest the generation of a cuts bundle where a
certain number of decision variables are covered and the rest are covered by MDC method.
MDC generation also can be used as a standalone procedure especially in the case where
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the solution of SP is computationally expensive. In a combined CCB and MDC method,
we observe that the feasible solution space of the MP is more restricted than CCB method,
and the algorithm converges with a faster rate to the optimal solution (the comparison is
presented in Sect. 5). In the following, we describe the CCB and MDC methods.

4.3.1 Covering cut bundle generation

Saharidis et al. (2010) proposed the CCB method which is based on the multiple constraints
generation idea. In CCB method, in each iteration the decision variables of MP which are not
“α-covered” by the classical BD cut are determined. Next, an additional cut to cover at least
one of the non-covered variables is generated, and analyzed to update the set of non-covered
variables, and the procedure continues until a predefined number of cuts are generated. The
definition of “α-covered” and “α-covering cut bundle” are explained as follows:

Definition 1 In an optimality cut,5 a variable yk is said to be α-covered in the cut of the
form

∑
k(u

T B)kyk ≥ uT b + dT y − z if the kth row of the matrix uT B is greater than or
equal to α percent of the coefficient with the maximum absolute value in the current cut:
|(uT B)k| ≥ 10−2α Max∀k{|(uT B)k|}, where α is a given parameter chosen in [0,100].

Definition 2 We call α-covering cut bundle, a set of (optimality or feasibility) cuts such that
each variable yk , is α-covered in one or some cuts of the bundle.

The CCB generation proceeds by generating a bundle of cuts instead of a single cut
in each iteration. This bundle of cuts is generated by an auxiliary problem which is based
on Benders SP developed in current iteration. The produced bundle of cuts is intended to
involve decision variables of MP. Due to this feature, one can expect that the solution space
of MP is significantly restricted towards all its direction due to the addition of this bundle of
cuts, and the algorithm converges faster to an optimal solution.

To generate an α-covering cut bundle at each iteration of classic BD algorithm given
the current optimal solution (ȳ) of the MP, initially we solve the corresponding SP and we
produce the following cut:

ujT

(b − By) + dT y − z ≤ 0

Where the extreme point u is the current optimal dual solution. The coefficient of yj in the
produced cut is equal to (uT B)j . In order to generate the α-covering cut bundle, we will
consider bounds inducing constraints on u and add them to DSP. These constraints have the
following form:

LBj ≤ (
uT B

)
j
≤ UBj

5The CCB method which is presented in this subsection is for the case of optimally cut, for feasibility cut
refer to Saharidis et al. (2010).
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where the parameter LBj is the lower bound on the coefficient of the variable decision
yj and UBj is the upper bound on this coefficient. After including the above additional
constraints in DSP, we obtain the following Auxiliary Dual Problem (ADP):

ADP:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ = MinuT(b − By)

st.

AT u ≥ c

−(uT B)j ≥ UBj

(uT B)j ≥ LBj

u ≤ 0

As shown below, this problem is solved for different values of LBj and UBj in order to
cover the decision variable yj of MP. Introducing two new sets of variables λj and μj for
the additional inequalities, the corresponding auxiliary primal problem (APP) which defines
an extreme point covering yj takes the following form:

APP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Γ ′ = Max cTx − ∑
j UBjλj + ∑

j LBjμj

st.

Ax − ∑
j Bjλj + ∑

j Bjμj ≤ b − Bȳ

x,λ,μ,≥ 0

In order to generate a cut where a decision variable yj0 of MP is α-covered, we setup the
current APP, update the right hand side of APP using the current optimal solution ȳ of the
MP, and fix for j = j0, the coefficients of λj and μj in the objective function: LBj = UBj =
+η(or − η). After solving the APP, we generate a cut which has exactly the same form as
the optimal Benders cut using the optimal value of dual decision variables. The parameter
η is the average of the coefficients of α-covered decision variables in the classical Benders
cut and in each iteration takes the following value:

η = (1/k)
∑

j

∣∣(uT B
)
j

∣∣, j ∈
{
j :

∣∣(uT B
)
j

∣∣ ≥ 10−2α Max
∀j

{∣∣(uT B
)
j

∣∣}
}

Notice that k represents the total number of α-covered decision variables in the classical
Benders cut: k = ∑

j j , j ∈ {j : |(uT B)j | ≥ 10−2α Max∀j {|(uT B)j |}}. Fixing the coeffi-
cients LBj = UBj = +η(or − η), for j = j0 of APP’s objective function, to a non-zero
value equal to +η (or −η), we make sure that at least the decision variable yj0 will be α-
covered in the next cut generated. Note that this procedure does not restrict the values of the
other coefficients.

