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a b s t r a c t

Drawdown measures the decline of portfolio value from its historic high-water mark. In this paper, we
study a lifetime investment problem aiming at minimizing the risk of drawdown occurrences. Under the
Black–Scholes framework, we examine two financial market models: a market with two risky assets, and
amarket with a risk-free asset and a risky asset. Closed-form optimal trading strategies are derived under
both models by utilizing a decomposition technique on the associated Hamilton–Jacobi–Bellman (HJB)
equation. We show that it is optimal to minimize the portfolio variance when the fund value is at its
historic high-water mark. Moreover, when the fund value drops, the proportion of wealth invested in the
assetwith a higher instantaneous rate of return should be increased.We find that the instantaneous return
rate of the minimum lifetime drawdown probability (MLDP) portfolio is never less than the return rate of
the minimum variance (MV) portfolio. This supports the practical use of drawdown-based performance
measures in which the role of volatility is replaced by drawdown.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Drawdown, measuring the decline of portfolio value from its
historic high-watermark, is a frequently quoted riskmetric to eval-
uate the performance of portfolio managers in the fund manage-
ment industry (see, e.g., Burghardt et al., 2003). Drawdown focuses
primarily on extreme downward risks (as opposed to other stan-
dard risk measures such as volatility and Beta), making it partic-
ularly relevant for risk management purposes. Also, drawdown
can easily be measured and interpreted by both portfolio man-
agers and clients. A significant drawdown not only leads to large
portfolio losses but may also trigger a long-term recession. Bailey
and Lopez de Prado (2015) recently provided some justification to
the so-called ‘‘triple penance rule’’, where the recovery period was
shown to be on average three times as long as the time to pro-
duce a drawdown. Also, drawdown is considered a key determi-
nant of sustainable investments as investors tend to overestimate
their tolerance to risk. For instance, a sharp drop in portfolio’s value
is often accompanied by investors exercising their fund redemp-
tion options. Moreover, investors tend to assess their investment
success by comparing their current portfolio value to the histor-
ical maximum value. This resulted in much hardship during the
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global financial crisis of 2008 when substantial drops in portfolio
valuewere experienced across the board. Therefore, portfolioman-
agers have strong incentives to adopt strategies with low draw-
down risks (and more stable growth rate).

Portfolio optimization problems related to drawdown risks
have long focused on maximizing the long-term (asymptotic)
growth rate of a portfolio subject to a strict drawdown constraint.
Grossman and Zhou (1993) pioneered this research topic by con-
sidering a market model with a risky asset and a risk-free asset in
the Black–Scholes framework. This problem has been extended to
amulti-asset framework and a general semimartingale framework
by Cvitanic and Karatzas (1995) and Cherny and Obloj (2013), re-
spectively. Klass and Nowicki (2005) later showed that the strat-
egy proposed by Grossman and Zhou (1993) is not always optimal
in a discrete-time setting. Moreover, the objective tomaximize the
long-term growth rate has been criticized because any strategy
which coincides with the optimal strategy of Grossman and Zhou
(1993) after any fixed time is optimal. Roche (2006) studied the
infinite-horizon optimal consumption–investment problem for a
power utility subject to the same drawdown constraint. Elie and
Touzi (2008) later extended Roche (2006) to a general class of
utility functions. Portfolio optimization problems with drawdown
constraints are also considered in discrete-time settings (see, e.g.,
Chekhlov et al., 2005 and Alexander and Baptista, 2006).

In this paper, we consider the optimization problem of
minimizing the probability that a significant drawdown occurs
over a lifetime investment. Mathematically speaking, our problem

http://dx.doi.org/10.1016/j.insmatheco.2015.08.007
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
http://crossmark.crossref.org/dialog/?doi=10.1016/j.insmatheco.2015.08.007&domain=pdf
mailto:xinfu@pit.edu
mailto:david.landriault@uwaterloo.ca
mailto:bin.li@uwaterloo.ca
mailto:d65li@uwaterloo.ca
http://dx.doi.org/10.1016/j.insmatheco.2015.08.007


X. Chen et al. / Insurance: Mathematics and Economics 65 (2015) 46–54 47
is formulated as follows. On a filtered complete probability space
(Ω,F , F = {Ft}t≥0, P) satisfying the usual conditions, we
consider a F -progressively measurable trading strategy π =

{πt}t≥0. The associated fund value process is denoted by Wπ
=

Wπ
t


t≥0 with initial value W0 = w > 0. We define the (floored)

running maximum of the fund value at time t by

Mπ
t = max


sup
0≤s≤t

Wπ
s ,m


,

with m ≥ w. Note that the initial values w and m are fixed posi-
tive constants, and hence are independent of the trading strategy
π . The ratios (Mπ

t − Wπ
t )/M

π
t andWπ

t /M
π
t are respectively called

the relative drawdown level and the relative fund level at time t . To
quantify and measure the drawdown risk, for a fixed significance
level α ∈ (0, 1), we define

τπα = inf

t ≥ 0 : Mπ

t − Wπ
t > αMπ

t


,

to be the first time the relative drawdown of the fund valueWπ ex-
ceeds the significance level 100α%. Equivalently, the event (τπα >
t) for some fixed t > 0 implies that the relative drawdown of the
fund value in time period [0, t] never exceeds α.

