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In hesitant fuzzy sets (HFSs), which are generalized from fuzzy sets, the membership
degree of an element to a set, for which decision-makers hesitate while considering several
values before expressing their preferences concerning weights and data, can be assigned
one or more possible precise values between zero and one. If two or more decision-makers
assign an equivalent value, that value is only counted once. However, situations in which
the same value is repeatedly assigned substantially differ from those in which the value
appears only once. Therefore, multi-hesitant fuzzy sets (MHFSs) can be used to manage
cases in which values are repeated in a single HFS. In this paper, a method for comparing
multi-hesitant fuzzy numbers (MHFNs) is presented. Some outranking relations for
MHFNs, which are based on traditional ELECTRE methods, are introduced, and several
properties are analyzed. For ranking alternatives, we propose an outranking approach to
multi-criteria decision-making (MCDM) problems similar to ELECTRE III, where weights
and data are in the form of MHFNs. Finally, an example is given to illustrate the developed
approach, and its validity and feasibility are demonstrated by a comparison analysis with
other existing methods.

� 2015 Published by Elsevier Inc.
1. Introduction

In many cases, it is difficult for decision-makers to precisely express a preference regarding relevant alternatives under
several criteria, especially when relying on inaccurate, uncertain, or incomplete information. Such problems are called
multi-criteria decision-making (MCDM) problems. Zadeh’s fuzzy sets (FSs), where the membership degree of an element
to a set is represented by a real number between zero and one, are regarded as an important tool to solve MCDM problems
because of their flexibility in describing uncertain information [4,54,59]. They are also used with fuzzy logic and approxi-
mate reasoning [27,58], pattern recognition [28,29], and intelligent systems [30].

Information regarding alternatives may be incomplete when they refer to a fuzzy concept. For example, the sum of the
membership and non-membership degrees of an element in the universe can be less than one. Classical FS theory fails when
attempting to manage an insufficient understanding of the membership degrees. Thus, Atanassov’s intuitionistic fuzzy sets
(IFSs) and interval-valued intuitionistic fuzzy sets (IVIFSs), both extensions of Zadeh’s FSs, were introduced [1–3]. To date,
IFSs, IVIFSs, and their extensions have been widely used to solve MCDM problems [7,23,24,44–47,60]. However, in actual
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decision-making problems, the membership degrees in FSs, IFSs, and IVIFSs can be assigned from more than a single real
number or interval.

To manage situations in which people are hesitant to express their preference regarding the relevant alternatives in a
decision-making process, hesitant fuzzy sets (HFSs), another extension of FSs, provide a useful reference. HFSs were original-
ly defined by Torra, and allow the degree of membership to have different possible precise values between zero and one
[37,38]. Recently, HFSs have been the subject of a great deal of research, and have been widely applied to MCDM problems.
For example, some work on the aggregation operators of HFSs have been undertaken in previous studies, and the correlation
coefficient, distance, and correlation measures for HFSs have been developed [9,14,15,50–53,55,61–64]. Farhadinia discussed
novel score functions for HFSs, Zhang and Wei developed the E-VIKOR method to solve MCDM problems with HFSs, Zhang
and Xu proposed the TODIM method based on distance measured functions with HFSs, and Zhu et al. proposed dual HFSs and
outlined their operations and properties [16,65–69]. However, in any associated distance measure, two hesitant fuzzy num-
bers (HFNs) must be of equal length, and must be arranged in ascending order. Otherwise, it is necessary to add a specific
value to the shorter of the two until they are both of equivalent length. To address these disadvantages, Wang et al. proposed
an outranking approach with HFSs to solve MCDM problems [48]. Chen et al. proposed interval-valued hesitant fuzzy sets
(IVHFSs) and some aggregation operators, and applied them to multi-criteria group decision-making (MCGDM) problems
[10]. Peng et al. introduced an MCDM approach with hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs), which is
an extension of dual IVHFSs [31]. Having reviewed the extant research, Rodriguez et al. summarized the current state of
HFSs, and proposed some directions for future research [35]. Based on these recommendations, Peng et al. developed an
MCDM method based on TODIM and the Choquet integral with multi-valued hesitant fuzzy sets (MHFSs) [33].

However, three main disadvantages of the existing methods for employing HFSs have emerged. (1) Different aggregation
operators are involved in different operations, and this can lead to different results. (2) Distance measures must satisfy cer-
tain conditions, as discussed earlier. In such cases, different methods of extension can produce different results. (3) Most
existing methods mentioned above usually neglect the existence of repeated values in an HFN and consider the frequency
of every possible value to be one by default. Situations in which the same value is repeatedly assigned substantially differ
from those in which the value appears only once. For example, decision-makers may determine that the possible degrees
of membership by which an alternative is assessed relative to the criterion ‘‘excellence’’ are 0.5, 0.6, and 0.6, which is
expressed in the form of an HFN as {0.5, 0.6}. However, the nature of the evaluation {0.5, 0.6} substantially differs from that
expressed in the form of an MHFS as {0.5, 0.6, 0.6}, which can lead to loss of information during the data collection process.
Therefore, MHFSs were generalized from HFSs to avoid loss of information in situations where an equivalent membership
value is repeatedly assigned. However, methods incorporating HFSs and MHFSs always involve operations and measures
for the comparison of MHFSs whose impact on the final solution may be considerable.

Another method, denoted as the relational model, avoids these drawbacks. Relational models utilize outranking relations or
priority functions for ranking the alternatives in terms of priorities among the criteria. Recently, relational models have been
acknowledged to more accurately depict the actual decision-making process than other models. The elimination and choice
translating reality (ELECTRE) methods originally developed by Benayoun and Roy are representative of this field [5,34].
Subsequently, ELECTRE I, II, III, IV, IS, and TRI were developed [5,17,34,41], which are extensions of ELECTRE. To date,
ELECTRE methods have been successfully used in a wide variety of fields including biological engineering [13,18], energy
sources [11,19], environmental studies [20,22], economics [6], value engineering [25], communication and transportation
[36], personnel selection [32,56,57], and location selection problems [8,11,26]. For instance, Devi and Yadav developed an
MCDM method based on the ELECTRE method to solve industrial plant location problems [12]. Hatami-Marbini and Tavana
proposed an extension of the ELECTRE I method to solve group decision-making problems under a fuzzy environment [21].
Vahdani et al. proposed an extension of the ELECTRE methods to solve MCDM problems that have interval weights and data
[40]. Vahdani and Hadipour presented a novel ELECTRE method to solve problems that have interval-valued fuzzy information
[39]. Wang et al. developed an outranking method to solve MCDM problems with hesitant fuzzy linguistic term sets [49].

Previous studies of ELECTRE methods have focused on data characterized by a high degree of certainty, but, in some cases,
precisely determining the exact value for each criterion is difficult. The research performed in this paper focuses on data
characterized by a high degree of uncertainty as an extension of ELECTRE III, where these uncertainties are expressed using
MHFSs. The proposed approach is based on ELECTRE methods to avoid the disadvantages associated with the operations and
methods employed for comparing MHFSs. Furthermore, the proposed approach takes decision-makers’ preferences into con-
sideration. These are realized by choosing the appropriate thresholds of the given criteria.

The remainder of this paper is organized as follows. In Section 2, some basic concepts and operations of HFSs are intro-
duced. In Section 3, MHFSs are reviewed and the relevant method of comparing multi-hesitant fuzzy numbers (MHFNs) is
presented. In Section 4, some outranking relations of MHFNs and some valuable properties are also analyzed.
Subsequently, an outranking approach for MCDM problems with MHFNs is shown in Section 5. An illustrative example is
provided to demonstrate the validity and feasibility of the proposed approach in Section 6, and conclusions are drawn in
Section 7.

2. Preliminaries

In this section, the definition of HFSs is reviewed, and some operations and a comparison method for HFSs are presented
that are used in the latter analysis.
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Definition 1 ([37,38]). Let X be a reference set, and E be an HFS given in terms of a function that will return a subset of [0,1]
when applied to X.

To simplify the representation, Xia and Xu expressed the HFS as a mathematical equation [50]:
E ¼ x;hEðxÞh ijx 2 Xf g: ð1Þ
Here, hEðxÞ is a set of values in [0,1] denoting the possible degree of membership of the element x 2 X to the set E. The vari-
able hEðxÞ is denoted as a hesitant fuzzy element (HFE) [50], and H is given as the set of all HFEs. In particular, if X has only a
single element, E is called an HFN, which can be denoted by E ¼ hEðxÞf g. The set of all HFNs is represented by HFNS.