In the general form of the CCB method the values of LBj and UBj in APP are:

LBj = − η

α
and UBj = η

α
,∀j �= j0 (12)

LBj0 = UBj0 = +η or − η (13)

The sign of the parameter η depends on the value of the dual variable of SP(ȳ) and the
corresponding column of matrix B (e.g. Bj ):

• If ujB
j ≥ 0 then LBj = UBj = +η and if ujB

j ≤ 0 then LBj = UBj = −η for j = j0

• If ujB
j ≥ 0 then LBj = 0 and UBj = η

α
, if ujB

j ≤ 0 then LBj = − η

α
and UBj = 0 for

∀j �= j0
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In CCB method, we produce not only one extra cut by APP but a number of cuts (α-
covering cut bundle) where we guarantee that a number of variables are α-covered. In each
solution of APP, the parameters LBj and UBj are changed and fixed to a certain value for
the generation of a new cut. Before resolving the APP the cut produced is added to MP and
for another not yet α-covered variable yj ′

0
, the parameters LBj ′

0
and UBj ′

0
are fixed equal to

+η (or −η). At the same time the bounds LBj0 and UBj0 of the coefficient of the variable
yj0 are re-initialized. A second cut is produced and the iterations continue.

4.3.2 Maximum density cut generation

The basic idea explored in this subsection is the generation of a cut in each iteration where
the maximum numbers of non-covered variables of MP are covered. In this case, the gen-
erated cut restricts significantly the solution space of MP. By maximizing the number of
dual variables with non-zero values, we guarantee that the resulting cut has the maximum
number of non-zero coefficients, covering maximum number MP decision variables.

Without loss of generality we consider a bounded DSP with y = ȳ ′. In order to find the
extreme point of DSP’s solution space, where the maximum of number of decision variables
take a non-zero value, two groups of decision variables and constraints are added. Revising
also the objective function of DSP, we obtain the following Auxiliary DSP (ADSP):

Auxiliary Dual Slave Problem (ADSP)

f c = Min
∑

m

(
k1

m + k2
m

)

st.

AT u ≥ c

−η
(
1 − k1

m

) − Mk1
m ≤ um

∑

q

Bm,q ≤ −η
(
1 − k1

m

) + Mk1
m

η
(
1 − k2

m

) − Mk2
m ≤ um

∑

q

Bm,q ≤ η
(
1 − k2

m

) + Mk2
m

u ∈ �m
−, k1

m, k2
m ∈ Zm = {0,1}m

Where A is m × n matrix, B is m × q matrix, u is an m-vector, k1
m, k2

m are m-vectors
and η is a positive number defined by the last generated Benders cut as in the CCB method.
We solve the ADSP to optimality and we produce a cut in the same way as in the classic
BD. This cut has the maximum number of non-zero coefficients giving rise to a cut with
the highest density (i.e. a large number of decision variables of MP are covered). It should
be noted that the form of ADSP does not change the structure that Benders SP may have
(i.e. blocked decomposed), because the introduced auxiliary integer variables do not link the
problem constraints. Finally, a modified version of ADSP could be used in order to speed-up
the generation of MDC. The integrality constraint of k1

m, k2
m can be relaxed and an additional

constraint can be added resulting a continuous linear problem:

Relaxed-Auxiliary Dual Slave Problem (RADSP)

f c = Min
∑

m

(
k1

m + k2
m

)

st.

AT u ≥ c
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−η
(
1 − k1

m

) − Mk1
m ≤ um

∑

q

Bm,q ≤ −η
(
1 − k1

m

) + Mk1
m

η
(
1 − k2

m

) − Mk2
m ≤ um

∑

q

Bm,q ≤ η
(
1 − k2

m

) + Mk2
m

k1
m + k2

m ≤ 1

u ∈ �m
−, k1

m, k2
m ∈ (0,1)m

The two constraints of RADSP which include η, are defined for the non-covered decision
variables of MP, and the α-covered decision variables, are not included in these constraints.
In this case the decision variables which are not α-covered are bounded with these con-
straints and we expect that these decision variables will be covered. In the context of this
paper and for the computational results presented in Sect. 5, we use the RADSP to address
the above procedure.

4.3.3 Combination of CCB and MDC methods

The role of MDC generation implemented after CCB method is to cover the rest of the
decision variables which are not covered by the classical Benders cut and the bundle of cut
produced by CCB generation.

In each iteration of BD, if the classical BD cut has low density then we run CCB and
MDC. A low density cut is defined as follows:

Definition 3 Low density cut is a cut which includes less than b % of α-covered MP deci-
sion variables.

In each iteration, if the classical Benders cut is a low density cut, then the following steps
are executed.

Step 1: We run the CCB generation and then add the bundle of cuts to MP.
Step 2: The classical Benders cut and CCB generation are checked to find which decision
variables of MP are still not α-covered.
Step 3: We build the RADSP and then run it to cover the maximum decision variables
found in Step 2. Finally we add the MDC cut to MP.

The flowchart of CCB and MDC methods combination for the case of optimally cut is
shown in Fig. 2.

MDC generation can also be used as a standalone procedure especially in the case where
solving SP is computationally expensive. In this case, in each iteration of the algorithm
after solving the SP, the generated Benders cut is examined. If this cut is a low density cut
then the classical Benders cut is checked to find which decision variables of MP are not
α-covered. Finally the corresponding RADSP is solved, and the MDC cut is added to MP.
After the solution of MP the optimality criterion is examined. If it is not satisfied then the
SP is updated by the optimal solution of MP and the algorithm continues.

