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Abstract

This paper presents an analytical taxonomy that can suit-
ably describe, rather than simply classify, techniques for
data presentation. Unlike previous works, we do not con-
sider particular aspects of visualization techniques, but
their mechanisms and foundational vision perception. In-
stead of just adjusting visualization research to a classifica-
tion system, our aim is to better understand its process. For
doing so, we depart from elementary concepts to reach a
model that can describe how visualization techniques work
and how they convey meaning.

1 Introduction

The large volume of data sets produced in all kinds of hu-
man activities motivates the quest for more efficient ways to
explore and understand information. The benefits of such
understanding reflect in business advantages, more accurate
diagnosis, finer engineering and more refined conclusions in
a general sense. Computer graphics aided techniques have
been researched and implemented in order to provide im-
proved mechanisms for exploring stored data. These efforts
are generically known as (data) Visualization, which pro-
vides faster and user-friendlier mechanisms for data analy-
sis, because the user draws on his/her comprehension imme-
diately as graphical information comes up to his/her vision.

Several classification schemes have been proposed for
visualization techniques, each one focusing on some aspect
of the visualization process. However, many questions re-
main unanswered. What are the building blocks of a visual
exploration scene? How interaction mechanisms relate to
these facts? These are core issues for implementing and
evaluating visualization systems. In this work, we discuss

these issues and analytically find answers to them based on
the very mechanisms of the visualization techniques and on
visual perception theory.

In this paper we discuss the subjective nature of visu-
alization by proposing a discrete model that can better ex-
plain how visualization scenes are composed and formed,
and how their constituent parts contribute to visual compre-
hension. We revisit visual analysis proposing a perspective
where visualization scenes are considered as a set of compo-
nents each of which passive of discrete consideration. This
discussion is organized as follows. Section 2 reviews for-
mer taxonomies from the literature, section 3 presents the
basic components of visualization techniques, used as ele-
ments for our proposed taxonomy. Section 4 delineates the
descriptive taxonomy itself, while section 5 explains how
interaction techniques fit into the proposed framework. Fi-
nally, Section 6 presents a brief discussion and concludes
the paper.

2 Related Work

One of the most referenced taxonomies for Visualization,
and well suited to academic purposes, is the one pro-
posed by Keim [13]. It maps visualization techniques
within a three dimensional space defined by the follow-
ing discrete axes: the data type to be visualized (one,
two, multi-dimensional, text/web, hierarchies/graphs and
algorithm/software), the visualization technique (standard
2D/3D, geometrical, iconic, dense pixel and stacked), and
the interaction/distortion technique applied (standard, pro-
jection, filtering, zoom, distortion and link & brush). This
taxonomy is suitable to quickly reference and categorize vi-
sualization techniques, but it is not adequate to explain their
mechanisms.
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A simpler taxonomy was earlier presented by Schneider-
man [27]. It delineates a pair wise system based on a set of
data types to be explored, and on a set of exploratory tasks
to be carried out by the analyst. This taxonomy, known
as task (overview, zoom, filter, details-on-demand, relate,
history and extract) by data type (one, two, three, multi-
dimensional, tree and network) taxonomy, was pioneer in
analytically delineating visualization techniques. The effort
provides a good idea of what a given technique is and how
it can be used.

Another interesting classification is presented by Chi
[4], a quite analytical approach, which details visualization
techniques through various properties related to a specific
visualization model. The taxonomy embraces data, abstrac-
tion, transformation and mapping tasks, presentation and in-
teraction. It determines a complete and extensive descrip-
tive system for analytical purposes.

Tory and Möoller [29] define Scientific Visualization
and Information Visualization, respectively, as continuous
([one, two, three, multi-dimensional] versus [scalar, vec-
tor, tense, multi-variate]) and discrete (two, three, multi-
dimensional and graph & tree) classes, according to the in-
tuitive perception of their visual modeling. Wiss and Carr
[34] describe a cognitive based taxonomy that considers at-
tention, abstraction and (interaction) affordance in order to
discus 3-D techniques. Unlike a classification system, this
taxonomy can be seen as a guide to “dissect” the subjective
nature of visualization techniques.