Example 1. Let X ¼ x1; x2; x3f g and let hEðx1Þ ¼ 0:1;0:2f g; hEðx2Þ ¼ 0:2;0:3f g, and hEðx3Þ ¼ 0:4;0:5;0:6f g be the HFEs of
xiði ¼ 1;2;3Þ to a set E. E can be considered an HFS, and can be denoted as follows:
E ¼ x1; 0:1;0:2f gh i; x2; 0:2;0:3f gh i; x3; 0:4;0:5;0:6f gh if g:
Torra defined some operations involving HFNs [37,38] to which Xia and Xu added some new operations in addition to score
functions [50].
Definition 2 [50]. Let h ¼ [c2h cf g; h1 ¼ [c12h1 c1f g, and h2 ¼ [c22h2 c2f g be three HFNs. For k represents a scalar mathemati-
cal operator, and k P 0, four operations can be defined as follows:

(1) exponentiation: hk ¼ [c2h ckf g;
(2) multiplication: kh ¼ [c2h 1� ð1� cÞk

n o
;

(3) �-union: h1 � h2 ¼ [c12h1 ;c22h2 c1 þ c2 � c1c2f g;
(4) �-intersection: h1 � h2 ¼ [c12h1 ;c22h2 c1c2f g.
Example 2. Let h1 ¼ 0:1;0:2f g and h2 ¼ 0:1; 0:3;0:5f g be two HFNs, and let k ¼ 2. Then, the following results can be
obtained:

(1) h2
1 ¼ 0:01;0:04f g;

(2) 2h1 ¼ 0:19;0:36f g;
(3) h1 � h2 ¼ 0:19;0:37; 0:55;0:28;0:44;0:60f g;
(4) h1 � h2 ¼ 0:01;0:03; 0:05;0:02;0:06;0:10f g.
Definition 3 [50]. Let h 2 HFNS and sðhÞ ¼ 1
lðhÞ
P

c2hc be the score function of h, where lðhÞ is the number of elements in h. For

two HFNs h1 and h2, if sðh1Þ > sðh2Þ, then h1 > h2, and, if sðh1Þ ¼ sðh2Þ, then h1 ¼ h2.
The disadvantage of using Definition 3 when comparing two HFNs is illustrated in the following example.

Example 3. Let h1 ¼ 0:5f g; h2 ¼ 0:2;0:8f g, and h3 ¼ 0:2;0:5;0:8f g be three HFNs. Apparently, the relationship h1 – h2 – h3

can be obtained. However, according to Definition 3, sðh1Þ ¼ sðh2Þ ¼ sðh3Þ, and, thus, h1 ¼ h2 ¼ h3, which is counterintuitive.

Farhadinia defined a new score function, which is described as follows [16].

Definition 4 [16]. Let h ¼ [c2h cf g ¼ cj

��� j ¼ 1;2; . . . ; lðhÞ
n o

be an HFN. Then, the score function of h is defined as follows:
SðhÞ ¼
PlðhÞ

j¼1dðjÞcjPlðhÞ
j¼1dðjÞ

: ð2Þ
Here, dðjÞj j ¼ 1;2; . . . ; lðhÞf g is a positive-valued monotonic increasing sequence of the index j.
Example 4. Based on Example 3 and the novel score function given by Definition 4, sðh1Þ ¼ 0:50 and sðh2Þ ¼ 0:70, where h2

becomes 0:2;0:8;0:8f g as required, and sðh3Þ ¼ 0:60. Then, sðh1Þ < sðh3Þ < sðh2Þ can be obtained, and h1 < h3 < h2.
These results indicate that the score function in Definition 4 can overcome the counterintuitive results presented in

Example 3. However, the new score function is always defined based on the assumption that the values in the relevant
HFNs are arranged in an ascending order, and, if two HFNs differ in length, then the shorter one is sufficiently extended
until both HFNs are of equal length. In this way, the extension method has the same disadvantage discussed earlier.
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3. Multi-hesitant fuzzy sets

In this section, the definition of MHFSs, along with their comparison method, is introduced.

Definition 5 [38]. Let Xbe a reference set, and MHFSs be defined as EM in terms of a function HEM that returns a multi-subset
of [0,1] when applied to X.

Based on Definition 1, MHFSs can be expressed by the mathematical equation:
EM ¼ x;HEM ðxÞ
� ���x 2 X
� �

: ð3Þ
Here, HEM ðxÞ is a set of values in [0,1] denoting the possible degrees of membership of the element x 2 X to the set EM . In any
HEM ðxÞ, the values can be repeated multiple times. HEM ðxÞ is a multi-hesitant fuzzy element (MHFE), and HEM is the set of all
MHFEs. It is noteworthy that, if X contains only a single element, EM is called a multi-hesitant fuzzy number (MHFN), briefly
denoted by EM ¼ HEM ðxÞ

� �
. The set of all MHFNs is represented by MHFNS. Any HFS is a special case of an MHFS.

Example 5. Let X ¼ x1; x2f g be a fixed set, and hEðx1Þ ¼ 0:1;0:1;0:2f g and hEðx2Þ ¼ 0:2;0:2;0:3f g be the HFEs of xiði ¼ 1;2Þ to
a set EM . EM can be considered an MHFS, and can be denoted as follows:
EM ¼ x1; 0:1;0:1;0:2f gh i; x2; 0:2;0:2;0:3f gh if g:
The operations given in Definition 2 can be applied to MHFNs.

Example 6. Defining three MHFNs as H1 ¼ 0:1;0:2;0:1;0:3f g; H2 ¼ 0:2;0:3;0:3f g, and H ¼ 0:3;0:4;0:4;0:5f g, where, as in
Example 2, k = 2, the following results can be produced:

(1) H2 ¼ 0:09;0:16;0:16;0:25f g.
(2) 2 � H ¼ 0:51;0:64;0:64;0:75f g.
(3) H1 � H2 ¼ 0:28;0:37;0:44;0:51;0:37;0:51;0:28;0:37;0:36;0:44;0:37; 0:44f g.
(4) H1 � H2 ¼ 0:02;0:03;0:04;0:06;0:03;0:06;0:02;0:03;0:06;0:09;0:03;0:09f g.
Definition 6. Let H 2 MHFNs. Then, aðHÞ ¼ 1
lðHÞ�1

P
c2Hðs� cÞ2 can be defined as an accuracy function of H, where s is the score

function defined in Definition 3 and lðHÞ is the number of elements in H.
Definition 7. Defining H1;H2 2 MHFNS, the following comparison method can be obtained:

(1) if sðH1Þ > sðH2Þ; then H1 > H2;
(2) if sðH1Þ ¼ sðH2Þ and aðH1Þ < aðH2Þ; then H1 > H2;
(3) if sðH1Þ ¼ sðH2Þ and aðH1Þ ¼ aðH2Þ; then H1 ¼ H2.

This implies that the comparison laws in Definition 7 are also suitable for HFNs.

Example 7. Let H1 ¼ 0:1;0:4;0:4f g; H2 ¼ 0:1;0:1; 0:7f g, and H3 ¼ 0:2;0:3;0:4f g be three MHFNs. According to Definition 3,
sðH1Þ ¼ sðH2Þ ¼ sðH3Þ ¼ 0:3 can be obtained and thus the best one(s) cannot be determined. However, based on Definitions 6
and 7, aðH1Þ ¼ 0:03; aðH2Þ ¼ 0:12, and aðH3Þ ¼ 0:01 can be obtained. Because aðH3Þ < aðH1Þ < aðH2Þ, i.e., H3 > H1 > H2; H3

is the best.
4. Outranking relations on MHFNs

In ELECTRE methods, to allow the i-th criterion to be considered, the concordance index and discordance index must
be constructed using three associated thresholds: the preference threshold pj, the indifference threshold qj, and the veto
threshold v j. Among these three thresholds, pj is used to establish the preference of one of two alternatives, qj represents
the limit to which two alternatives can be regarded to be indifferent, and v j is assigned to introduce discordance into
the outranking relations. In this paper, only a simple case in which the thresholds pj; qj, and v j are constants under each
criterion, is considered. This simplification aids the illustration of the ELECTRE methods used. The thresholds can be gen-
eralized to functions that vary according to the value of the criterion gjðaiÞ, that is, in the case of variable thresholds
pjðgjðaiÞÞ; qjðgjðaiÞÞ, and v jðgjðaiÞÞ. Further details can be found in previous studies [5,34].
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Definition 8 ([5,34]). Let G be a criteria set G ¼ g1; . . . ; gj; . . . ; gm

n o
, which is of the maximizing type, and let B be the set of

alternatives B ¼ a1; . . . ; ai; . . . ; anf g. Two thresholds under the criterion gj have been specified to construct the fuzzy
concordance index: qj and pjð0 6 qj < pjÞ. Let a1 and a2 be two alternatives, where a1; a2 2 B. The concordance index for a
single criterion can then be defined on the basis of representing the degree of the majority criteria in favor of ‘‘a1 is at least as
good as a2’’ as follows.

(1) If a1 is better than a2 or the degree to which a1 is worse than a2 does not exceed the indifference threshold for the
criterion gj, i.e., gjða1Þ þ qj P gjða2Þ, then cjða1; a2Þ ¼ 1.