Our main objective is to solve for the optimal trading strategy
π∗

=

π∗
t


t≥0 that minimizes the probability that a relative

drawdown of size over α occurs before eλ, the random time of
death of a client with constant force of mortality λ > 0, i.e.,

min
π∈Π

P

τπα < eλ|W0 = w,M0 = m


, (1.1)

whereΠ is the set of admissible trading strategies defined as

Π =


π : π is F -progressively measurable and t

0
π2
s ds < ∞ for any t ≥ 0


. (1.2)

Thus, eλ is an F -measurable exponentially distributed random
variable with mean 1/λ > 0, independent of the fund value
process by assumption. For ease of notation, we denote the
objective function in (1.1) as

ψ(w,m) = min
π∈Π

Pw,m

τπα < eλ


= min

π∈Π
Ew,m[e−λτπα ], (1.3)

where the last equation is due to the independence of τπα and eλ.
Here and henceforth, wewrite Ew,m[ · ] = E[ · |W0 = w,M0 = m].

The present work proposes tominimize the lifetime drawdown
probability rather than impose a strict drawdown constraint, as is
commonly done in the literature. This is because a strict drawdown
constraint may not be attainable in some contexts (such as those
discussed in Sections 2 and 3). As for other similar optimization
problems (e.g., the minimum lifetime ruin probability (MLRP) of
Young (2004), Bayraktar and Young (2007), Bayraktar and Zhang
(2015) and references therein), we consider the drawdown proba-
bility over the lifetime of a client with a constant force of mortal-
ity. For the treatment of non-constant forces of mortality, one may
adopt the approximative scheme of Moore and Young (2006). Fi-
nally, the solution of our resulting Hamilton–Jacobi–Bellman (HJB)
equation does not possess a simple form, which makes its solution
form difficult to guess. Instead, we decompose the HJB equation
into two nonlinear equations of first order which are solved con-
secutively.

We point out that a recent paper by Angoshtari et al. (2015b)
also studied theminimumdrawdownprobability problembut over
an infinite-time horizon. By utilizing the results of Bäuerle and
Bayraktar (2014), the authors found that the minimum infinite-
time drawdown probability (MIDP) strategy coincides with the
minimum infinite-time ruin probability (MIRP) strategy which
consists in maximizing the ratio of the drift of the value process
to its volatility squared. However, we point out that such a
relationship does not hold for a random (or finite) maturity setting
such as in (1.3) as the time-change arguments in Bäuerle and
Bayraktar (2014) do not apply.

We will study the MLDP problem (1.3) by examining two
different market models: a market with two risky assets and a
market with a risk-free asset and a risky asset. We point out
that several conclusions and implications of market model I are
determinant to the subsequent analysis of market model II. Also,
the following financial implications hold for both market models:
(1) it is optimal to minimize the portfolio’s variance when the
fund value is at its historic high-water mark; (2) when the fund
value drops, it is optimal to increase the proportion invested in
the asset with a higher instantaneous rate of return (even though
its volatility may also be higher). It follows that the instantaneous
return rate of theMLDP strategy is never less than the return rate of
theminimum variance (MV) strategy, which supports the practical
use of drawdown-based performance measures.

The rest of the paper is organized as follows. The parallel
Sections 2 and 3 are respectively devoted to the market models
I and II. For each model, we provide a verification theorem,
obtain closed-formexpressions for theMLDPand its corresponding
optimal trading strategy, as well as prove some properties of
the optimal trading strategy. At the end of each section, we
complement the analysis with some numerical examples.

2. Market model I

In this section, we study problem (1.3) under the market model
consisting of two risky assets. We assume that the ith risky asset
(i = 1, 2) is governed by a geometric Brownian motion with
dynamics

dS(i)t = µiS
(i)
t dt + σiS

(i)
t dB(i)t , S(i)0 > 0,

where µi ∈ R, σi > 0, and {B(i)t }t≥0 is a standard Brownian motion
on the filtered probability space (Ω,F , F , P). In addition, {B(1)t }t≥0

and {B(2)t }t≥0 are assumed to be dependent with

dB(1)t dB(2)t = ρdt,

where ρ ∈ (−1, 1) is the correlation coefficient. To avoid triviality,
we exclude cases where the two assets are either perfectly
positively or negatively correlated. Given a trading strategyπ ∈ Π

defined in (1.2), where πt represents the fraction of wealth invested
in Asset 1 at time t , the evolution of the fund value process Wπ is
governed by

dWπ
t = πtWπ

t
dS(1)t

S(1)t

+ (1 − πt)Wπ
t
dS(2)t

S(2)t

= (πtµ1 + (1 − πt) µ2)Wπ
t dt + πtWπ

t σ1dB
(1)
t

+ (1 − πt)Wπ
t σ2dB

(2)
t (2.1)

with initial valueW0 = w > 0.

2.1. Verification theorem

We first prove a verification theorem for the MLDP. By a
dimension reduction, theMLDP problem (1.3) will later be reduced
to a one-dimensional stochastic control problem.

Let

D =

(w,m) ∈ R2

: m (1 − α) ≤ w ≤ m and m > 0

,

and define a differential operator Lβ (β ∈ R) as

Lβ f = (βµ1 + (1 − β)µ2) xfx

+
1
2


β2σ 2

1 + (1 − β)2 σ 2
2 + 2ρβ (1 − β) σ1σ2


x2fxx − λf ,
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where f is a twice-differentiable function in x with fx :=
∂ f
∂x and

fxx :=
∂2f
∂x2

.