In the following discussion we also analyze visualization
techniques according to a classification scheme but, differ-
ently, we concentrate on basic characteristics common to
every visually informative scene. We benefit from empiri-
cal observations of how data translates to space, that is, how
it is spatialized and we consider characteristics proposed in
visual perception theory (position, shape and color), which
determines how pre-attentive features can stimulate our vi-
sual system.

3 Components of Visualization Techniques

Visualization can be understood as data represented vi-
sually. That is, it takes advantage of spatialization to
allow data to be visually/spatially perceived and it re-
lies on visual stimuli to represent data itens or data at-
tributes/characteristics. Based on these facts an overview
of our taxonomy model is presented in Figure 1, which de-
picts its basic components and their possible classes, further
detailed in this text.

3.1 Spatialization

Spatialization of data refers to its transformation from a raw
format that is difficult to interpret into a visible spatial for-

Figure 1. Taxonomy model based on spatial-
ization and visual stimuli. The central rectan-
gle represents visualization scenes. Around
the visualization scene are its components:
spatialization(position), shape and color to-
gether with their possible classes.

mat. In fact, Rohrer et al. [25] state that visualizing the non-
visual requires mapping the abstract into a physical form,
and Rhyne et al. [23] differentiate Scientific visualization
and Information visualization based on whether the spatial-
ization mechanism is given or chosen, respectively. We con-
sidered these arguments to analyze spatialization and veri-
fied that visualization techniques can be grouped based on
how they are mapped into the visual/spatial domain.

3.2 Pre-attentive Visual Stimuli

Semiotic theory is the study of signs and how they convey
meaning. According to semiotic theory, the visual process
is comprised of two phases, the parallel extraction of low-
level properties (called pre-attentive processing) followed
by a sequential goal-oriented slower phase. Pre-attentive
processing plays a crucial role in promoting visualization’s
major gain, that is, improved and faster data comprehension
[30].

Specifically, pre-attentive processing refers to what can
be visually identified prior to conscious attention. Essen-
tially, it determines which visual objects are instantly and
effortlessly brought to our attention. The work described
by Ware [32] identifies the categories of visual features that
are pre-attentively processed. Position (2D position, stereo-
scopic depth, convex/concave shading), Shape (line orien-
tation, length, width and line collinearity, size, curvature,
spatial grouping, added marks, numerosity) and Color (hue,
saturation) are considered and, according to Pylyshyn et al
[21], specialized areas of the brain exist to process each of
them (Figure 2). Actually this is true for everything we see,
for what we can ask three questions: where is it? what is its
shape? and what color is it?
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Figure 2. Pre-attentive visual stimuli.
4 Proposed Taxonomy

Visualizing data demands a maximization of just noticeable
differences. To satisfy this need, visualizations rely on pre-
attentive stimuli - characteristics inherent to visual/spatial
entities. Therefore, the data must first be mapped to the
spatial domain (spatialized) in order to be pre-attentively
perceived. Our taxonomy thus focuses on the spatialization
process and on the pre-attentive stimuli that are employed
by visualization techniques.

4.1 Spatialization

In this section we identify a set of procedures for data spa-
tialization: Structure exposition, Projection, Patterned po-
sitioning and Reproduction. In the following section we
present the pre-attentive stimuli that complete the requisites
to describe a data visualization.
• Structure exposition: data can embed intrinsic structures,
such as hierarchies or relationship networks (graph-like),
that embody a considerable part of the data significance.
This class comprises visualization techniques that rely on
methods to adjust data presentation so that the underly-
ing data structure can be visually perceived. Examples are
the TreeMap technique [28], illustrated in Figure 3(a), and
force directed graph layouts [8], such as the one illustrated
in Figure 3(b);

Figure 3. (a) TreeMap structure exposition.
Position: hierarchical arrangement; shape:
correspondence (size proportionality); color:
discrete differentiation. (b) Force directed
structure exposition. Position: relational
arrangement; shape: meaningful (arrowed)
lines; color: discrete differentiation.