5 Computational result

We performed series of numerical experiments to evaluate the performance of our proposed
solution method and model. We coded the algorithm in C++ and used CPLEX as the solver,
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Fig. 2 The flowchart of combination CCB and MDC methods
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executed it on a computer with 2.4 GH processor and 2 GB of RAM, operating under Mi-
crosoft Windows Vista. We benchmark our results using the branch-and-bound algorithm in
CPLEX 11.0, which we ran on the same hardware. Computation run times are reported in
seconds.

We generated 30 random datasets of different problem sizes with the number of cus-
tomers (hereafter size) ranging from 10 to 150, the number of DCs ranging from 2 to 22 and
the number of considered investment levels and transportation modes are 3 and 5.

The customers’ demands ∼ U [100,250]. The DC disruption probability (qj ) ∼ U [0.025,

0.15] and is assumed to occur independently. To obtain the fixed cost of reliable and unre-
liable DCs, a strategy similar to Lim et al. (2010) is used. When we use three investment
levels for opening unreliable DCs, the fixed cost of unreliable DCs are computed as follows:
f Uj1 ∼ U [2000,3000], also f Uj2 − f Uj1 = 4000qj and f Uj3 − f Uj1 = 10000qj . Thus,
DCs facing higher disruption probabilities will be more costly to harden. In this setting, the
hardening cost from level 1 to level 2 is roughly 10 % of the fixed cost of the unreliable
DC (i.e. fixed cost of opening DC in level 1) and the hardening cost from level 1 to 3 is ap-
proximately 25 % of the fixed cost of the unreliable DC. Also in this case (three investment
levels) corresponding CFFs are computed as follows: τj1 ∼ U [0.2,0.6], τj2 = 0.75τj1 and
τj3 = 0.5τj1. In case of using five investment levels for opening DCs, the fixed cost of unre-
liable DCs are calculated as follows: f Uj1 ∼ U [2000,3000], also f Uj2 − f Uj1 = 2000qj ,
f Uj3 − f Uj1 = 4000qj , f Uj4 − f Uj1 = 7000qj and f Uj5 − f Uj1 = 10000qj . In this
case (five investment levels) corresponding CFFs assumed to take the values as follows:
τj1 ∼ U [0.2,0.6], τj2 = 0.875τj1, τj3 = 0.75τj1, τj4 = 0.625τj1 and τj5 = 0.5τj1. To ob-
tain the opening cost of reliable DCs, the difference of fixed costs between reliable and
unreliable DC for each DC is determined as a linear function of disruption probability; i.e.,
f Rj − (

∑
n f Ujn/|N |) = 23000qj . In this setting, the cost of using a reliable DC instead of

an unreliable one is estimated roughly 50 % more than the average fixed cost of opening an
unreliable DC. The safe transportation cost in the primary assignment (dpjk) ∼ U [30,35]
and the safe transportation cost in the secondary assignment is set to dbjk = 1.25dpjk . We
consider three or five unsafe transportation modes between customers and DCs in different
sizes. The unsafe transportation mode disruption probability (πjkr ) ∼ U [0.04,0.20].

5.1 Algorithm performance

In this subsection, we investigate the performance of the proposed solution method (CCB-
MDC method). First, the proposed solution method is compared with CPLEX and BD, and
then it is compared with CCB and MDC standalone methods separately. In Table 2, we
describe the sizes of solved instances.

5.1.1 Comparison between CPLEX, BD and CBB-MDC methods

In this subsection we present results based on instances of Table 2, and show that the use of
CCB-MDC method significantly improves the efficiency of CPLEX and BD algorithm.

In order to accelerate BD algorithm the priority is to reduce the total number of iterations
the MP problems are solved. A decrease in the number of main iterations usually results in
a reduction of the resolution time. Resolution time consists of time the algorithm spends in
order to solve the MP and a series of APP problems in CCB method and RADSP problems
in MDC methods. Reducing the number of iterations results in a significant reduction due
to a smaller number of MPs that have to be solved. However, significant amount of time
is required to generate the additional cuts. Therefore, in order to reduce the total resolution
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Table 2 Size of instances

No. |K| |J | |N | |R| # Int. var. # Cont. var. # Total var. # Cons.