Theorem 2.1. Suppose that f : D → (0, 1] satisfies the following
conditions:
(1) For any fixed m > 0, f (·,m) ∈ C2([m (1 − α) ,m]) is strictly

decreasing and strictly convex;
(2) For any fixed w > 0, f (w, ·) ∈ C1 ([w,w/ (1 − α)]) is strictly

increasing;
(3) For any fixed m > 0 and β ∈ R, Lβ f (·,m) ≥ 0 for w ∈

[m (1 − α) ,m];
(4) For any fixedm > 0, there exists an admissible strategyπ∗

: D →

R such that Lπ∗

f (·,m) = 0 for w ∈ [m (1 − α) ,m];
(5) For any m > 0, f (m (1 − α) ,m) = 1;
(6) For any m > 0, fm(m,m) = 0.

Then f (w,m) = ψ(w,m) on D, where ψ(w,m) is the MLDP
defined in (1.3), and π∗ is the corresponding optimal trading strategy.

Proof. For an admissible trading strategy π satisfying (1.2), we
define a sequence of stopping time {γ πn }n∈N with

γ πn = inf

t ≥ 0 :

 t

0
π2
s ds ≥ n


.

By applying Itô’s formula to the process e−λt f (Wπ
t ,M

π
t ) for t ∈

[0, τπα,n], where τπα,n := τπα ∧ γ πn , and then using (2.1), we arrive at

e−λτπα,n f (Wπ
τπα,n
,Mπ

τπα,n
)− f (w,m)

= −λ

 τπα,n

0
e−λt f (Wπ

t ,M
π
t )dt

+

 τπα,n

0
e−λt fw(Wπ

t ,M
π
t )dW

π
t

+
1
2

 τπα,n

0
e−λt fww(Wπ

t ,M
π
t )(dW

π
t )

2

+

 τπα,n

0
e−λt fm(Wπ

t ,M
π
t )dM

π
t

=

 τπα,n

0
e−λtLπ f (Wπ

t ,M
π
t )dt

+

 τπα,n

0
e−λt fw(Wπ

t ,M
π
t )πtWπ

t σ1dB
(1)
t

+

 τπα,n

0
e−λt fw(Wπ

t ,M
π
t )(1 − πt)Wπ

t σ2dB
(2)
t . (2.2)

Note that the operator Lπ f (·, ·) is applied on the argumentw of f
in (2.2). Also, the passage from the first to the second equality in
(2.2) was made possible given that fm(Wπ

t ,M
π
t )dM

π
t = 0 a.s. This

is because either dMπ
t = 0 when Wπ

t < Mπ
t or fm(Wπ

t ,M
π
t ) =

0 when Wπ
t = Mπ

t by condition (6). Taking the conditional
expectation Ew,m[·] on both sides of (2.2) and invoking condition
(3), we obtain

Ew,m

e−λτπα,n f (Wπ

τπα,n
,Mπ

τπα,n
)


≥ f (w,m) , (2.3)

for all π ∈ Π . Since f is assumed to be bounded, by the dominated
convergence theorem and condition (5), it follows that

Ew,m

e−λτπα


≥ f (w,m) , (2.4)

for all π ∈ Π . Further, by condition (4), there exists an admissible
strategy π∗

: D → R such that the equality holds in (2.4). In other
words, we deduce that

f (w,m) = ψ(w,m) = inf
π∈Π

Ew,m

e−λτπα


= Ew,m[e−λτπ

∗

α ],
which completes the proof. �

Let f be the function satisfying all the conditions of Theorem2.1.
It is not difficult to see that f (cw, cm) = f (w,m) for any constant
c > 0. This scaling relation implies that we can reduce the
dimension of f by considering

f (w,m) = f
w
m
, 1


:= g
w
m


, 1 − α ≤

w

m
≤ 1, (2.5)

where the ratiow/m is the relative fund level. Using the change of
variable formulas fw =

1
mg ′, fww =

1
m2 g ′′, and fm = −

w

m2 g ′, we
immediately obtain the following corollary from Theorem 2.1.

Corollary 2.1. Suppose that g : [1 − α, 1] → (0, 1] satisfies the
following conditions:
(1) g(·) ∈ C2([1 − α, 1]) is strictly decreasing and strictly convex;
(2) Lβg(z) ≥ 0 for any β ∈ R and z ∈ [1 − α, 1];
(3) There exists an admissible strategy π∗

: [1 − α, 1] → R such
that Lπ∗

g(z) = 0 for z ∈ [1 − α, 1];
(4) g(1 − α) = 1;
(5) g ′(1) = 0.

Then g(z) = φ(z) := infπ∈Π Ew,m

e−λτπα


for z =

w
m ∈

[1 − α, 1], and π∗ is the corresponding optimal trading strategy.

2.2. MLDP and optimal trading strategy

In this section, we aim to solve for the MLDP φ(·) and the
corresponding optimal trading strategy π∗. By conditions (2) and
(3) of Corollary 2.1, we have

inf
β∈R


Lβg(z)


= 0, z ∈ [1 − α, 1]. (2.6)

By the first-order condition of Eq. (2.6), the minimizer is given in
the feedback form

π∗ (z) =
σ 2
2 − ρσ1σ2

σ 2
1 + σ 2

2 − 2ρσ1σ2

−
(µ1 − µ2)g ′(z)

(σ 2
1 + σ 2

2 − 2ρσ1σ2)zg ′′(z)
, z ∈ [1 − α, 1]. (2.7)

Substituting (2.7) into (2.6) followed by algebraic manipulations,
we obtain the nonlinear equation

A
2
z2g ′′

−
B
2
(g ′)2

g ′′
− Czg ′

− λg = 0, z ∈ [1 − α, 1], (2.8)

where A :=
σ 2
1 σ

2
2 (1−ρ

2)

σ 2
1 +σ 2

2 −2ρσ1σ2
> 0, B :=

(µ2−µ1)
2

σ 2
1 +σ 2

2 −2ρσ1σ2
≥ 0, and

C :=
(µ2−µ1)(σ

2
2 −ρσ1σ2)

σ 2
1 +σ 2

2 −2ρσ1σ2
− µ2.