(2) If the degree to which a1 is worse than a2 exceeds the performance threshold for the criterion gj, i.e.,
gjða1Þ þ pj 6 gjða2Þ, then cjða1; a2Þ ¼ 0.

(3) Otherwise, the relationship is between these two extremes and is represented as a linear variation, i.e., if

gjða1Þ þ qj < gjða2Þ < gjða1Þ þ pj, then cjða1; a2Þ ¼
gjða1Þ�gjða2Þþpj

pj�qj
.

Example 8. Let p ¼ 0:2 and q ¼ 0:1

(1) If a1 ¼ 0:3 and a2 ¼ 0:35, then a1 þ q > a2, so cða1; a2Þ ¼ 1.
(2) If a1 ¼ 0:1 and a2 ¼ 0:3, then a1 þ p 6 a2, so cða1; a2Þ ¼ 0.
(3) If a1 ¼ 0:25 and a2 ¼ 0:4, then a1 þ q < a2 < a1 þ p, so cða1; a2Þ ¼ 0:5.
Definition 9 ([5,34]). The veto threshold v jð0 6 qj < pj < v jÞ is introduced based on Definition 8. The discordance index
dða1; a2Þ is then defined on the basis of representing the degree of the minority criteria against ‘‘a1 is at least as good as
a2’’ as follows.

(1) If the degree to which a2 is better than a1 does not exceed the preference threshold for the criterion gj, i.e.,
gjða2Þ � gjða1Þ 6 pj, then djða1; a2Þ ¼ 0.

(2) If the degree to which a2 is better than a1 exceeds the veto threshold for the criterion gj, i.e., gjða2Þ � gjða1ÞP v j, then
djða1; a2Þ ¼ 1.

(3) Otherwise, the relationship is linear between the two extremes and is represented as a linear variation, i.e., if

pj < gjða2Þ � gjða1Þ < v j, then djða1; a2Þ ¼
gjða2Þ�gjða1Þ�pj

v j�pj
.

It should be mentioned that, if a criterion exists for which the degree that the alternative a2 performs better than the
alternative a1 exceeds the veto threshold, even if other criteria possibly favor the outranking of a1 by a2, then any outranking
of a1 by a2 indicated by the concordance index can be overruled.

Example 9. Let p ¼ 0:01 and v ¼ 0:02.

(1) If a1 ¼ 0:3 and a2 ¼ 0:4, then a2 � a1 6 p, so dða1; a2Þ ¼ 0.
(2) If a1 ¼ 0:1 and a2 ¼ 0:3, then a2 � a1 P v , so dða1; a2Þ ¼ 1.
(3) If a1 ¼ 0:2 and a2 ¼ 0:35, then p < a2 � a1 < v , so dða1; a2Þ ¼ 0:5.
Definition 10 ([5,34]). Let a1 and a2 be two alternatives, where a1; a2 2 B. The binary relations can then be defined based on
Definition 8 as follows.

(1) If gjða1Þ � gjða2ÞP pj, then a1 is strongly preferred to a2, denoted by Pða1; a2Þ.
(2) If qj < gjða1Þ � gjða2Þ < pj, then a1 is weakly preferred to a2, denoted by Wða1; a2Þ.
(3) If gjða1Þ � gjða2Þ

�� �� 6 qj, then a1 is indifferent to a2, denoted by Iða1; a2Þ.
Example 10. Let p ¼ 0:02 and q ¼ 0:01.

(1) If a1 ¼ 0:5 and a2 ¼ 0:3, then a1 � a2 P p, so a1 is strongly preferred to a2.
(2) If a1 ¼ 0:5 and a2 ¼ 0:35, then q < a1 � a2 < p, so a1 is weakly preferred to a2.
(3) If a1 ¼ 0:4 and a2 ¼ 0:3, then a1 � a2j j 6 q, so a1 is indifferent to a2.

Following the rules of the ELECTRE method given by the outranking relations, a concordance index and a discordance
index for MHFNs are defined as follows.

Definition 11. Let H1; H2 2 MHFNS, and p and q ð0 6 q < pÞ be two thresholds. The concordance index can then be defined
as follows:



118 J.-j. Peng et al. / Information Sciences 307 (2015) 113–126
rp;qðH1;H2Þ ¼
1

lðH1Þ
X
c12H1

min
c22H2

cp;qðc1; c2Þ
� �

: ð4Þ
Here, lðH1Þ is the number of elements in H1 and cp;qðc1; c2Þ is the concordance index for the values c1 and c2 under thresholds
q and p.

It is fairly simple to ascertain that, if both H1 and H2 have only a single value, rp;qðH1;H2Þ will turn into a concordance
index, as introduced in Definition 8.

According to Definition 10, the following properties can be easily obtained.

Property 1. Let H1 and H2 be two MHFNs, and q and p ð0 6 q < pÞ be two thresholds. Then, 0 6 rp;qðH1;H2Þ 6 1.
Definition 12. The strong dominance relation, weak dominance relation, and indifferent relation of MHFNs can be defined as
follows.

(1) If rp;qðH1;H2Þ � rp;qðH2;H1Þ ¼ 1, then H1 strongly dominates H2 (H2 is strongly dominated by H1Þ, denoted by H1>SH2.
(2) If rp;qðH1;H2Þ � rp;qðH2;H1Þ ¼ 0, then H1 is indifferent to H2, denoted by H1 � H2.
(3) If 0 < rp;qðH1;H2Þ � rp;qðH2;H1Þ < 1, then H1 weakly dominates H2 (H2 is weakly dominated by H1Þ, denoted by

H1>W H2.
(4) If 0 < rp;qðH2;H1Þ � rp;qðH1;H2Þ < 1, then H2 weakly dominates H1 (H1 is weakly dominated by H2Þ, denoted by

H2>W H1.
Example 11. Let p ¼ 0:06 and q ¼ 0:05.

(1) If H1 ¼ 0:12;0:12;0:18f g and H2 ¼ 0:12;0:12f g, then rp;qðH1;H2Þ � rp;qðH2;H1Þ ¼ 1, so H1>SH2.
(2) If H1 ¼ 0:12;0:12;0:18f g and H2 ¼ 0:14;0:14;0:16f g, then rp;qðH1;H2Þ � rp;qðH2;H1Þ ¼ 0, so H1 � H2.
(3) If H1 ¼ 0:125;0:15;0:15;0:20;0:24f g and H2 ¼ 0:125;0:15;0:15;0:18f g, then rp;qðH1;H2Þ � rp;qðH2;H1Þ ¼ 0:9, so

H1>W H2.
Property 2. Let H1; H2 2 MHFNS, and p and q ð0 6 q < pÞ be two thresholds. H1>SH2 if and only if
min c1jc1 2 H1f g �max c2jc2 2 H2f gP p.
Proof.

(1) Necessity: H1>SH2 )min c1jc1 2 H1f g �max c2jc2 2 H2f gP p.
According to Definition 12, if H1>SH2, then rp;qðH1;H2Þ � rp;qðH2;H1Þ ¼ 1. Because 0 6 rp;qðH1;H2Þ 6 1 and
0 6 rp;qðH2;H1Þ 6 1; rp;qðH2;H1Þ ¼ 0 can be obtained. Thus, 1

lðH2Þ
P

c22H2
minc12H1 cp;qðc2; c1Þ ¼ 0 is obtained. As derived

from Definition 8, cp;qðc2; c1Þ 2 ½0;1�, so cp;qðc2; c1Þ ¼ 0. Hence, c1 � c2 P p for any c1 2 H1; c2 2 H2. Therefore,
min c1jc1 2 H1f g �max c2jc2 2 H2f gP p is certainly valid.

(2) Sufficiency: min c1jc1 2 H1f g �max c2jc2 2 H2f gP p) H1>SH2.
Because min c1jc1 2 H1f g �max c2jc2 2 H2f gP p, then c1 � c2 P p for any c1 2 H1; c2 2 H2. As indicated by Definition
8, cp;qðc2; c1Þ ¼ 0 and cp;qðc1; c2Þ ¼ 1. Therefore, 1

lðH1Þ
P

c12H1
minc22H2 cp;qðc2; c1Þ ¼ 1 and 1

lðH2Þ
P

c22H2
minc12H1 cp;qðc1; c2Þ ¼ 0,

which indicate that rp;qðH1;H2Þ ¼ 1 and rp;qðH2;H1Þ ¼ 0 based on Definition 11. Therefore, according to Definition 12,
H1>SH2. h
Property 3. Let H1;H2;H3 2 MHFNS, and p and 0 6 q < pð0 6 q < pÞ be two thresholds. If H1>SH2 and H2>SH3, then H1>SH3.
Proof. According to Property 2, if H1>SH2, then min c1jc1 2 H1f g �max c2jc2 2 H2f gP p.
If H2>SH3, then min c2

��c2 2 H2
� �

�max c3

��c3 2 H3
� �

P p, so max c2

��c2 2 H2
� �

�max c3

��c3 2 H3
� �

P p.
Therefore, further derivations are obtained as follows:
min c1jc1 2 H1f g �max c2jc2 2 H2f gP p
max c2jc2 2 H2f g �max c3jc3 2 H3f gP p

�
)max c1jc1 2 H1f g �max c3jc3 2 H3f gP 2p P p:
Therefore, H1>SH3. h
Property 4. Let H1;H2;H3 2 MHFNS, and p and q ð0 6 q < pÞ be two thresholds.