• Patterned: this is the simplest positioning procedure,
with the set of individual data items arranged sequentially
(ordered or not) according to one or more directions, linear,
circular or according to specific patterns.

Patterned techniques tend to fully populate the projection
area and sometimes are referred to as dense pixel displays.
Examples include Pixel Bar Charts [15], showed in Figure
4(a), pie charts (circular disposition), depicted in 4(b) and
pixel oriented techniques in general [12].

Figure 4. (a) Pixel Bar Charts. Position: manu-
facturers mapped in horizontal sequence and
clients (pixels) mapped according to a pat-
terned positioning; shape: correspondence
(size); color: continuous correspondence. (b)
Pie chart. Position: each slice maps a differ-
ent pizza ingredient; shape: correspondence
(size); color: discrete differentiation.

Notice that the simple approach of Patterned positioning re-
stricts the presentation of data, which is tipically depicted
with shape and size encoding, as in Figures 4(a), 4(b) and
10(c). Keim’s pixel-oriented techniques are an exception, in
that they use just color, and no shape encoding, to present
the data items, which are positioned according to elaborated
patterned sequences [14].

Figure 5. 3D functional plotting. Position:
referential (axes); shape: math surface dis-
plays relationship among points; meaning-
ful axes and labels; color: continuous corre-
spondence. (b) Star Coordinates 2D projec-
tion of 8-dimensional data. Position: referen-
tial; shape: meaningful axes and labels; color:
discrete differentiation.

• Projection: stands for a data display modeled by the rep-
resentation of functional variables. That is, the position of a
data item is defined by either a well-known or an implicit
mathematical function. In a projection, the information
given is magnitude and not order, as in a patterned spatial-
ization. Examples are Parallel Coordinates (one projection
per data dimension), Star Coordinates [11] and conventional
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graph plots, as illustrated in Figure 5;
• Reproduction: data positioning is known beforehand and
is determined by the spatialization of the system from where
data were collected, as exemplified in Figures 6(a) and 6(b).
In reproduction, the data inherits positioning from its orig-
inal source. Usually, specific algorithms [6] are required to
identify the data positioning based on its implicit physical
structure; other algorithms are used to simplify intractable
volumes and/or to derive other features later represented for
example as color, glyphs or streamlines.

Figure 6. (a) Rendered dataset. Position: ref-
erential (surface shape as reference); shape:
meaningful object; color: continuous corre-
spondence. (b) Geographical map. Position:
referential (background map as reference);
shape: meaningful airport and road identi-
fiers; color discrete differentiation. (b) repro-
duced with permission granted by S.G. Eick.

Reproduction can be seen as a special case of projec-
tion where no explicit projection function is given - compare
Figures 5(a) and 6(a). Instead, the data positioning derives
from the observed phenomenon and it is part of the data.
Therefore, projection and reproduction are characterized by
considerably different methodologies that confer them dis-
tinct classifications, namely, explicit projection and implicit
projection (rendering).

4.2 Pre-attentive Stimuli

In this section we analyze well-known visualization tech-
niques in order to empirically identify how attributes Posi-
tion, Shape and Color are used to express information.

4.2.1 Position

Position is the primary component for pre-attention per-
ception in visualization scenes and it is strictly related to
the spatialization process. So, while spatialization is the
cornerstone for enabling visual data analysis (as it maps
data to the visual/spatial domain), it also dictates the mech-
anism for pre-attentive positional perception. Thus, po-
sitional pre-attention occurs in the form of Arrangement,
Correspondence and Referential, explained in the follow-
ing paragraphs. These classes derive, respectively, from

spatializations Structure Exposition, Patterned and Projec-
tion/Reproduction.