P1 10 2 3 3 108 4 112 45

P2 10 2 5 5 152 4 156 45

P3 15 2 3 3 158 4 162 60

P4 15 2 5 5 222 4 226 60

P5 20 3 3 3 312 9 321 108

P6 20 3 5 5 438 9 447 108

P7 20 4 3 3 416 16 432 145

P8 20 4 5 5 584 16 600 145

P9 30 5 3 3 770 25 795 246

P10 30 5 5 5 1080 25 1105 246

P11 30 6 3 3 924 36 960 301

P12 30 6 5 5 1296 36 1332 301

P13 40 6 3 3 1224 36 1260 371

P14 40 6 5 5 1716 36 1752 371

P15 40 8 3 3 1632 64 1696 513

P16 40 8 5 5 2288 64 2352 513

P17 50 8 3 3 2032 64 2096 603

P18 50 8 5 5 2848 64 2912 603

P19 60 10 3 3 3040 100 3140 891

P20 60 10 5 5 4260 100 4360 891

P21 70 12 3 3 4248 144 4392 1235

P22 70 12 5 5 5952 144 6096 1235

P23 80 14 3 3 5656 196 5852 1635

P24 80 14 5 5 7924 196 8120 1635

P25 100 17 3 3 8568 289 8857 2430

P26 100 17 5 5 12002 289 12291 2430

P27 120 19 3 3 11476 361 11837 3180

P28 120 19 5 5 16074 361 16435 3180

P29 150 22 3 3 16588 484 17072 4485

P30 150 22 5 5 23232 484 23716 4485

time, the time reduction achieved by the reduction of iterations must be greater than the time
spent to produce the additional cuts.

In Table 3, we compare the CCB-MDC method with CPLEX and classical BD algorithm.
This table shows the optimal cost of each instance. For the classical BD and CCB-MDC
methods, the run time (in seconds), as well as the total number of iterations to solve the
problem optimally, are reported. Also the average density of cuts produced by the classical
BD algorithm is shown, and finally in the last two columns of table, the relative difference
between classical BD and CCB-MDC methods are gathered. The algorithm is terminated for
each instance if it failed to attain an 0.01 %–optimal solution within 18000 CPU seconds,
and Table 3 records such problems with ‘*’ instead of the CPU time. As we observe, the
CCB-MDC method outperforms the CPLEX and classical BD approaches and it solves all
of the instances to optimality with the tolerance of 0.01 %.
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Table 3 Comparison between CPLEX, classical BD and CCB-MDC methods

No. Cost CPLEX BD CCB-MDC Relative difference
between CCB-MDC
and BD (%)

CPU CPU # Iter. Average density
of cut (%)

CPU # Iter. CPU # Iter.

P1 47117 0.02 0.04 2 48.86 0.05 2 −25 0

P2 46152 0.02 0.04 3 49.24 0.04 3 0 0

P3 66098 0.06 0.1 3 24.61 0.08 2 20 33

P4 63161 0.09 0.06 2 49.48 0.06 2 0 0

P5 82988 0.1 0.14 2 65.87 0.14 2 0 0

P6 81598 0.19 0.31 4 55.29 0.32 4 −3 0

P7 81131 0.3 0.61 7 29.17 0.53 6 13 14

P8 79832 0.56 0.39 4 33.2 0.35 3 10 25

P9 128155 5.06 16.47 17 41.41 8.99 10 45 41

P10 124216 6.83 4.67 11 58.02 3.9 8 16 27

P11 126849 8.71 9.81 13 41.76 7.29 9 26 31

P12 123650 10.95 5.59 11 41.75 4.33 7 23 36

P13 165852 11.26 5.31 10 44.53 4.01 7 24 30

P14 161829 13.48 4.59 9 50.05 4.11 7 10 22

P15 166953 18.39 30.05 17 47.01 18.37 11 39 35

P16 163699 51.49 53.2 25 42.81 26.17 15 51 40

P17 201151 167.29 23.37 13 43.85 15.32 8 34 38

P18 197462 429.37 96.42 34 42.52 52.02 18 46 47

P19 232298 1570.83 131.55 26 43.34 89.87 18 32 31

P20 226836 5248.95 67.23 19 41.21 48.02 14 29 26

P21 273790 * 348.28 34 42.8 139.73 15 60 56

P22 265939 * 684.45 53 37.92 241.12 21 65 60

P23 308689 * 3692.67 99 41.9 1512.68 37 59 63

P24 301915 * 789.25 39 42.57 428.32 20 46 49

P25 379226 * 11952.34 122 45.11 3899.48 36 67 70

P26 371966 * 14311.7 138 44.48 4386.67 45 69 67

P27 414243 * * – – 5683.18 50 – –

P28 436809 * * – – 7686.72 60 – –

P29 500118 * * – – 9463.49 60 – –

P30 518783 * * – – 12224.19 75 – –

* Algorithm terminated at 18000 seconds without attaining optimal solution

This implies that by applying CCB-MDC method, the produced cut involves the max-
imum number of decision variables of MP and thus it improves the convergence of BD
algorithm. Also CCB-MDC method requires relatively less computational effort to solve
the instances.