Theorem 2.2. Undermarketmodel I, theMLDP and its corresponding
optimal trading strategy are respectively given by

φ(z) = exp


−A

 h−1(1−α)

h−1(z)

x
k(x)

dx


, (2.9)

and

π∗ (z) =
σ 2
2 − ρσ1σ2

σ 2
1 + σ 2

2 − 2ρσ1σ2
−

µ1 − µ2

σ 2
1 + σ 2

2 − 2ρσ1σ2

×
Ah−1(z)

A(h−1(z))2 + k(h−1(z))− Ah−1(z)
, (2.10)

for z ∈ [1 − α, 1], where

k(x) := λ+ (A + C)x − Ax2 +


(λ+ Cx)2 + ABx2,

and h(v) := exp

−
 0
v

A
k(x)dx


for v ∈ (v∗, 0] with v∗ :=

sup {x < 0 : k(x) = 0}. Furthermore, φ(·), π∗ (·) ∈ C∞([1−α, 1]).
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Proof. In light of Eq. (2.8) and Corollary 2.1, we consider the
following non-linear equation

A
2
z2G′′

−
B
2
(G′)2

G′′
− CzG′

− λG = 0, z ∈ (0, 1],

G(1) = 1,
G′(1) = 0,
G′′(z) > 0, z ∈ (0, 1].

(2.11)

Next, we show that (2.11) admits a unique solution G and further-
more, G ∈ C∞((0, 1]). The advantage to consider the function G is
that it is independent of α.

Define two auxiliary functions

u(z) :=
zG′(z)
z2G′′(z)

and v(z) :=
zG′(z)
G(z)

, z ∈ (0, 1]. (2.12)

Since G′(1) = 0 and G′′ (z) > 0 for z ∈ (0, 1), we have G′(z) < 0
for z ∈ (0, 1), which further implies that both u (z) and v (z) are
strictly negative functions on (0, 1). Dividing both sides of the first
equation of (2.11) by zG′(z), we obtain

A
2u

−
B
2
u − C −

λ

v
= 0, z ∈ (0, 1). (2.13)

Solving the algebraic equation (2.13) with u (z) < 0 and v (z) < 0,
we have

1
u

=
λ+ Cv +


(λ+ Cv)2 + ABv2

Av
. (2.14)

Differentiating v in z from the second relation of (2.12) and subse-
quently using (2.14), it follows that

zv′
= z

(zG′′
+ G′)G − z(G′)2

G2
=
v

u
+ v − v2 =

1
A
k(v), (2.15)

where k(x) := λ+ (A+ C)x− Ax2 +

(λ+ Cx)2 + ABx2 for x ∈ R.

Since k(·) ∈ C∞(R), k(0) = 2λ > 0 and limv↓−∞ k(v) = −∞,
there exists some point v∗ such that

v∗ := sup {x < 0 : k(x) = 0} > −∞.

Furthermore, by v′(z)z ′(v) = 1, Eq. (2.15) becomes

z ′(v) =
A

k(v)
z(v),

which admits a unique solution

z(v) = h(v) := exp


−

 0

v

A
k(x)

dx

, v ∈ (v∗, 0], (2.16)

under the boundary condition z(0) = 1. Moreover, by v = h−1(z),
it can be shown that v′(z) > 0 for z ∈ (0, 1], v(1) = 0, and
limz↓0 v(z) = v∗. Now, letting H(v) := G(h(v)) = G(z), it follows
that

dH
dv

=
dG
dz

dz
dv

=
vG(z)

z
Az
k(v)

=
Av
k(v)

H(v), v ∈ (v∗, 0],

H(0) = 1.
(2.17)

The solution to (2.17) is given by

H(v) = exp


−A
 0

v

x
k(x)

dx

, v ∈ (v∗, 0],

or equivalently, we have shown that (2.11) admits a unique solu-
tion

G(z) = exp


−A
 0

h−1(z)

x
k(x)

dx


∈ C∞((0, 1]).
Letting

g(z) :=
G(z)

G(1 − α)
= exp


−A

 h−1(1−α)

h−1(z)

x
k(x)

dx


, (2.18)

for z ∈ [1 − α, 1], it is straightforward to verify that g(·) sat-
isfies all the conditions of Corollary 2.1. Hence, we conclude that
g(z) = φ(z) for z ∈ [1 − α, 1] which proves (2.9). Finally, differ-
entiating (2.18) yields

g ′ (z) = g (z)
h−1 (z)

z

g ′′ (z) = g(z)
A(h−1(z))2 + k(h−1(z))− Ah−1(z)

Az2
.

(2.19)

Substituting (2.19) into (2.7) leads to the optimal strategy π∗ (·) ∈

C∞([1 − α, 1]) given in (2.10). This completes the proof. �

We have some interesting observations to make of the MLDP
strategy (2.10), which relate to the classical MV strategy.

1. Suppose that µ1 = µ2, the optimal strategy (2.10) reduces to a
constant proportional strategy

π̂ =
σ 2
2 − ρσ1σ2

σ 2
1 + σ 2

2 − 2ρσ1σ2
. (2.20)

It is easy to see from (2.1) that

min
π∈Π

Var

logWπ

t


= min

π∈Π

 t

0


π2
s σ

2
1 + (1 − πs)

2 σ 2
2 + 2πs(1 − πs)σ1σ2ρ


ds

= Var

logW π̂

t


.