• Structure Exposition → Arrangement: specific arrange-
ments can depict structure, hierarchy or some other global
property. Without an explicit referential, information is per-
ceived locally through individual inter-positioning of ele-
ments and/or globally through a scene overview. For in-
stance, TreeMap (Figure 3(a)) presents the hierarchy of the
data items, and a graph layout (Figure 3(b)) presents net-
work information.
• Patterned → Correspondence: the position of an item,
either discrete or continuous, determines its corresponding
characteristic without demanding a reference. For example,
see Figure 10(b) where each of the four line positions maps
one data attribute. Other examples are Parallel Coordinates
and Table Lens [22], techniques that define an horizontal
sequence for placing data attributes;
• Projection → Referential: this is the most obvious re-
lation between spatialization and positional pre-attention.
Projections have a supporting function whose intervals de-
fine referential scales suited to analogical comprehension.
• Reproduction→ Referential: the position of an element,
discrete or continuous, is given relative to an explicit refer-
ence, such as a geographical map (Figure 6(b)), a meaning-
ful shape (Figure 7(a)) or a set of axes (Figure 7(b));

Figure 7. (a) Position: referential (globe as ref-
erence); shape: relationship (curved lines),
proportional correspondence (pillars size)
and meaning (globe); color: discrete cor-
respondence. (b) Position: referential (par-
allelepiped as reference); shape: meaning
(chemical molecules); color: continuous cor-
respondence. Images reproduced with permission
granted by S.G. Eick.

We observe that spatialization based on Reproduction
can yield all the three kinds of positional pre-attention: ar-
rangement, correspondence or referential. This is a con-
sequence of the image characteristics being predetermined
from the source being reproduced, which may bear any of
these characteristics naturally. However, the most common
occurrence is referential pre-attention, to which we limit our
exposition.
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4.2.2 Shape

We argued so far that a limited number of spatialization
procedures is at the core of visualization techniques, and
that these spatialization procedures dictate the positional
pre-attentive stimulus. Nevertheless, after spatializing the
data one still needs to choose their shape and color, other
pre-attentive stimuli. In this and the following sections we
investigate how shape and color contribute to visual percep-
tion. In particular, the Shape stimulus embraces the largest
number of possibilities to express information: Differentia-
tion, Correspondence, Meaning and/or Relationship.
• Differentiation: the shape displayed discriminates the
items for further interpretation, as in Figures 8(a), 9(a) and
10(a);
• Correspondence: discrete (Figure 8(a)) or continuous
(Figure 8(b)), each noticeable shape corresponds to one in-
formative feature. Proportion (variable sizing) is the most
used variation for this practice;
• Meaning: the shape displayed carries meaning, such as
an arrow, a face or a complex shape (e.g. text), whose com-
prehension may depend on user’s knowledge and previous
experience, as depicted in Figures 7(b) and 8(b);
• Relationship: shapes, such as lines, contours or surfaces,
denote the relationship between a set of data items, e.g., in
Parallel Coordinates, 3D plots and paths in general, illus-
trated in Figures 5(a) and 7(a).

Figure 8. (a) Position: referential (axes as ref-
erence); shape: discrete correspondence and
differentiation (square); color: discrete cor-
respondence. (b) Position: referential (axes
as reference); shape: continuous correspon-
dence (size and curvature); color: discrete
differentiation.

4.2.3 Color

After applying a spatialization procedure, which leads to
positional clues for perceiving information, and after choos-
ing a shape to convey additional meaning, color is the third
pre-attentive stimulus to be considered. Color conveys in-
formation by Differentiation and/or Correspondence of data
items:

• Differentiation: colors have no specific data correspon-
dence, they just depict equality (or inequality) of some data
characteristic, as it may be observed in the visualizations
depicted in Figures 9(a) and 9(b). The coloring of the items,
either discrete or continuous, is data dependent or user input
dependent;
• Correspondence: discrete or continuous, as observed in
Figures 7(a) and (b). In the discrete case each noticeable
color maps one informative feature, usually a class, a level,
a stratum or some predefined correspondence. In the con-
tinuous case, the variation of tones maps a set of continuous
data values.