Moreover, when the size increases, the relative difference between CCB-MDC and BD
methods grows (e.g. see instances P25 and P26), since BD method exhibits a great average
computational effort, primarily due to its poor performance on the instances.
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Table 4 Comparison between CCB, MDC and CCB-MDC methods

No. CCB MDC CCB-MDC Relative difference
between CCB-MDC
and CCB (%)

Relative difference
between CCB-MDC
and MDC (%)

CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

P1 0.05 2 0.05 2 0.05 2 0 0 0 0

P2 0.04 3 0.04 3 0.04 3 0 0 0 0

P3 0.08 3 0.08 2 0.08 2 0 33 0 0

P4 0.06 2 0.06 2 0.06 2 0 0 0 0

P5 0.14 2 0.14 2 0.14 2 0 0 0 0

P6 0.32 4 0.32 4 0.32 4 0 0 0 0

P7 0.53 6 0.52 6 0.53 6 0 0 −2 0

P8 0.35 3 0.33 3 0.35 3 0 0 −6 0

P9 10.65 12 11.08 14 8.99 10 16 17 19 29

P10 3.59 8 3.98 10 3.9 8 −9 0 2 20

P11 7.89 10 8.29 11 7.29 9 8 10 12 18

P12 4.61 8 5.16 10 4.33 7 6 13 16 30

P13 4.33 8 4.58 9 4.01 7 7 13 12 22

P14 4.31 8 4.24 8 4.11 7 5 13 3 13

P15 22.05 13 22.44 14 18.37 11 17 15 18 21

P16 36.02 18 38.58 21 26.17 15 27 17 32 29

P17 18.84 9 19.47 11 15.32 8 19 11 21 27

P18 70.43 23 74.74 26 52.02 18 26 22 30 31

P19 108.44 21 112.75 22 89.87 18 17 14 20 18

P20 53.19 15 58.92 17 48.02 14 10 7 18 18

P21 197.49 19 228.81 23 139.73 15 29 21 39 35

P22 363.98 28 418.24 37 241.12 21 34 25 42 43

P23 1971.76 47 2243.81 58 1512.68 37 23 21 33 36

P24 576.29 24 625.19 29 428.32 20 26 17 31 31

P25 5148.27 47 5987.53 60 3899.48 36 24 23 35 40

P26 5548.52 55 6635.66 73 4386.67 45 21 18 34 38

P27 7066.49 61 7873.18 72 5683.18 50 20 18 28 31

P28 9553.85 76 11515.24 87 7686.72 60 20 21 33 31

P29 12084.47 76 13359.51 90 9463.49 60 22 21 29 33

P30 15291.34 93 16824.79 108 12224.19 75 20 19 27 31

This important reduction in solution times, justifies that for BD method the generation
of low density cuts is a significant drawback. Therefore regardless of the method applied to
cover a maximum number of MP decision variables, the improvement would be significant.

5.1.2 Comparison between CCB, MDC and CCB-MDC methods

In this subsection, to validate the CCB-MDC method, we compare it with the CCB and
MDC methods individually and the results are shown in Table 4. In this table, we display the
total run time and the number of iteration to achieve the optimal solution in these methods.
Also the relative differences between CCB-MDC method and the other two approaches are
reported.
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Fig. 3 Behavior of lower bound and upper bound of objective function at size 80 (a) classical BD method
(b) CCB-MDC method (c) CCB method (d) MDC method

As the size increases, the CCB-MDC method outperforms the other approaches signifi-
cantly both in the run time and the number of iterations. This indicates that the combination
of the two methods significantly restricts the solution space of MP and yields a quick con-
vergence compared to when each method is utilized alone.

Also Table 4 shows that the performance of CCB method is better than MDC method.
In fact, our numerical results show that in general it is better to cover the decision variable
of MP by producing a bundle of low density cuts (as CCB method does) than only a high
density cut (as MDC method does). Considering that the time spent for the generation of the
bundle of low density cuts is less than the time spent for the generation of the high density
cut.

Figure 3 shows the behavior of the lower and upper bounds of the objective function at
size 80 for classical BD, CCB, MDC and CCB-MDC methods. Obviously the upper bounds
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decrease and the lower bounds increase as the number of iterations increases. However, as
the classical BD algorithm, CCB and MDC methods require respectively 39, 24, and 29
iterations to reach the optimality tolerance, the CCB-MDC method requires 20 iterations.
The results in Fig. 3 clearly show that in this case the CCB-MDC method converges much
faster does the other mentioned methods.

Table 5 verifies our attempt to improve the CCB-MDC method. An improvement of the
proposed solution approach could be aiming to cover more than one MP decision variable
in each APP, thus reducing the consumed time to make the whole bundle. By considering
decision variables of MP that are not α-covered by the classical BD cut in an iteration,
we generate the next cut covering for example 2 or 5 non-covered variables, update the
set of remaining non-covered variables and continue this procedure until a predetermined
maximum number of cuts in a bundle attained. This will be provided by fixing 2 or 5 of
LBj’s and UBj’s equal to η (or −η), instead of 1, each time APP is solved. The α-covering
cut bundle is generated by the same approach discussed in the Sect. 4, but in the improved
approach instead of producing say 100 cuts each aim to cover a variable (as in original CCB
approach), we produce 50 cuts each aim to cover 2 variables at the same time, or 20 cuts
each aim to cover 5 decision variables.

Saharidis et al. (2010) investigated that a bundle of low-density cuts is more desirable for
the acceleration of the algorithm than a cut corresponding to the sum of these low-density
cuts (which creates a high-density cut), we further examine our comparison with the case
that in CCB strategy only one additional cut is used where all predetermined maximum num-
ber of non-covered variables of MP (e.g. 100 variables in the above example) are covered in
it (see Table 5).