(1) The strongly dominant relations have the following properties.

r irreflexivity: 8H1 2 MHFNS;H1�S H1;

s asymmetry: 8H1;H2 2 MHFNS;H1>SH2 ) :ðH2>SH1Þ;
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t transitivity: 8H1;H2;H3 2 MHFNS;H1>SH2;H2>SH3 ) H1>SH3.

(2) The weakly dominant relations have the following properties.
u irreflexivity: 8H1 2 MHFNS;H1�W H1;

v asymmetry: 8H1;H2 2 MHFNS;H1>W H2 ) :ðH2>W H1Þ;
w non-transitivity: 9H1;H2;H3 2 MHFNS;H1>W H2;H2>W H3;H1>W H3.
(3) The indifferent relations have the following properties.

x reflexivity: 8H1 2 MHFNS;H1 � H1;
y symmetry: 8H1;H2 2 MHFNS;H1 � H2 ) H2 � H1;
z non-transitivity: 9H1;H2;H3 2 MHFNS;H1 � H2;H2 � H3;H1 � H3.
According to Definitions 11, 12, it is clear that properties r–v, x, and y are true, and w and z can be exemplified.

Example 12. Let p ¼ 0:06 and q ¼ 0:05. Properties w and z can be exemplified as follows.

(1) If H1 ¼ 0:125;0:15;0:2;0:24f g; H2 ¼ 0:125;0:15;0:15; 0:18f g, and H3 ¼ 0:125;0:15;0:175;0:21f g are three MHFNs,
then rp;qðH1;H2Þ � rp;qðH2;H1Þ ¼ 0:875; rp;qðH1;H3Þ � rp;qðH3;H1Þ ¼ 1, and rp;qðH2;H3Þ � rp;qðH3;H2Þ ¼ 0:333.
Accordingly, H1>W H2; H2>W H3, but H1>SH3. This shows that weak dominance relations are non-transitive.

(2) If H1 ¼ 0:12;0:12; 0:18f g; H2 ¼ 0:14;0:16f g, and H3 ¼ 0:12;0:14;0:14f g are three MHFNs, then rp;qðH1;H2Þ
�rp;qðH2;H1Þ ¼ 0; rp;qðH2;H3Þ � rp;qðH3;H2Þ ¼ 0, and rp;qðH1;H3Þ � rp;qðH3;H1Þ ¼ 0:333. Accordingly, H1 � H2; H2 � H3,
but H1>W H3. This shows that indifferent relations are non-transitive.

In the following, the strong opposition relation, weak opposition relation, and indifferent opposition relation are defined.

Definition 13. Let H1; H2 2 MHFNS, and p and p < vðp < vÞ be two thresholds. The discordance index for MHFNs can then
be defined as follows:
tp;vðH1;H2Þ ¼
1

lðH1Þ
X
c12H1

min
c22H2

dp;vðc1; c2Þ
� �

: ð5Þ
It can be easily concluded that, when both H1 and H2 have only a single value, tp;v ðH1;H2Þ becomes a discordance index, as
introduced in Definition 9.

According to Definition 14, the following property is readily obtained.

Property 5. Let H1;H2 2 MHFNS, and p and vðp < vÞ be two thresholds. Therefore, 0 6 tp;v ðH1;H2Þ 6 1.
Definition 14. The strong opposition relation, weak opposition relation, and indifferent opposition relation for MHFNs are
defined as follows.

(1) If tp;v ðH1;H2Þ � tp;vðH2;H1Þ ¼ 1, then H1 strongly opposes H2 (H2 is strongly opposed by H1Þ, denoted by H1>SOH2.
(2) If tp;v ðH1;H2Þ � tp;vðH2;H1Þ ¼ 0, then H1 is indifferently opposed to H2, denoted by H1�OH2.
(3) If 0 < tp;v ðH1;H2Þ � tp;v ðH2;H1Þ < 1, then H1 weakly opposes H2 (H2 is weakly opposed by H1Þ, denoted by H1>WOH2.
(4) If 0 < tp;v ðH2;H1Þ � tp;v ðH1;H2Þ < 1, then H2 weakly opposes H1 (H1 is weakly opposed by H2Þ, denoted by H2>WOH1.
Example 13. Let p ¼ 0:2 and v ¼ 0:3.

(1) If H1 ¼ 0:1;0:2f g and H2 ¼ 0:5;0:5;0:7f g, then tp;v ðH1;H2Þ � tp;v ðH2;H1Þ ¼ 1, so H1>SOH2.
(2) If H1 ¼ 0:2;0:5f g and H2 ¼ 0:2;0:2;0:6f g, then tp;v ðH1;H2Þ � tp;v ðH2;H1Þ ¼ 0, so H1�OH2.
(3) If H1 ¼ 0:2;0:2;0:5f g and H2 ¼ 0:45;0:75f g, then tp;v ðH1;H2Þ � tp;v ðH2;H1Þ ¼ 0:333, so H1>WOH2.

According to Definitions 9, 13, and 14, similar to Properties 2–4, the following properties are true.

Property 6. Let H1;H2 2 MHFNS, and p and vð0 < p < vÞ be two thresholds. Then, H1>SOH2 if and only if
min c2

��c2 2 H2
� �

�max c1

��c1 2 H1
� �

P v .
Proof.

(1) Necessity: H1>SOH2 ) min c2jc2 2 H2f g �max c1jc1 2 H1f gP v .
According to Definition 14, if H1>SOH2, then tp;v ðH1;H2Þ � tp;vðH2;H1Þ ¼ 1. Because 0 6 tp;v ðH1;H2Þ 6 1 and 0 6 tp;v ðH2;

H1Þ 6 1, we can determine that tp;v ðH1;H2Þ ¼ 1 and tp;v ðH2;H1Þ ¼ 0. In this way, 1
lðH1Þ

P
c12H1

minc22H2 dp;v ðc1; c2Þ ¼ 1 was
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determined. As indicated by Definition 9, 0 6 dp;v ðc1; c2Þ 6 1, so dp;vðc1; c2Þ ¼ 1. For any c1 2 H1; c2 2 H2, we can obtain
c2 � c1 P v . Therefore, min c2jc2 2 H2f g � max c1jc1 2 H1f gP v is certainly true.

(2) Sufficiency: min c2jc2 2 H2f g �max c1jc1 2 H1f gP v ) H1>SOH2.
Because min c2jc2 2 H2f g �max c1jc1 2 H1f gP v; c2 � c1 P v for any c1 2 H1; c2 2 H2. According to Definition 9,
dp;v ðc1; c2Þ ¼ 1 and dp;v ðc2; c1Þ ¼ 0 are determined. Therefore, 1

lðH1Þ
P

c12H1
minc22H2 dp;v ðc1; c2Þ ¼ 1 and 1

lðH2Þ
P

c22H2

minc12H1 dp;vðc2; c1Þ ¼ 0, which indicate that tp;vðH1;H2Þ � tp;v ðH2;H1Þ ¼ 1� 0 ¼ 1. Therefore, H1>SOH2. h
Property 7. Let H1; H2; H3 2 MHFNS, and p and vðp < vÞ be two thresholds. If H1>SOH2 and H2>SOH3, then H1>SOH3.
Proof. According to Property 6, if H1>SOH2, then min c2jc2 2 H2f g �max c1jc1 2 H1f gP v , so max c2jc2 2 H2f g
�max c1jc1 2 H1f gP v .

If H2>SOH3, then min c3

��c3 2 H3
� �

�max c2

��c2 2 H2
� �

P v .

Thus, further derivations are obtained as follows:
max c2jc2 2 H2f g �max c1jc1 2 H1f gP v
min c3jc3 2 H3f g �max c2jc2 2 H2f gP v

�
)min c3jc3 2 H3f g �max c1jc1 2 H1f gP 2v P v :
Therefore, H1>SOH3. h
Property 8. Let H1;H2;H3 2 MHFNS, and p and vð0 < p < vÞ be two thresholds.