Figure 9. (a) Position: correspondence for at-
tribute order and attribute values; shape: line
size correspondence (all columns) and differ-
entiation (in the 5th column shape indicates
selection); color: discrete differentiation. (b)
Position: referential (window as a Euclidean
plane) and correspondence through the cir-
cular positioning of the inner sticks of each
glyph; shape: differentiation determined by
the contour around each glyph and propor-
tional correspondence for the inner sticks;
color: discrete differentiation. (b) created with
XmdvTool [31].

4.3 Hybridism and Subspace Visualiza-
tions

In the process of creating a visualization, it is possible to
subdivide the available space into disjoint regions and, then,
apply another spatialization process to each subspace. Fig-
ure 10(a), for example, shows a grid in which star glyphs
are spatialized. Similarly, Figure 10(b) shows a focused star
glyph in which sticks are positioned according to a different
spatialization procedure. Figure 10(c) demonstrates the rel-
ative positioning of the glyphs in the star glyph and, finally,
Figure 10(d) shows a focused stick that represents the mag-
nitude of the third attribute of the (hypothetical) jth item.

A similar approach is applied in techniques such as Di-
mensional Stacking [17], Worlds-within-Worlds [7], Cir-
cle Segments [1], Pixel Bar Charts [15] and the so-called
iconic techniques in general. Multiple spatialization cycles
allow improved space utilization and result in more com-
plex visualization techniques. Moreover, they define hybrid
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Figure 10. Two spatialization cycles applied in generating a visualization. (a) Projection of star
glyphs. (b) Star glyph focused. (c) Arrangement within a glyph. (d) Attribute information as a pro-
portional shape.

approaches for composing visualizations that allow for the
vast number of techniques found in visualization literature.
In such compositions, pre-attention occurs as a function of
the visualization focus. Such understanding, coupled with
our taxonomical system, can provide additional guidance
on new thoughts for data visualization.

5 Interaction Techniques

Interaction is an important component for visualization
techniques but, differently from former works, we do not
incorporate interaction to our taxonomy. In fact, we chose
to handle visualization and interaction as disjoint concepts.
However, interaction and visual applications present a no-
table synergy. Therefore, we must clarify the role of inter-
action techniques in the visualization scene. We define two
conditions for identifying an interaction technique:

1. An interaction technique must enable a user to de-
fine/redefine the visualization by modifying the character-
istics of pre-attentive stimuli;

2. An interaction technique, with appropriate adaptations,
must be applicable to any visualization technique.

The first condition arises from the direct assumption that
interaction techniques alter the state of a computational ap-
plication. In the case of a visualization scene, its basic
components (the pre-attentive stimuli) must be altered. The
second condition arises from the need of having interaction
techniques that are well defined, which directs us towards
generality. An interaction technique, then, must be appli-
cable to any visualization technique, even if not efficiently.
We identify the following interaction paradigms:
• Parametric: the visualization is redefined, visually (e.g.,
scrollbar) or textually (e.g., type-in), by modifying position,

shape or color parameters. One could mention as exam-
ples, the hierarchical Parallel Coordinates (visual) mech-
anism described by Fua et al [9] and Keim’s [12] query-
dependent pixel displays that conform to a textual query
system;
• View transformation: this interaction adds physical touch
to the visualization scene, whose shape (size) and position
can be changed through scale, rotation, translation and/or
zoom, not necessarily all of them, as in the FastmapDB tool
[2];
• Filtering: a user is allowed to visually select a subset
of items that, through pre-attentive factors such as color
(brushing) and shape (selection contour), will be promptly
differentiated for user perception. Detailed studies are pre-
sented by Martin and Ward [19];
• Details-on-demand: detailed information about the data
that generated a particular visual entity can be retrieved at
any moment and presented in the scene. As an example
we refer to the interaction (not the presentation) of Table
Lens visualization, which permits to retrieve the data that
originated a given graphical item and present it in textual
(shape) form;
• Distortion: allows visualizations to be projected so that
different perspectives (positions) can be observed and de-
fined simultaneously. Classical examples are the Perspec-
tive Wall [18] and Fish-eye Views [26].