5.2 Benefit of considering random disruption risk

In this subsection, we study the benefits of considering random disruption risks in SCND.
For this purpose, we attempt to consider the problem from two perspectives: (1) when there
is no consideration of disruption in DCs and transportation modes in the model. In this case
we consider the model stated in Sect. 3.2 with the probabilities qj and πjkr set to 0 and also
the variable Tij and constraints 7–9 are removed from the model. (2) When disruption is
considered in the modeling with its corresponding probabilities and the proposed model in
Sect. 3.2 is considered. We refer to the cost of networks designed without disruption in both
cases as nominal cost. In fact nominal cost in the first case is equal to the objective value of
the optimal solution and in the second case after solving the problem, we set qj and πjkr to
0 in the objective function and save the remaining costs as its nominal cost.

In both cases first the corresponding problems are solved and nominal cost is saved. Then
we assume a scenario takes place in the model (i.e. disruption is occurred at some DCs as
well as transportation links), in this case we calculate the disruption cost of both cases as
follows: The capacity losses in disrupted DCs will be provided from their nearest reliable
opened DCs and the disrupted transportation modes are outsourced with the safe transporta-
tion. Total cost incurred in the network in each model is considered as the disruption cost.

There are numerous disruption scenarios which could take place in the network in fact if
|J | and |K| denote the number of DCs and customers respectively, then disruption scenarios
in DCs and transportation links would be 2|J | and 2|J |×|K|, respectively. Therefore in order
to compare both cases efficiently, 500 random disruptions scenarios were generated by the
Monte Carlo procedure. It should be noted that this evaluation technique is related to what is
called “in-sample stability” in stochastic programming’s tradition (for further information,
please refer to Kaut et al. 2007).
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Table 6 presents both cases. The following table presents nominal costs of both models
as well as the percentage of increase in nominal cost in the second case (designed network
considering disruptions) compared to the first case (designed network without considering
disruptions). Also as this table uses 500 scenarios6 to present the mentioned information,
the expected as well as minimum and maximum reduction of disruption cost in the second
case compared to the first case in all scenarios is collected. It can be explicitly observed that
the reliability of the network has improved when the proposed model is implemented. From
Table 6, it can be observed that the reliability of the network has notably improved whereas
the nominal cost does not have a trivial change. For example, at size 60 with 7.3 % increase
in nominal cost, an expected decrease of 25.2 % in disruption cost appears, which denotes
that the reliability of network grows by a slight improvement of facility cost.

Figure 4 displays that as the size raises, the existing gap between the increase in nomi-
nal cost unlike the decrease in disruption cost grows. At size 10, for instance, the gap be-
tween the increase in nominal cost and expected decrease in disruption cost becomes 3.8 %
whereas for size 150 it shows a significant increase plotting to nearly 21.7 %.

5.3 Benefits of considering soft-hardening strategy

In this subsection, we compare the advantage of considering soft-hardening strategy, with
hardening-strategy presented by Lim et al. (2010). They also elaborated two types of DCs:
reliable and unreliable, and assumed that by an investment a fully reliable DC is emerged
and the partial DC disruptions in unreliable DCs are not considered.

Figure 5 shows the comparison of the costs of both strategies. To apply the hardening
strategy, we omit the investment level index (n) from the model, therefore the capacity lost
in an unreliable DC j , and fixed cost of opening and operating of Lim et al.’s model are
computed from the capacity lost and fixed cost of opening of all levels of the soft-hardening
strategy as follows:

τj =
∑

n τjn

|N | and f Uj =
∑

n f Ujn

|N |
From Fig. 5, we see that the expected cost of the model based on the soft-hardening

strategy is lower than that of hardening strategy. The percentages of improvements are 9 %
at size 30, 11 % for 50 customers, 14 % for 80 customers, 17 % for 100 customers and 21 %
for 120 customers. In fact, in soft-hardening strategy, partial DC disruption considered in
unreliable DCs, leads to amend the network to be more robust and flexible in a disruption
situation.

We further study how changes in the critical parameters such as the DC disruption proba-
bility affects the relative difference between the costs of our model based on soft-hardening
strategy and hardening strategy. For simplicity, we suppose an identical disruption proba-
bility (q) for all DCs, and vary q from 0.1 to 0.5. Figure 6 shows how the relative difference
between the costs of soft-hardening strategy and hardening strategy decreases as q grows.
Then as the size grows, we see that the cost variation of two strategies highly depends on
the values of q . For example, in size 120 at q = 0.1, the gap is 27.68 % while at q = 0.5,
this gap drops to 14.96 %, implying that once the network is disrupted, the model intensifies
to open more number of reliable DCs rather than unreliable ones, this leads to reduction of
the cost deference in two strategies.