(1) The strictly opposed relations have the following properties.

r irreflexivity: 8H1 2 MHFNS;H1�SOH1;

s asymmetry: 8H1;H2 2 MHFNS;H1>SOH2 ) :ðH2>SOH1Þ;
t transitivity: 8H1;H2;H3 2 MHFNS;H1>SOH2;H2>SOH3 ) H1>SOH3.
(2) The weakly opposed relations have the following properties.

u irreflexivity: 8H1 2 MHFNS;H1�WOH1;

v asymmetry: 8H1;H2 2 MHFNS;H1>WOH2 ) :ðH2>WOH1Þ;
w non-transitivity: 9H1;H2;H3 2 MHFNS;H1>WOH2;H2>WOH3;H1>WOH3.
(3) The indifferently opposed relations have the following properties.

x reflexivity: 8H1 2 MHFNS;H1�OH1;
y symmetry: 8H1;H2 2 MHFNS;H1�OH2 ) H2�OH1;
z non-transitivity: 9H1;H2;H3 2 MHFNS;H1�OH2;H2�OH3;H1�OH3.
According to Definitions13, 14, it is clear that properties r–v, x, and y are true, and w and z can be exemplified.

Example 14. Let p ¼ 0:15 and v ¼ 0:2. Properties w and z can be exemplified as follows.

(1) If H1 ¼ 0:1;0:1; 0:2f g; H2 ¼ 0:3;0:4f g, and H3 ¼ 0:5;0:6;0:6f g are three MHFNs, then tp;v ðH1;H2Þ � tp;vðH2;

H1Þ ¼ 0:5; tp;v ðH2;H3Þ � tp;v ðH3;H2Þ ¼ 0:5, and tp;vðH1;H3Þ � tp;v ðH3;H1Þ ¼ 1. Accordingly, we have H1>WOH2;

H2>WOH3, but H1>SOH3. Thus, the weak opposition relations are non-transitive.
(2) If H1 ¼ 0:1;0:1f g; H2 ¼ 0:25;0:25f g, and H3 ¼ 0:3;0:3;0:4f g are three MHFNs, then tp;v ðH1;H2Þ �tp;vðH2;

H1Þ ¼ 0; tp;v ðH2;H3Þ � tp;v ðH3;H2Þ ¼ 0, and tp;v ðH1;H3Þ � tp;vðH3;H1Þ ¼ 1. Accordingly, H1�OH2 and H2�OH3, but
H1>SOH3. This shows that the indifferent opposition relations are non-transitive.

5. An ELECTRE approach for MCDM problems with MHFNs

MCDM ranking and selection problems with multi-hesitant fuzzy information consist of a group of alternatives, denoted
as A ¼ a1; a2; . . . ; anf g. All alternatives are evaluated based on criteria, denoted by C ¼ c1; c2; . . . ; cmf g. We denote aij as the

value of the alternative ai with respect to the criterion cj, where aij ¼ ck
ij; k ¼ 1;2; . . . ; lðaijÞ

n o
ði ¼ 1; . . . ;n; j ¼ 1; . . . ;mÞ

are in the form of MHFNs, and lðaijÞ represents the number of elements in aij. The weight vector corresponding to the criteria
is given as w ¼ ðw1;w2; . . . ;wmÞ, where wj is in the form of MHFNs. This method is only suitable if there is a small quantity of
decision-makers. The decision-makers can evaluate these alternatives based on the given criteria, and a single decision-mak-
er can assign multiple values to any aij. In particular, in the case in which two or more decision-makers assign an equivalent
value, the frequency of this repeated value will remain unchanged in MHFNs.

This approach is an integration of MHFNs and the outranking method used to handle the MCDM problems mentioned
above.
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Step 1. Normalize the decision matrix R ¼ ðaijÞn�m.
For MCDM problems, the most common criteria involve maximizing and minimizing types. To unify all criteria, it is
necessary to normalize the value of the alternative ai with respect to the criterion cj, i.e., aij. However, it should be
remarked that, if all the criteria are of the maximizing type and represent the same unit of measurement, they need

not be normalized. Suppose that the matrix R ¼ ðaijÞn�m, where aij ¼ c1
ij; c2

ij; . . . ; ck
ij

n o
ði ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;m;

k ¼ 1;2; . . . ; lðaijÞÞ are MHFNs, can be normalized to the corresponding matrix ~R ¼ ð~aijÞn�m. Here, ~aij ¼
~c1

ij; ~c2
ij; . . . ; ~ck

ij

n o
ði ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;m; k ¼ 1;2; . . . ; lðaijÞÞ. For the maximizing criteria, the normalization

formula is as follows:
~ck
ij ¼ ck

ij; k ¼ 1;2; . . . ; lðaijÞ;

and, for the minimizing criteria, it is as follows:

~ck
ij ¼ 1� ck

ij; k ¼ 1;2; . . . ; lðaijÞ:

Apparently, the normalization values ~aij ¼ ~c1
ij; ~c2

ij; . . . ; ~ck
ij

n o
ði ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;mÞ are also MHFNs.
Step 2. Determine the weighted normalized matrix.
According to the weights of the criteria and the operations in Definition 2, the weighted normalized decision matrix
can be constructed using the following formula:
~a	ij ¼ ~aij �wj ði ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;mÞ: ð6Þ

Here, wj is the weight of the j-th criterion.

Step 3. Determine the concordance set of subscripts.

The concordance set of subscripts, which should satisfy the constraint ~a	ij>S~a	kj or ~a	ij>W ~a	kj or ~a	ij � ~a	kj, is represented
as follows:
Oik ¼ jjrp;qð~a	ij; ~a	kjÞ � rp;qð~a	kj; ~a
	
ijÞP 0

n o
ði; k ¼ 1;2; . . . ;nÞ: ð7Þ

Here, rp;qð~a	ij; ~a	kjÞ represents the concordance index between ~a	ij and ~a	kj, and can be calculated using Eq. (4) in Definition
11.
Step 4. Determine the concordance matrix.
Using the weight vector w associated with the criteria, the concordance index Cðai; akÞ is represented as follows:
Cðai; akÞ ¼ sðc	ðai; akÞÞ: ð8Þ

Here, c	ðai; akÞ ¼
P

j2Oik
wj �

P
j2 jj~a	

kj
>W ~a	

ij

n owj � rp;qð~a	kj; ~a
	
ijÞ, where sð�Þ is the score function defined in Definition 3.

Therefore, the concordance matrix C is as follows:

C ¼

� c12 � � � c1n

c21 � � � � c2n

� � � � � � � � � � � �
cn1 cn2 � � � �

0
BBB@

1
CCCA: ð9Þ
Step 5. Determine the credibility index of outranking relations.
rðai; akÞ ¼ Cðai; akÞ �
Ym
j¼1

djðai; akÞ: ð10Þ

Here,

djðai; akÞ ¼
1�tp;v ð~a	ij ;~a

	
kj
Þ

1�Cðai ;akÞ
if tp;vð~a	ij; ~a	kjÞ > Cðai; akÞ

1 otherwise

(
;

where tp;vð~a	ij; ~a	kjÞ represents the discordance index between ~a	ij and ~a	kj, and can be calculated using Eq. (5) in Definition
13.
Step 6. Determine the ranking of the alternatives’ indices.
The ranking of the alternatives’ indices is defined in two preorders using descending and ascending distillations. Let
k ¼ max

ai ;ak2A
rðai; akÞ; k� jðkÞ be a credibility value such that jðkÞ is sufficiently close to k (more details concerning the

values of jðkÞ can be found in [20]). Therefore, S can be defined as follows:
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Sðai; akÞ ¼
1; if rðai; akÞ > k� jðkÞ
0; otherwise

�
: ð11Þ

According to the matrix Sðai; akÞ, the final qualification score for each alternative is the number of alternatives that are
outranked by ai minus the number of alternatives that outrank ai.
The descending distillation process is implemented by first retaining the alternative with the highest qualification
score, and then applying the same procedure to the remaining alternatives. The ascending distillation process is simi-
lar to descending distillation, except that the process is based on the lowest qualification score rather than the highest.
Step 7. Rank all the alternatives.