Hence, whenµ1 = µ2, the MLDP strategy (2.10) coincides with
the MV strategy (2.20).

2. Even if µ1 ≠ µ2, we can see from (2.7) and condition (5) of
Corollary 2.1 that

π∗ (1) =
σ 2
2 − ρσ1σ2

σ 2
1 + σ 2

2 − 2ρσ1σ2
= π̂ . (2.21)

Relation (2.21) implies that, when the fund value is at its
running maximum, the MLDP strategy is identical to the MV
strategy.

3. By (2.1), we denote by µπ := µ1πt +µ2 (1 − πt) the instanta-
neous return rate of the portfolio at time t under strategy π . By
(2.7) and the fact that the MLDP φ is decreasing and convex, we
have

µπ
∗

− µπ̂ = (µ2 − µ1)(π̂ − π∗(z))

=
−(µ2 − µ1)

2φ′(z)
(σ 2

1 + σ 2
2 − 2ρσ1σ2)zφ′′(z)

≥ 0, (2.22)

for all z ∈ [1 − α, 1]. In other words, the instantaneous re-
turn rate of the MLDP portfolio is never less than the return
rate of the MV portfolio. This result supports the practical use
of drawdown-based performance measures in which the role
of volatility is replaced by drawdown. Intuitively speaking, this
conclusion is consistent with the fact that volatility-basedmea-
sures penalize for both upside and downside movements of the
fund process while drawdown-based measures only penalize
for downside movements.

This leads to a natural question: How does the MLDP strategy
behave when the fund value is away from a historic high-water
mark?We find that, as shown in the next proposition, it is optimal
to increase the proportion invested in the asset with a higher
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instantaneous rate of return as the portfolio’s relative drawdown
level increases (even though this may increase the portfolio’s
variance).

Proposition 2.1. Suppose that µ1 ≠ µ2. We have

(µ1 − µ2)
dπ∗

dz
< 0, z ∈ [1 − α, 1].

Proof. By (2.7) and the definitions of u(·) and v(·) in (2.12), it
follows that the optimal strategy can be rewritten as

π∗ (z) =
σ 2
2 − ρσ1σ2

σ 2
1 + σ 2

2 − 2ρσ1σ2
+

µ2 − µ1

σ 2
1 + σ 2

2 − 2ρσ1σ2
u(z),

which implies that

(µ1 − µ2)
dπ∗

dz
= −

(µ2 − µ1)
2

σ 2
1 + σ 2

2 − 2ρσ1σ2

du
dz
.

By (2.15), we have

dv
dz

=
1
Az

k(v) > 0. (2.23)

On the other hand, solving v from (2.13), we obtain v =
2λu

A−Bu2−2Cu
which yields

dv
du

=
2λA + 2λBu2

(A − Bu2 − 2Cu)2
> 0. (2.24)

Using (2.23), (2.24), and dv
dz =

dv
du

du
dz , we conclude that du

dz > 0. This
ends the proof. �

Remark 2.1. As for themarketmodel II of Section 3, a proportional
management fee of the fund with rate η ∈ (0, 1) can easily be
incorporated into the above analysis. Then the dynamics of the
fund value process (2.1) becomes

dWπ
t = (πtµ1 + (1 − πt) µ2 − η)Wπ

t dt + πtWπ
t σ1dB

(1)
t

+ (1 − πt)Wπ
t σ2dB

(2)
t .

It is clear that the formulas of the MLDP (2.9) and the optimal
trading strategy (2.10) still hold by simply replacing µ1 and µ2 by
µ1 − η and µ2 − η, respectively.

2.3. Numerical examples

In this section, we provide some numerical examples to
illustrate the main results of Section 2. We consider a relative
drawdown level of α = 0.2 and an investor’s expected future
lifetime of 20 years (i.e. λ = 0.05).

In Fig. 1, we set µ1 = 0.1, µ2 = 0.15, σ1 = 0.125, σ2 = 0.15
and ρ = 0.2. We first examine the diversification benefit by com-
paring in Fig. 1 (left plot) the MLDP to the drawdown probability
for investment in Asset 1 or 2 only. The drawdown probabilities for
geometric Brownian motions were first derived by Taylor (1975)
and can also be found more recently in, e.g., Theorem 1 of Avram
et al. (2004).We recall this result here. For S := {St}t≥0 a geometric
Brownian motion with dynamics

dSt = µStdt + σ StdBt , S0 := w > 0,

where µ ∈ R, σ > 0, and {Bt}t≥0 is a standard Brownian motion,
we define the first time the relative drawdown of S exceeds level
α as

τα := inf {t ≥ 0 : Mt − St > αMt} ,
where Mt := max

sup0≤u≤t Su,m


andm ≥ w. Then,

Pz
{τα < eλ} := Pw,m{τα < eλ} =

β+zβ
−

− β−zβ
+

β+ (1 − α)β
−

− β− (1 − α)β
+
,

where z :=
w
m ∈ [1 − α, 1] and β±

=
−µ+σ 2/2±

√
(µ−σ 2/2)2+2λσ 2

σ 2 .
We observe that the drawdown probabilities are considerably

lower under the MLDP strategy (than investing in either Asset 1 or
2). In Fig. 1 (right plot), we provide the curve of the corresponding
MLDP strategy as a function of the relative fund level z =

w/m. Notice that π is increasing in z, which is consistent with
Proposition 2.1 as µ1 = 0.1 < 0.15 = µ2.