6It should be noted that the literature of SCND under random disruption risks which utilize scenario-based
approach (see Table 1, e.g. Peng et al. 2011 and Snyder and Daskin 2006), generate up to 65 scenarios for
their instances.
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Fig. 4 Increasing in nominal cost and decreasing in disruption cost curves

Fig. 5 Comparing soft-hardening strategy and hardening strategy

5.4 Impact of disruption probability and CFF on unreliable DCs

In this subsection, we explore how changes in the disruption probability and CFF of unreli-
able DCs (τjn) affect the optimal number of opened reliable and unreliable DCs. Consider
the following four scenarios:7

• CFF scenario 1: τjn in this scenario (τ
(1)
jn ), is considered as mentioned in Sect. 5

7Hereafter we compile our investigation for medium and large sizes 80 and 120 by means of instances P24
and P28 in Table 2, respectively.
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Fig. 6 Sensitivity analysis of q on comparing soft-hardening strategy and hardening strategy. R.D. (%):
Relative difference between the costs of model based on soft-hardening strategy and hardening strategy

• CFF scenario 2: τjn in this scenario (τ
(2)
jn ), is considered as τ

(2)
jn = 1.2 × τ

(1)
jn

• CFF scenario 3: τjn in this scenario (τ
(3)
jn ), is considered as τ

(3)
jn = 1.4 × τ

(1)
jn

• CFF scenario 4: τjn in this scenario (τ
(4)
jn ), is considered as τ

(4)
jn = 1.6 × τ

(1)
jn

The results at sizes 80 and 120 are shown in Fig. 7 and Fig. 8, respectively. These figures
show that the optimal number of opened reliable DCs increases (while the optimal number
of opened unreliable DCs decreases) as CFF and q increases (i.e. unreliable DCs lose more
capacity in disruption situation). For example Fig. 7 shows that at size 80 and q = 0.1,
in scenario 1 there are 3 and 7 (scenario 4, 5 and 3) opened reliable and unreliable DCs,
respectively, whereas at q = 0.5, in scenario 1 there are 5 and 3 (scenario 4, 7 and 1) opened
reliable and unreliable DCs. Similar results are also found in Fig. 8 at size 120.

As q decreases, the number of opened reliable and unreliable DCs increase, for example,
at size 120 and q = 0.1, scenario 1 presents 3 and 10 opened reliable and unreliable DCs,
respectively, on the other hand, scenario 4 offers 8 and 3 opened reliable and unreliable
ones which emphasizes our intuition (the difference between number of opened reliable and
unreliable DCs in these two scenarios are 5 and 7, respectively), e.g. when q = 0.5 (see
Fig. 8).

5.5 Impact of transportation mode disruption probability

In this subsection, we investigate how changes in disruption probability of unsafe transporta-
tion modes (π) affect the optimal percentage of used safe and unsafe transportation modes
in the primary assignment which is computed as follows:

• Percentage of used safe transportation modes in primary assignment (%) = 100 ×
(Optimal number of used safe transportation modes in primary assignment)/Total number
of used transportation modes in primary assignment.

• Percentage of used unsafe transportation modes in primary assignment (%) = 100 −
Percentage of used safe transportation modes in primary assignment.

Similar to the previous subsection, we employ four scenarios for π as follows:

• Tran. scenario 1: π in this scenario (π
(1)
jkr ), is considered as mentioned in Sect. 5

• Tran. scenario 2: π in this scenario (π
(2)
jkr ), is considered as follows π

(2)
jkr = 1.2 × π

(1)
jkr
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Fig. 7 Sensitivity analysis of q and CFF for size of 80 (a) optimal number of opened unreliable DCs (b) op-
timal number of opened reliable DCs

• Tran. scenario 3: π in this scenario (π
(3)
jkr ), is considered as follows π

(3)
jkr = 1.4 × π

(1)
jkr

• Tran. scenario 4: π in this scenario (π
(4)
jkr ), is considered as follows π

(4)
jkr = 1.6 × π

(1)
jkr

The results at size 80 and 120 are shown in Fig. 9 and Fig. 10, respectively. We see
that when π increases, the optimal percentage of used safe transportation modes in primary
assignment increases resulting in the decrease of unsafe transportation mode usage.

Intuitively safe transportation modes are more suitable to achieve the minimum cost when
there is a high probability of disruption as they tend to react more robust than unsafe modes.
The computational results also confirm this insight. For instance, scenario 1 at size 80 em-
ploys 18.3 % of safe modes and significantly is outnumbered by the unsafe modes (81.7 %),
while in scenario 4, at the same size, 59.7 % and 40.3 % safe and unsafe modes are present,
respectively (follow this observation at size 120).
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Fig. 8 Sensitivity analysis of q and CFF for the size of 120 (a) optimal number of opened unreliable DCs
(b) optimal number of opened reliable DCs

5.6 Impact of disruption probability and fixed opening cost of DCs

In this subsection, we study how the changes in q and fixed opening cost of DCs affect the
optimal number of opened reliable and unreliable DCs. To analyze the fixed opening cost of
DCs, we define the hardening fixed cost factor as follows:

hfj = f Rj∑
n f Ujn

|N |
∀j

Again we vary q from 0.1 to 0.5 under four scenarios of hardening fixed cost factor in
DCs and consider hfj = 1.5, hfj = 1.8, hfj = 2.1 and hfj = 2.4 for all the DCs in these
scenarios. The results at size 80 and 120 are shown in Fig. 11 and Fig. 12, respectively.
These figures show that the optimal number of opened reliable DCs increases (while the
optimal number of opened unreliable DCs decreases) as q increases and hardening fixed
cost factor decreases (reliable DCs become cheaper to build).
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Fig. 9 Sensitivity analysis of π at size 80