6. Illustrative example

In this section, an example was adapted from a previous work by Wei [43]. In this example, the school of management in
a Chinese university is planning to recruit some outstanding teachers from overseas to strengthen academic capabilities and
enhance the quality of teaching at the university. The university’s president and human resource officer make up the panel of
decision-makers responsible for the recruitment. They performed a strict evaluation for five alternatives denoted as
a1; a2; a3; a4; a5 according to the following four criteria: morality, research capability, teaching skills, and educational back-
ground, here denoted as c1; c2; c3; c4, and their corresponding weights were w1 ¼ 0:45;0:3f g; w2 ¼ 0:3;0:25f g;
w3 ¼ 0:2;0:2f g, and w4 ¼ 0:10;0:20f g. The evaluation of the five candidates ai ði ¼ 1;2;3;4;5Þ was performed with
MHFNs by two decision-makers using the criteria ck ðk ¼ 1;2;3;4Þ. A given decision-maker could assign several values to
each candidate based on the criteria. In particular, in the case in which both decision-makers assigned the same value,
the frequency of the repeated values will be the same as that in the statistical results. A multi-hesitant fuzzy decision matrix
R ¼ ðaijÞ5�4 was constructed as shown below:
R ¼

f0:4;0:5;0:7g f0:5; 0:5; 0:8g f0:6; 0:6; 0:9g f0:5;0:6g
f0:6;0:7;0:8g f0:5; 0:6g f0:6; 0:7; 0:7g f0:4;0:5g
f0:6;0:8g f0:2;0:3; 0:5g f0:6; 0:6g f0:5;0:7g
f0:5;0:5;0:7g f0:4; 0:5g f0:8; 0:9g f0:3;0:4;0:5g
f0:6;0:7g f0:5; 0:7g f0:7; 0:8g f0:3;0:3;0:4g

0
BBBBBB@

1
CCCCCCA
6.1. Illustration of the proposed approach

The procedures used to identify the optimal alternative using the method proposed here are as follows.

Step 1. Normalize the data in decision matrix R ¼ ðaijÞ5�4.
Because all the criteria are of the maximizing type and have the same measurement unit, there is no need for nor-
malization, and ~R ¼ ð~aijÞ5�4 ¼ ðaijÞ5�4.

Step 2. Determine the weighted normalized matrix.
For instance, based on the operations in Definition 2 and Eq. (6), the weighted normalized value ~a	53 can be calculated
as follows:
~a	53 ¼ ~a53 �w3 ¼ 0:7;0:8f g � 0:2;0:2f g ¼ 0:14;0:14;0:16;0:16f g:

Similarly, the weighted normalized matrix R	 can be determined as shown below:

D	 ¼

f0:12;0:18;0:15;0:225;0:21;0:315g f0:125;0:15;0:125;0:15;0:20;0:24g f0:12;0:12;0:12;0:12;0:18;0:18g f0:05;0:10;0:06;0:12g
f0:18;0:27;0:21;0:315;0:24;0:36g f0:125;0:15;0:15;0:18g f0:12;0:12;0:14;0:40;0:14;0:14g f0:04;0:08;0:05;0:10g

f0:18;0:27;0:24;0:36g f0:05;0:06;0:09;0:075;0:125;0:15g f0:12;0:12;0:12;0:12g f0:05;0:10;0:07;0:14g
f0:15;0:225;0:15;0:225;0:21;0:315g f0:10;0:12;0:125;0:15g f0:16;0:16;0:18;0:18g f0:03;0:06;0:04;0:08;0:05;0:10g

f0:18;0:27;0:21;0:315g f0:125;0:15;0:175;0:21g f0:14;0:14;0:16;0:16g f0:03;0:06;0:03;0:06;0:04;0:08g

0
BBBBBB@

1
CCCCCCA
Step 3. Determine the concordance set of subscripts.
Let qj ¼ 0:05; pj ¼ 0:06, and v j ¼ 0:07 be the thresholds for all criteria cjðj ¼ 1;2;3;4Þ. According to Eq. (7), because
~a	12>W ~a	22; ~a

	
13>S~a	23, and ~a	14>W ~a	24; O12 ¼ 2;3;4f g. Similarly, the concordance set of subscripts can be determined as

follows:
O ¼ ðOikÞ ¼

� 2;3;4 2;3 1;2;3;4 2;3;4
1 � 1;2 1;2;3;4 1;3;4
1;3;4 3;4 � 1;4 1;3;4
1;3 3 2;3 � 3;4
1;3 1;2;3 1;2;3 1;2;3 �

0
BBBBBB@

1
CCCCCCA
:
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Step 4. Determine the concordance matrix.
According to Eq. (8), the concordance index c25 can be calculated as follows:
c	ða2; a5Þ ¼ w1 �w3 �w4 �w2 � rp;qð~a	22; ~a
	
52Þ

¼ 0:669;0:578; 0:669;0:578; 0:657;0:564;0:657;0:564;0:705;0:625;0:705;0:625;0:665;0:654f g;
c25 ¼ sðc	ða2; a5ÞÞ ¼ 0:637:

Similarly, the concordance matrix can be determined as shown below:

C ¼

� 0:579 0:545 0:692 0:579
0:556 � 0:599 0:692 0:637
0:575 0:499 � 0:524 0:703
0:533 0:492 0:554 � 0:420
0:567 0:666 0:638 0:666 �

0
BBBBBB@

1
CCCCCCA
:

Step 5. Determine the credibility index.
Based on Step 4 and Eq. (10), the credibility index matrix can be determined as follows:
r ¼

� 0:579 0:545 0:692 0:579
0:556 � 0:599 0:692 0:637
0:575 0:499 � 0:524 0:703
0:533 0:492 0:554 � 0:42
0:567 0:666 0:638 0:666 �

0
BBBBBB@

1
CCCCCCA
:

Step 6. Determine the ranking of the alternatives’ indices.
According to Step 5, k ¼ max

ai ;aj2A
rðai; ajÞ ¼ 0:703. If jðkÞ ¼ 0:15 [20], then the following is true:
Sðai; ajÞ ¼

� 1 0 1 1
1 � 1 1 1
1 0 � 0 0
0 0 1 � 0
1 1 1 1 �

0
BBBBBB@

1
CCCCCCA
:

Therefore, we can derive the descending distillation as a2f g ! a5f g ! a1; a3; a4f g, the ascending distillation as
a2; a5f g ! a3f g ! a1f g ! a4f g, and the final ranking as a2f g ! a5f g ! a3f g ! a1f g ! a4f g.
Step 7. Rank all the alternatives.

This shows that the best alternative is a2, and the worst alternative is a4.

6.2. Comparative analysis and discussion

A comparative study was performed to confirm the feasibility of the proposed decision-making method. The analysis
included three classes of other methods. The first class was comprised of methods that use aggregation operators
[42,50,55,61,62]. The second class was comprised of methods based on distance measures [14,52,66,67]. The method
described by Wang et al. was in a class by itself [48]. The results of all three classes of methods were compared to the results
of the proposed method.

These three classes of methods provide no clarification on the means of resolving situations in which repeated values
exist in the evaluation information of alternatives, and the criteria weights are expressed by MHFNs. Under these conditions,
a comparative analysis based on an equivalent illustrative example was performed, where each value was only counted once
in the decision matrix R ¼ ðaijÞ5�4. The criteria weight vector w ¼ ð0:375;0:275;0:200;0:150Þ can be calculated according to
the score function in Definition 3. When the three classes of methods and the proposed approach were applied to the mod-
ified decision-making information, the results were obtained as follows.

Case 1. Comparison of the proposed approach to methods that use aggregation operators.

We include five methods proposed in previous studies that developed aggregation operators to aggregate the hesitant
information [42,50,55,61,62]. The score function was then calculated and used to determine the final ranking order of all
the alternatives. The results of these methods and the proposed method are listed in Table 1.

As shown in Table 1, the proposed approach and the approach described by Wei [42] in which the weighted averaging
operator is used and the prioritization among the criteria is c1 
 c2 
 c3 
 c4. Both provided an equivalent ranking with
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respect to the lowest and highest ranked candidates, and the best alternative was always a2. However, the results of the pro-
posed method were different from those produced by the methods described by Xia and Xu [50], Yu [55], Zhu et al. [61], and
Zhang et al. [62].

There are three possible explanations for these differences. First, the different operations and aggregation operators
involved in these other methods can be used to interpret the differences in the final rankings to some extent. Second, dif-
ferent aggregation operators are used to address different relationships of the aggregated arguments. The methods described
by Wei [42], Xia and Xu [50], Yu [55], and Zhang et al. [62] involved weighted averaging operators that weight the hesitant
fuzzy values, and indicate the overall influence of all data. The weighted geometry operators described by Wei [42], Yu [55],
Zhu et al. [61], and Zhang et al. [62] may be infeasible for situation in which extreme values are involved, and this is a vital
shortcoming for them. The ordered weighted averaging operator described by Zhang et al. weighted the ordered positions of
the hesitant fuzzy values [62]. The effectiveness of the geometric Bonferroni means described by Zhu et al. cannot be restrict-
ed by extreme values because the importance of each argument and the conjunctions among them have been considered in
the aggregation process [61]. Nevertheless, decision-makers cannot make choices among those operators mentioned above,
which share similar characteristics.

Moreover, if aggregation operators are used, the number of operations and the magnitudes of the results will increase
exponentially if more HFNs are involved in the operations. The deterioration caused by these complexities may limit the
application of hesitant fuzzy aggregation operators. Therefore, to resolve the MCDM problem described in Section 6, the pro-
posed approach not only produces reasonable and credible results but also requires only simple computation procedures.

Case 2. Comparison of the proposed approach to methods based on distance measures.