Next, we are interested in studying the impact of the correlation
coefficient ρ of the two risky assets on the MLDP and the
corresponding optimal trading strategy. We set µ1 = 0.05, µ2 =

0.3, σ1 = 0.2 and σ2 = 0.36 to produce the numerical values of
Fig. 2. We find that neither of these two quantities is necessarily
monotone in ρ. In the left plot, we observe that the MLDPs are first
increasing and then decreasing in ρ for any z ∈ [1 − α, 1]. This
shows that a selection of highly correlated assets (ρ close to −1
or 1 in this example) in a portfolio can help reduce the MLDP of
the portfolio. In the right plot, we can see that the impact of ρ on
the optimal strategy π∗(z) is even more complex. However, when
z = 1, we find that π∗(1) is increasing in ρ. This observation can
easily be verified from (2.21) as

(σ2 − σ1)
∂π∗(1)
∂ρ

=
σ1σ2(σ2 − σ1)

2(σ2 + σ1)

(σ 2
1 + σ 2

2 − 2ρσ1σ2)2
≥ 0.

Note that we choose σ2 = 0.36 > 0.2 = σ1.

3. Market model II

In this section, we examine the secondmarketmodel consisting
of a risk-free asset with constant interest rate r > 0 and a risky
asset governed by a geometric Brownian motion with dynamics

dSt = µStdt + σ StdBt , S0 > 0,

where µ ∈ R, σ > 0, and {Bt}t≥0 is a standard Brownian motion
defined on (Ω,F , F , P). To avoid triviality, a proportional man-
agement fee with rate r < η < 1 is continuously deducted from
the fund. Therefore, for an admissible strategyπ ∈ Π representing
the fraction of wealth invested in the risky asset, the dynamics of the
fund value processWπ is then given by

dWπ
t = πtWπ

t
dSt
St

+ (1 − πt)rWπ
t dt − ηWπ

t dt

= (πt(µ− r)+ r − η)Wπ
t dt + πtWπ

t σdBt , (3.1)

with initial valueW0 = w > 0.
At first glance, one may view market model II as a limiting case

of market model I by letting σ2 → 0 and µ2 = r . However, as will
be shown, the treatment of these two models and the associated
HJB equations are structurally different. First, it is not obvious to
find the limit of the MLDP (2.9) and the optimal strategy (2.10)
by letting σ2 → 0 given that the form of h−1 is not fully explicit.
Also, even if an explicit limit exists, the continuity of theMLDP and
the optimal strategy w.r.t. σ2 at 0+ needs to be justified. Second,
a major difference in the analysis of market model II is that we
shall first narrow down the candidate pool of the optimal trading
strategy. Interestingly, this intuition is based on some observations
we made under market model I.
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Fig. 1. Lifetime drawdown probabilities (left) and the MLDP trading strategy (right).
Fig. 2. Impact of ρ on the MLDP (left) and the MLDP trading strategy (right).
3.1. Verification theorem

We define a differential operator L̃β (β ∈ R) as

L̃β f = (β(µ− r)+ r − η) xfx +
1
2
β2σ 2x2fxx − λf ,

where f is a twice-differentiable function in x. Thenwe decompose
the admissible set of trading strategiesΠ as

Π = Π0 ∪Π1,

where Π0 =

π ∈ Π : πt = 0 a.s. on (Mπ

t = Wπ
t )

and Π1 =

Π \ Π0. Therefore, Π0 is the set of admissible strategies which
has no risky investment whenever the associated fund value is
at its running maximum. For any π ∈ Π0, due to the absence
of diffusion component when the fund value process reaches its
runningmaximum and the negative drift r−η of the value process
at that moment, a new running maximum of the associated value
processWπ will never occur, i.e.,

dMπ
t = 0 a.s. for any π ∈ Π0 and t > 0. (3.2)

A verification theorem for the MLDP and the optimal trading
strategy of market model II is given below.

Theorem 3.1. Suppose that f : D → (0, 1] satisfies the following
conditions:
(1) For any fixed m > 0, f (·,m) ∈ C2([m (1 − α) ,m]) is strictly
decreasing and strictly convex;

(2) For any fixed w > 0, f (w, ·) ∈ C1 ([w,w/ (1 − α)]) is strictly
increasing;

(3) For any fixed m > 0 and β ∈ R, Lβ f (·,m) ≥ 0 for w ∈

[m (1 − α) ,m];
(4) For any fixed m > 0, there exists an admissible strategy π∗

:

D → R such that π∗
∈ Π0 and Lπ∗

f (·,m) = 0 for w ∈

[m (1 − α) ,m];
(5) For any m > 0, f (m (1 − α) ,m) = 1.

Then f (w,m) = ψ(w,m) on D, where ψ(w,m) is the MLDP
defined in (1.3), and π∗ is the corresponding optimal trading strategy.

Proof. Suppose that f : D → (0, 1] satisfies conditions (1)–(5)
of Theorem 3.1 and π∗

∈ Π0 is an admissible strategy satisfying
condition (4). By condition (2) and the fact that Mπ

t is a non-
decreasing process, we know that fm(Wπ

t ,M
π
t )dM

π
t ≥ 0 a.s. Along

the same lines as in the proof of Theorem 2.1, one can see that
(2.3) still holds for all π ∈ Π . Moreover, by π∗

∈ Π0 and (3.2),
the equality holds in (2.3) for π∗. Using the same arguments as
the rest of the proof of Theorem 2.1, we complete the proof of
Theorem 3.1. �
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Fig. 3. Impact of η on the MLDP (left) and the MLDP trading strategy (right).
Similar as (2.5), the dimension of f in Theorem 3.1 can be
reduced by considering

f (w,m) = f
w
m
, 1


:= g
w
m


, 1 − α ≤

w

m
≤ 1,

which immediately yields the following corollary.