The well-known Link & Brush (co-plots) technique does
not satisfy our conditions. It is an application dependent
automation that can be implemented only when brushing
and multiple visualization techniques share a visualization
environment.

6 Conclusions
We illustrate the proposed taxonomy in Table 1, which
shows the categorization of some well-known visualization
techniques. In proposing this taxonomy we focused on gen-
eralizing the rationale of how visualization scenes are en-
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Table 1. Examples of spatialization-pre-attention analysis
Visualization Technique Spatialization→Position Shape Color (usual) Prospective Interaction

Chernoff Faces [3] Projection→Referential,
Patterned→Correspondence

Correspondence,
Differentiation

- Filtering

Dimensional Stacking [17] Projection→Referential - Differentiation Filtering

Parallel Coordinates [10] Projection→Referential,
Patterned→Correspondence

Relationship Differentiation Filtering

Scatter Plots [5] Projection→Referential - Differentiation Filtering

Star Coordinates [11] Projection→Referential,
Patterned→Correspondence

- Differentiation View transformation,
Details-on-demand

Stick Figures [20] Projection→Referential,
Patterned→Correspondence

Differentiation,
Correspondence

Differentiation Filtering

Worlds-within-Worlds [7] Projection→Referential - - View transformation

Bar Chart Projection→Referential Correspondence Correspondence Filtering, Parametric

Pixel Bar Charts [15] Projection→Referential,
Patterned→Correspondence

Correspondence Correspondence Filtering, Parametric

Circle Segments [1] Patterned→Correspondence - Correspondence Details-on-demand

Keim’s Pixel Oriented [12] Patterned→Correspondence - Differentiation Filtering, Parametric

Pie Chart Patterned→Correspondence Correspondence Correspondence Filtering, Parametric

Table Lens [22] Patterned→Correspondence,
Projection→Referential

Correspondence Differentiation Filtering,
Details-on-demand

Cone Tree [24] Structure Exposition→Arrangement Relationship Differentiation View transformation,
Details-on-demand

Hyperbolic Tree [16] Structure Exposition→Arrangement Relationship Differentiation View transformation,
Details-on-demand

Treemaps [28] Structure Exposition→Arrangement Correspondence Differentiation Filtering,
Details-on-demand

Geographical Maps Reproduction→Referential Differentiation,
Correspondence

Differentiation Filtering,
Details-on-demand

Vector Visualization Reproduction→Referential Meaning,
Correspondence

Differentiation,
Correspondence

View transformation

Direct Volume Rendering
[33]

Reproduction→Referential Meaning Differentiation,
Correspondence

View transformation

gendered and how they are presented to our cognitive sys-
tem. Such a general characterization results in a taxonomy
that does not rely on specific details on how techniques op-
erate. Rather, it considers their fundamental constituent
parts: how they perform spatialization and how they em-
ploy pre-attentive stimuli to convey meaning. Our claim is
that such an approach is required to gain a general under-
standing of the visualization process.

Existing taxonomies categorize techniques based on di-
verse and detailed information on how techniques per-
form a visual mapping. This diversity and detailing (re-
fer to Section 2) include, e.g., axes arrangement (“stacked
techniques”), specific representational patterns (“iconic and
pixel-oriented techniques”), predisposition of representa-
tiveness (“network and tree techniques”), dimensional-
ity (“2D/3D techniques”) and interaction (“static/dynamic

techniques”). Although such approaches can suitably de-
scribe the set of available techniques, they lack analytical
power because the core constituents of the techniques are
diffused within the taxonomical structure.

Our approach results in an extensible taxonomy that can
accommodate new techniques as, in fact, any technique will
rely on common foundational basis. We see this taxonomy
as a starting point for fomenting further discussions and
thoughts on how visualization techniques operate and how
we can improve our understanding of them. Hopefully,
it can contribute to give us better grounds for design,
evaluation and implementation of techniques in the future.
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