We include two methods described by Farhadinia [14] and by Xu and Xia [52] that calculate the distance between each
actual alternative and an ideal alternative, which was used to determine the final ranking. In addition, the E-VIKOR and
TODIM methods described by Zhang and Wei [66] and by Zhang and Xu [67], respectively, both of which are based on dis-
tance, were also used to determine the final ranking of all the distances. These results are listed in Table 2.

According to the results presented in Table 2, the proposed approach and the approach described by Zhang and Wei [66]
both provided an equivalent ranking with respect to the lowest, second lowest, and highest ranked candidates, but different
from those produced using the methods described by Farhadinia [14], Xu and Xia [52], and Zhang and Xu [67], for which the
best alternative was found to be a5.

Two conclusions can be drawn from these results. First, all four methods measure the distance under the condition that
all HFNs must be arranged in ascending order and be of equal length. If the two HFNs being compared have different lengths,
then the value of the shorter HFN must be increased until both are equal. However, in such cases, different methods of exten-
sion can produce different results. Second, the distance measurements are subject to different reference points. In Zhang and
Xu’s method [67], each alternative can be determined as the reference point in TODIM. The methods described by Farhadinia
[14], Xu and Xia [52], and Zhang and Wei [66] all involved an ideal alternative in the decision-making process. As shown
here, two cases may lead to different rankings.

Unlike methods that use distance measures, which present various disadvantages in the decision-making process, the
proposed approach does not take distances into account. The proposed approach is more suitable for accommodating
MCDM problems with multi-valued hesitant fuzzy information.
Table 1
Comparison of the proposed method with methods using aggregation operators.

Methods Ranking of alternatives

Wei [42] a2 
 a5 
 a3 
 a1 
 a4

Xia and Xu [50] a5 
 a4 
 a1 
 a2 
 a3

Yu [55] a1 
 a5 
 a2 
 a4 
 a3 or a5 
 a1 
 a2 
 a4 
 a3

Zhu et al. [61] a5 
 a4 
 a1 
 a2 
 a3

Zhang et al. [62] a5 
 a2 
 a1 
 a4 
 a3 or a5 
 a1 
 a2 
 a4 
 a3

Proposed method a2 
 a1 
 a5 
 a3 
 a4

Table 2
Comparison of the proposed method with methods based on distance measures.

Methods Ranking of alternatives

Farhadinia [14] a5 
 a2 
 a1 
 a4 
 a3

Xu and Xia [52] a5 
 a2 
 a1 
 a3 
 a4

Zhang and Wei [66] a2 
 a5 
 a1 
 a3 
 a4

Zhang and Xu [67] a5 
 a1 
 a2 
 a3 
 a4

Proposed method a2 
 a1 
 a5 
 a3 
 a4
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Case 3. Comparison of the proposed approach to the method described by Wang et al. [48].

When the method described by Wang et al. [48] was used to solve the MCDM problem, the final ranking was
a4 � a1 � a3 � a5 � a2. This is consistent with the results of the proposed approach. Although the development of the
method was based on reliable theories and was not subject to the disadvantages of other methods, it is not able to manage
repetitive values in HFSs. As such, this method cannot be used to directly accommodate MHFSs in MCDM problems.

As indicated by the comparative analyses presented above, the proposed method of addressing MCDM problems with
MHFNs demonstrates the following advantages.

The MHFNs used in this paper can express the evaluation information more flexibly. They can retain the completeness of
the original data or the inherent thoughts of decision-makers by taking into account repetitive values in HFSs, which is a
prerequisite for accurate final outcomes. The main advantages of the approach proposed here are its ability to accommodate
preference information expressed by MHFNs effectively, and its ability to accommodate criteria weights in the form of
MHFNs.

The proposed outranking method for MHFNs is different from existing methods, which always involve operations and
measures whose impact on the final solution may be considerable. The proposed method can overcome these disadvantages.
This can prevent loss of data and distortion of the preference information initially provided, resulting in final outcomes that
more closely correspond to those in actual decision-making processes.
7. Conclusions

HFSs are useful for managing decision-making problems that are defined under uncertainties for which decision-makers
hesitate while considering several values before expressing their preferences concerning weights and data. MHFSs are appli-
cable to cases in which some HFS values are repeated. In this paper, a comparison method for MHFNs is discussed. Some
outranking relations with MHFNs are proposed, and their properties, derived from ELECTRE III, are presented in detail. An
outranking method that can overcome the disadvantages of traditional methods is proposed to manage MCDM problems
where the weights and data are in the form of MHFNs. The primary advantages of the developed approach over other meth-
ods are not only its ability to retain the preference information expressed by MHFNs, but also its expression of criteria
weights by MHFNs. This can avoid loss of data and distortion of the preference information initially provided, resulting in
final outcomes that more closely correspond to those in actual decision-making processes. Future research may address
the means of establishing optimal values of indifference, preference, and veto thresholds in the ELECTRE methods using a
specified model under a multi-hesitant fuzzy environment.
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[6] N. Bojković, I. Anić, S. Pejčić-Tarle, One solution for cross-country transport-sustainability evaluation using a modified ELECTRE method, Ecol. Econ. 69

(2010) 1176–1186.
[7] T.-Y. Chen, A outcome-oriented approach to multicriteria decision analysis with intuitionistic fuzzy optimistic/pessimistic operators, Exp. Syst. Appl.

37 (2010) 7762–7774.
[8] T.-Y. Chen, Multiple criteria decision analysis using a likelihood-based outranking method based on interval-valued intuitionistic fuzzy sets, Inform.

Sci. 286 (2014) 188–208.
[9] N. Chen, Z.S. Xu, M.M. Xia, Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis, Appl. Math. Model. 37 (4) (2013)

2197–2211.
[10] N. Chen, Z.S. Xu, M.M. Xia, Interval-valued hesitant preference relations and their applications to group decision making, Knowl.-Based Syst. 37 (2013)

528–540.
[11] F. Cavallaro, A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method, Energy Policy 38 (2010) 463–474.
[12] K. Devi, S.P. Yadav, A multicriteria intuitionistic fuzzy group decision making for plant location selection with ELECTRE method, Int. J. Adv. Manuf.

Technol. 66 (9–12) (2013) 1219–1229.
[13] Ermatita, S. Hartati, R. Wardoyo, A. Harjoko, Electre methods in solving group decision support system bioinformatics on gene mutation detection

simulation, Int. J. Comput. Sci. Inform. Technol. 3 (1) (2011) 40–52.
[14] B. Farhadinia, Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets, Inform. Sci. 240 (2013) 129–144.
[15] B. Farhadinia, Distance and similarity measures for higher order hesitant fuzzy sets, Knowl.-Based Syst. 55 (2014) 43–48.
[16] B. Farhadinia, A novel method of ranking hesitant fuzzy values for multiple attribute decision-making problems, Int. J. Intell. Syst. 28 (2013) 752–767.
[17] J. Figueira, V. Mousseau, B. Roy, ELECTRE methods, in: J. Fuguera, S. Greco, M. Ehrgott (Eds.), Multiple Criteria Decision Analysis: State of the Art

Surveys, 39, Springer, Boston, 2005, pp. 133–153.

http://refhub.elsevier.com/S0020-0255(15)00130-9/h0005
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0010
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0010
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0015
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0020
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0030
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0030
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0035
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0035
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0040
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0040
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0045
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0045
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0050
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0050
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0055
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0060
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0060
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0065
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0065
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0070
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0075
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0080
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0085
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0085
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0085
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0085
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0085
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0085


126 J.-j. Peng et al. / Information Sciences 307 (2015) 113–126
[18] A.E. Hanandeh, A. El-Zein, The development and application of multi-criteria decision-making tool with consideration of uncertainty: the selection of a
management strategy for the bio-degradable fraction in the municipal solid waste, Bioresource Technol. 101 (2010) 555–561.

[19] P. Haurant, P. Oberti, M. Muselli, Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: a real case study using
the ELECTRE outranking framework, Energy Policy 39 (2011) 676–688.