Corollary 3.1. Suppose that g : [1 − α, 1] → (0, 1] satisfies the
following conditions:
(1) g(·) ∈ C2([1 − α, 1]) is strictly decreasing and strictly convex;
(2) L̃βg(z) ≥ 0 for any β ∈ R and z ∈ [1 − α, 1];
(3) There exists an admissible strategy π∗

: [1 − α, 1] → R such
that π∗

∈ Π0 and L̃π∗

g(z) = 0 for z ∈ [1 − α, 1];
(4) g(1 − α) = 1;
(5) limz↑1 g ′′(1) = ∞ if µ ≠ r.

Then g(z) = φ(z) := infπ∈Π Ew,m

e−λτπα


for z =

w
m ∈

[1 − α, 1], and π∗ is the corresponding optimal trading strategy.

In comparison toCorollary 2.1, the presence of the twonewcon-
ditions π∗

∈ Π0 and limz↑1 g ′′(z) = ∞ if µ ≠ r may appear
abrupt. However, both conditions are in agreement with conclu-
sions reached undermarketmodel I. First, the conditionπ∗

∈ Π0 is
consistent with the conclusion that the MLDP strategy is identical
to the MV strategy when the portfolio value is at its running max-
imum. On the other hand, one can argue π∗

∉ Π1. Otherwise, by
(3.2), we should have P{Mπ∗

t > m for some t > 0} > 0, which fur-
ther implies that g ′(1) = 0 from the proof of Theorem 2.2. More-
over, by the first-order condition, we have

π∗(z) =

−
µ− r
σ 2

g ′(z)
zg ′′(z)

, if µ ≠ r,

0, if µ = r.
(3.3)

Substituting (3.3) into the equation L̃π∗

g(z) = 0, we obtain the
nonlinear equation

(µ− r)2

2σ 2

(g ′)2

g ′′
+ (η − r)zg ′

+ λg = 0, z ∈ [1 − α, 1]. (3.4)

However, by the conditions of Corollary 3.1, we have

(µ− r)2

2σ 2

(g ′(1))2

g ′′(1)
+ (η − r)zg ′(1)+ λg(1) ≥ λg(1) > 0,

which contradicts (3.4). Therefore, we deduce π∗
∈ Π0 and

g ′(1) ≠ 0, which further implies that limz↑1 g ′′(z) = ∞ if µ ≠ r
by (3.3).
Remark 3.1. Under market model II, we have π∗
∈ Π0, which

implies that the fund value process will never reach a new
running maximum by (3.2). Intuitively speaking, this conclusion
is consistent with the fact that the objective function of the
MLDP problem (1.3) only penalizes downside risk and does not
offer incentives to reach a new running maximum. As shown in
Proposition 3.1 and Fig. 3 later, the MLDP strategy becomes more
conservative as the fund value increases. As such, since η > r ,
when the fund value recovers its runningmaximum, it is preferable
to invest all in the risk-free asset (even if the instantaneous return
rate of the portfolio is negative) rather than ‘‘gamble’’ by investing
a nonzero proportion of the portfolio in the risky asset and increase
the exposure to substantial drawdowns.

3.2. MLDP and optimal trading strategy

By (3.4) and Corollary 3.1, we only need to find a positive,
strictly decreasing, strictly convex, and C2([1 − α, 1]) solution to
the following nonlinear equation
(µ− r)2

2σ 2

(g ′)2

g ′′
+ (η − r)zg ′

+ λg = 0, z ∈ [1 − α, 1],

g(1 − α) = 1,
lim
z↑1

g ′′(z) = ∞, if µ ≠ r.

(3.5)

Theorem 3.2. Under market model II, the MLDP and its correspond-
ing optimal trading strategy are respectively given by

φ(z) =


exp


−

 h̃−1(1−α)

h̃−1(z)

x

k̃(x)
dx


, if µ ≠ r,

1 − α

z

λ/(η−r)

, if µ = r,

(3.6)

and

π∗ (z) =


2

µ− r


η − r +

λ

h̃−1 (z)


, if µ ≠ r,

0, if µ = r,
(3.7)
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for z ∈ [1 − α, 1], where k̃(x) := −
(µ−r)2

2σ 2
x2

(η−r)x+λ + x − x2 and

h̃(v) := exp

−


−λ/(η−r)
v

1
k̃(x)

dx

for v ∈ (ṽ∗,−λ/(η − r)] with

ṽ∗ =

η − r − λ−
(µ−r)2

2σ 2 −


η − r − λ−

(µ−r)2

2σ 2

2
+ 4λ(η − r)

2(η − r)
.

Furthermore, φ(·), π∗ (·) ∈ C∞([1 − α, 1]).

Proof. For the simple case µ = r , the solution to (3.5) is easily
found to be g(z) =

 1−α
z

λ/(η−r)
for z ∈ [1−α, 1]. By Corollary 3.1,

one concludes that g(·) = φ(·).
For the case µ ≠ r , similar to the proof of Theorem 2.2, we

consider the following equation:

(µ− r)2

2σ 2

(G′)2

G′′
+ (η − r)zG′

+ λG = 0, z ∈ (0, 1],

G(1) = 1,
lim
z↑1

G′′(z) = ∞,

G′(z) < 0, z ∈ (0, 1],
G′′(z) > 0, z ∈ (0, 1].