Fig. 10 Sensitivity analysis of π at size 120

Note that since in scenario hf = 2.4, each reliable DC incurs more cost for opening, the
model tends to use fewer number of reliable DCs. Figure 12 shows a similar behavior of
problem at size 120. Another interesting point is when q and hf increase simultaneously,
the overall number of DCs reduces, e.g. at size 120 (Fig. 12) and q = 0.1, total number of
DCs (for all scenarios of hf ) is about 11 and 13, while at q = 0.5 when hf = 2.4, resulting
number of DCs is 9. In fact, number of reliable DCs dominates the number of unreliable
DCs as q raises, and when hf also grows, network is charged immensely to open reliable
DCs; hence, the model performs with less number of reliable DCs to satisfy more customers’
demands, consequently, by an increase in q , number of unreliable DCs decreases and by an
increase in hf, number of reliable DCs decreases. Therefore, a simultaneous growth in q and
hf, will reduce the number of reliable and unreliable DCs.
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Fig. 11 Sensitivity analysis of q and hardening cost factor at size 80 (a) optimal number of opened unreliable
DCs (b) optimal number of opened reliable DCs

6 Conclusions

Facility disruption can have a serious impact on the service quality of a network. In light
of this, we have developed a new capacitated SCND model under random disruption to find
a robust arrangement of DCs that is flexible in situations with failed DCs. This could be
an effective response to the managerial needs to control the logistics costs and maintain
high customer service levels in a network system. In particular an original mixed-integer
linear programming model taking into account disruptions in DCs and outbound links is
proposed. The results are illustrated and discussed in order to identify the most significant
factors affecting the system’s performance and to suggest effective guidelines. Scenarios are
drawn for instances of up to 150 customers. Also we specifically hold the following strategic
attributes considered in the model:

i. The CFF is presented for assessing how much capacity is lost as a result of a disruption
in a DC.
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Fig. 12 Sensitivity analysis of q and hardening cost factor at size 120 (a) optimal number of opened unreli-
able DCs (b) optimal number of opened reliable DCs

ii. The goods sharing strategy is presented to maintain service quality level under disrup-
tion.

iii. The soft-hardening strategy is presented to make the network more robust by financial
investment.

The above topics have not been considered simultaneously so far and this paper is the first to
consider such contributions. From managerial view points, we have shown that reliability of
DCs and transportations can be improved without large increases in operating costs. In our
problem, we also have shown that using soft-hardening strategy outperforms using hard-
ening strategy and improves the optimal cost for different sizes. However for larger values
of disruption probability of DCs, the relative difference cost of soft-hardening strategy and
hardening strategy decreases, because in this case the optimal number of opened reliable
DCs increases.

The sensitivity analysis of applying mentioned strategies revealed some key insights:
(1) the optimal number of opened reliable DCs in contrast to unreliable DCs, increases as
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CFF and disruption probability of DCs grows. (2) The optimal number of opened reliable
DCs compared to unreliable DCs increases as hardening fixed cost factor decreases (reliable
DCs become cheaper to build) and as DC’s disruption probability increases. (3) The op-
timal percentage of used safe transportation modes, contrary to unsafe modes, increases in
the primary assignment as the unsafe transportation mode’s disruption probability increases.
One may explore this improvement to check whether the proposed approach is beneficial in
practice. This may require extending our dataset to capture other complex features arising
from the necessities of automotive companies that work in logistics areas, e.g. Toyota and
General Motors that both were inflicted with impacts from the latest Japan’s Tsunami. The
proposed strategies are also applicable within the context of natural disasters when the prob-
ability that a disruption occurs at a given DC is difficult to estimate accurately and/or the
consequences of an extreme event may be so severe to justify a highly risk-averse decision
making approach. Probabilistic models, however, should be devised for modeling disrup-
tions which are random in nature if the disruption probabilities can be either forecasted or
estimated from reliable historical data. In this case protection measures may be undertaken
to reduce the probability of disruption.

A new BD accelerating approach, namely Maximum Density Cut (MDC), has been pro-
posed in order to solve the model optimally. The inspiration to develop MDC method was
that it was found that the number of cuts generated in each iteration of CCB method (see
Sect. 4.3.1) affects the performance of the algorithm. Combining MDC and CCB methods
was the solution to this difficulty. Using MDC cut generation independently or in com-
bination with CCB method, the number of iterations always decreases, which results in
significant solution time decrease since the solution space of MP has been restricted.

For future works, one possible extension is to consider a duration and frequency for
random disruptions. Incorporating these features in the model will enable the decision maker
to examine optimal decisions in a dynamic setting. It is also possible to integrate the model
with other decisions in SCND like inventory management, production management, routing
decisions etc., which suffer from the lack of disruption risks management.
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