[20] J. Hokkanen, P. Salminen, ELECTRE III and IV decision aids in an environmental problem, J. Multi-Criteria Decis. Anal. 6 (1997) 215–226.
[21] A. Hatami-Marbini, M. Tavana, An extension of the Electre I method for group decision-making under a fuzzy environment, Omega 39 (2011) 373–386.
[22] T. Kaya, C. Kahraman, An integrated fuzzy AHP–ELECTRE methodology for environmental impact assessment, Exp. Syst. Appl. 38 (2011) 8553–8562.
[23] P.D. Liu, Y.M. Wang, Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean, Neural

Comput. Appl. (2014), http://dx.doi.org/10.1007/s00521-014-1688-8.
[24] P.D. Liu, Y.C. Chu, Y.W. Li, Y.B. Chen, Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision

making, Int. J. Fuzzy Syst. 16 (2) (2014) 242–255.
[25] M.M. Marzouk, ELECTRE III model for value engineering applications, Automat. Constr. 20 (2011) 596–600.
[26] T. Ozcan, N. Celebi, S. Esnaf, Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location

selection problem, Exp. Syst. Appl. 38 (2011) 9773–9779.
[27] W. Pedrycz, Statistically grounded logic operators in fuzzy sets, Eur. J. Oper. Res. 2 (2009) 520–529.
[28] W. Pedrycz, Fuzzy sets in pattern recognition: methodology and methods, Pattern Recogn. 23 (1990) 121–146.
[29] W. Pedrycz, B.J. Park, S.K. Oh, The design of granular classifiers: a study in the synergy of interval calculus and fuzzy sets in pattern recognition, Pattern

Recogn. 41 (2008) 3720–3735.
[30] W. Pedrycz, Granular Computing: Analysis and Design of Intelligent Systems, CRC Press, Francis Taylor, Boca Raton, 2013.
[31] J.J. Peng, J.Q. Wang, J. Wang, X.H. Chen, Multi-criteria decision-making approach with hesitant interval-valued intuitionistic fuzzy set, Sci. World J.

(2014) 22. Article ID 868515.
[32] J.J. Peng, J.Q. Wang, H.Y. Zhang, X.H. Chen, An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets,

Appl. Soft Comput. 25 (2014) 336–346.
[33] J.J. Peng, J.Q. Wang, H. Zhou, X.H. Chen, A multi-criteria decision-making approach based on TODIM and Choquet integral within a multiset hesitant

fuzzy environment, Appl. Math. Inform. Sci. 9 (4) (2015) 1–11.
[34] B. Roy, The outranking approach and the foundations of ELECTRE methods, Theory Decis. 31 (1991) 49–73.
[35] R.M. Rodriguez, L. Martinez, V. Torra, Z.S. Xu, F. Herrera, Hesitant fuzzy sets: state of the art and future directions, Int. J. Intell. Syst. 29 (2014) 495–524.
[36] M. Sawadogo, D. Anciaux, Intermodal transportation within the green supply chain: an approach based on ELECTRE method, Int. J. Bus. Perform. Supply

Chain Model. 3 (1) (2011) 43–65.
[37] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, in: The 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 2009,

pp.1378–1382.
[38] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (6) (2010) 529–539.
[39] B. Vahdani, H. Hadipour, Extension of the ELECTRE method based on interval-valued fuzzy sets, Soft Comput. 15 (2011) 569–579.
[40] B. Vahdani, A. Jabbari, V. Roshanaei, M. Zandieh, Extension of the ELECTRE method for decision-making problems with interval weights and data, Int. J.

Adv. Manuf. Technol. 50 (5–8) (2010) 793–800.
[41] X. Wang, E. Triantaphyllou, Ranking irregularities when evaluating alternatives by using some ELECTRE methods, Omega 36 (1) (2008) 45–63.
[42] G.W. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowl.-Based Syst. 31 (2012) 176–182.
[43] G.W. Wei, X.F. Zhao, R. Lin, Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making,

Knowl.-Based Syst. 46 (2013) 43–53.
[44] J.Q. Wang, R.R. Nie, H.Y. Zhang, X.H. Chen, New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis,

Inform. Sci. 251 (2013) 79–95.
[45] J.Q. Wang, R.R. Nie, H.Y. Zhang, X.H. Chen, Intuitionistic fuzzy multi-criteria decision-making method based on evidential reasoning, Appl. Soft Comput.

13 (4) (2013) 1823–1831.
[46] J.Q. Wang, H.Y. Zhang, Multi-criteria decision-making approach based on Atanassov’s intuitionistic fuzzy sets with incomplete certain information on

weights, IEEE Trans. Fuzzy Syst. 21 (3) (2013) 510–515.
[47] J.Q. Wang, Z.Q. Han, H.Y. Zhang, Multi-criteria group decision-making method based on intuitionistic interval fuzzy information, Group Decis. Negot.

23 (2014) 715–733.
[48] J.Q. Wang, D.D. Wang, H.Y. Zhang, X.H. Chen, Multi-criteria outranking approach with hesitant fuzzy sets, OR Spectrum 36 (2014) 1001–1019.
[49] J.Q. Wang, J. Wang, Q.H. Chen, H.Y. Zhang, X.H. Chen, An outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term

sets, Inform. Sci. 280 (2014) 338–351.
[50] M.M. Xia, Z.S. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason. 52 (3) (2011) 395–407.
[51] M.M. Xia, Z.S. Xu, N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group Decis. Negot. 22 (2)

(2013) 259–279.
[52] Z.S. Xu, M.M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci. 181 (11) (2011) 2128–2138.
[53] Z.S. Xu, M.M. Xia, On distance and correlation measures of hesitant fuzzy information, Int. J. Intell. Syst. 26 (5) (2011) 410–425.
[54] R.R. Yager, Multiple objective decision-making using fuzzy sets, Int. J. Man-Mach. Stud. 9 (1997) 375–382.
[55] D.J. Yu, Some hesitant fuzzy information aggregation operators based on Einstein operational laws, Int. J. Intell. Syst. 29 (2014) 320–340.
[56] W.E. Yang, J.Q. Wang, X.F. Wang, An outranking method for multi-criteria decision making with duplex linguistic information, Fuzzy Sets Syst. 198

(2012) 20–33.
[57] W.E. Yang, J.Q. Wang, Multi-criteria semantic dominance: a linguistic decision aiding technique based on incomplete preference information, Eur. J.

Oper. Res. 231 (1) (2013) 171–181.
[58] L.A. Zadeh, Fuzzy logic and approximate reasoning, Synthese 30 (1975) 407–428.
[59] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–356.
[60] P. Zhi, Z. Li, A novel approach to multi-attribute decision making based on intuitionistic fuzzy sets, Exp. Syst. Appl. 39 (2012) 2560–2566.
[61] B. Zhu, Z.S. Xu, M.M. Xia, Hesitant fuzzy geometric Bonferroni means, Inform. Sci. 205 (2012) 72–85.
[62] Z.M. Zhang, C. Wang, D.Z. Tian, K. Li, Induced generalized hesitant fuzzy operators and their application to multiple attribute group decision making,

Comput. Ind. Eng. 67 (2014) 116–138.
[63] W. Zhou, An Accurate method for determining hesitant fuzzy aggregation operator weights and its application to project investment, Int. J. Intell. Syst.

00 (2014) 1–19.
[64] Z.M. Zhang, Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making, Inform. Sci. 234 (2013)

150–181.
[65] Z.M. Zhang, C. Wu, A decision support model for group decision making with hesitant multiplicative preference relations, Inform. Sci. 282 (2014) 136–

166.
[66] N. Zhang, G.W. Wei, Extension of VIKOR method for decision making problem based on hesitant fuzzy set, Appl. Math. Model. 37 (7) (2013) 4938–

4947.
[67] X.L. Zhang, Z.S. Xu, The TODIM analysis approach based on novel measured functions under hesitant fuzzy environment, Knowl.-Based Syst. 61 (2014)

48–58.
[68] B. Zhu, Z.S. Xu, M.M. Xia, Dual hesitant fuzzy sets, J. Appl. Math. (2012) 13. Article ID 879629.
[69] B. Zhu, Z.S. Xu, Some results for dual hesitant fuzzy sets, J. Intell. Fuzzy Syst. 26 (2014) 1657–1668.

http://refhub.elsevier.com/S0020-0255(15)00130-9/h0090
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0090
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0095
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0095
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0100
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0105
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0110
http://dx.doi.org/10.1007/s00521-014-1688-8
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0120
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0120
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0125
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0130
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0130
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0135
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0140
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0145
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0145
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0150
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0150
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0155
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0155
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0160
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0160
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0165
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0165
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0170
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0175
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0180
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0180
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0190
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0195
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0200
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0200
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0205
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0210
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0215
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0215
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0220
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0220
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0225
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0225
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0230
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0230
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0235
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0235
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0240
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0245
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0245
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0250
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0255
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0255
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0260
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0265
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0270
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0275
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0280
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0280
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0285
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0285
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0290
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0295
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0300
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0305
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0310
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0310
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0315
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0315
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0320
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0320
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0325
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0325
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0330
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0330
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0335
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0335
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0340
http://refhub.elsevier.com/S0020-0255(15)00130-9/h0345

	An extension of ELECTRE to multi-criteria decision-making problems with multi-hesitant fuzzy sets
	1 Introduction
	2 Preliminaries
	3 Multi-hesitant fuzzy sets
	4 Outranking relations on MHFNs
	5 An ELECTRE approach for MCDM problems with MHFNs
	6 Illustrative example
	6.1 Illustration of the proposed approach
	6.2 Comparative analysis and discussion

	7 Conclusions
	Acknowledgements
	References