(3.8)

We show that (3.8) admits a unique solution with G ∈ C∞((0, 1]).
First, substituting the auxiliary functions u (·) and v (·) defined in
(2.12) into the first equation of (3.8) yields (µ−r)2

2σ 2 u = −
λ
v
−(η−r).

This together with (2.15) leads to

zv′
=
v

u
+ v − v2

= −
(µ− r)2

2σ 2

v2

(η − r)v + λ
+ v − v2 := k̃(v). (3.9)

Note that k̃(v) ∈ C∞((−∞,−λ/(η − r))) with limv↑−λ/(η−r) k̃(v)
= ∞ and limv↓−∞ k̃(v) = −∞. Hence, we denote by

ṽ∗ := sup

x < −λ/(η − r) : k̃(x) = 0



=

η − r − λ−
(µ−r)2

2σ 2 −


η − r − λ−

(µ−r)2

2σ 2

2
+ 4λ(η − r)

2(η − r)
.

By (3.8), it is easy to see that v(1) = G′(1) = −λ/(η−r).Moreover,
by (3.9) and using the relation z ′(v)v′(z) = 1, we obtain

z(v) = h̃(v) := exp


−


−λ/(η−r)

v

1

k̃(x)
dx

, (3.10)

for v ∈ (ṽ∗,−λ/(η − r)]. Now, by (3.10), let H(v) := G(h̃(v)) =

G(z). It follows from the second relation of (2.12) and (3.9) that
H(v) is the solution to the following equation

dH
dv

=
vG(z)

z
z

k̃(v)
=

v

k̃(v)
H(v), v ∈


v∗,−

λ

η − r


,

H


−
λ

η − r


= G(1) = 1.

Solving the above initial value problem, we have

G(z) = exp


−


−λ/(η−r)

v(z)

x

k̃(x)
dx


= exp


−


−λ/(η−r)

h̃−1(z)

x

k̃(x)
dx


∈ C∞((0, 1]).
Finally, letting

g(z) :=
G(z)

G(1 − α)
= exp


−

 h̃−1(1−α)

h̃−1(z)

x

k̃(x)
dx


, (3.11)

for z ∈ [1 − α, 1], it is straightforward to verify that g(·) satisfies
all the conditions of Corollary 3.1, which ends the proof of (3.6). By
differentiating (3.11) and further using (3.3), we obtain the optimal
strategy π∗ given in (3.7). �

The proof of the following proposition is similar to Proposi-
tion 2.1, and hence is omitted.

Proposition 3.1. Under market model II, for µ ≠ r, we have

(µ− r)
dπ∗

dz
< 0, z ∈ [1 − α, 1].

By Theorem 3.2 and Proposition 3.1, the following implications
of market model I also hold under market model II.

1. At high-water mark (i.e. π∗
∈ Π0 or equivalently π∗(1) = 0),

the MLDP strategy (3.7) is consistent with the MV strategy.
2. When the drawdown level increases, the MLDP strategy tends

to increase the proportion invested in the asset with a higher
return rate.

3. Similarly as in (2.22), it is easy to verify that the instantaneous
return rate of the MLDP portfolio is never less than the return
rate of the MV portfolio.

3.3. Numerical examples

Wenumerically implement themain results of Section 3 by first
conducting a sensitivity analysis on the management fee rate η.
For this purpose, we let α = 0.2, λ = 0.05, µ = 0.12, σ =

0.12 and r = 0.05. The numerical values of the MLDPs and the
corresponding optimal trading strategies can be found in Fig. 3 for
various η values.

For a fixed η, one can see that the MLDP satisfies all the condi-
tions of Corollary 3.1. In particular, we see that φ′(1) < 0, which
is different from market model I (condition 5 of Corollary 2.1). For
the optimal trading strategy, as µ > r , we find π∗ is decreasing in
z which is consistent with Proposition 3.1. Moreover, we see that
π∗ (1) = 0 which satisfies condition (3) of Corollary 3.1. As for the
impact of η, not surprisingly, we find that both the MLDP and the
optimal trading strategy are increasing in η, i.e., a high manage-
ment fee will incur a higher drawdown probability and result in a
more aggressive investment strategy.

In Fig. 4, we are interested in comparing theMLDP strategywith
the MLRP strategy π̌ of Young (2004). We recall that the MLRP
strategy is a constant proportional strategy given by

π̌ =
µ− r

σ 2(1 − ṽ∗)
.

In Fig. 4, we use the same parameter setting as in Fig. 3 except
we choose η = 0.07, the floored maximum m = 100, and the
ruin level wr = 80. We see that the MLDP strategy is always
more conservative than the MLRP strategy. In fact, with some
calculations, one can verify from (3.7) and Proposition 3.1 that

π∗ (z) < lim
z↓0
π∗ (z) =

2
µ− r


η − r +

λ

ṽ∗


= π̌ , 0 < z ≤ 1.

This relation is also proved in Theorem 3.2 of Angoshtari et al.
(2015a). Intuitively, this is because, for any admissible strategy,
the first drawdown time of the associated wealth process always
occurs before (or equal to) the ruin time. To prevent the occurrence
of an earlier stopping time, an investor tends to adopt a more
conservative strategy.
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Fig. 4. The MLDP and MLRP trading strategies.
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