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Process planning and scheduling are two key sub-functions in the manufacturing system. Traditionally,
process planning and scheduling were regarded as the separate tasks to perform sequentially. Recently,
a significant trend is to integrate process planning and scheduling more tightly to achieve greater perfor-
mance and higher productivity of the manufacturing system. Because of the complementarity of process
planning and scheduling, and the multiple objectives requirement from the real-world production, this
research focuses on the multi-objective integrated process planning and scheduling (IPPS) problem. In this
research, the Nash equilibrium in game theory based approach has been used to deal with the multiple
objectives. And a hybrid algorithm has been developed to optimize the IPPS problem. Experimental studies
have been used to test the performance of the proposed approach. The results show that the developed
approach is a promising and very effective method on the research of the multi-objective IPPS problem.
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1. Introduction

Process planning and scheduling are two key sub-functions in a
manufacturing system. A process plan specifies what raw materials
or components are needed to produce a product, and what pro-
cesses and operations are necessary to transform those raw mate-
rials into the final product. The outcome of process planning is the
information required for manufacturing processes, including the
identification of the machines, tools, fixtures, and a job may have
one or more alternative process plans. Process planning is the
bridge of the product design and manufacturing. With the process
plans of jobs as inputs, a scheduling function is to arrange the oper-
ations of all the jobs on machines while precedence relationships
in the process plans are satisfied. Scheduling is the link of the
two production steps which are the preparing processes and putt-
ing them into action. Although there is a close relationship be-
tween process planning and scheduling, the integration of them
is still a challenge in both researches and applications (Sugimura,
Hino, & Moriwaki, 2001).

In traditional approaches, process planning and scheduling
were carried out in a sequential way. Those methods have become
the obstacles to improve the productivity and responsiveness of
the manufacturing systems and to cause the following problems
(Kumar & Rajotia, 2003):
ll rights reserved.

: +86 27 87543074.
).
� In traditional manufacturing organization, process planners plan
jobs separately. For each job, manufacturing resources on the shop
floor are usually assigned on it without considering the competi-
tion for the resources from other jobs (Usher & Fernandes, 1996).
This may lead to the process planners favoring to choose the desir-
able resources for each job repeatedly. Therefore, the resulting
optimal process plans often become infeasible when they are car-
ried out in practice at the later stage (Lee & Kim, 2001).
� Even though process planners consider the restrictions of the

current resources on the shop floor, because of the time delay
between planning phase and execution phase, the constraints
considered in the planning phase may have already changed
greatly; this may lead to the optimal process plans infeasible
(Kuhnle, Braun, & Buhring, 1994).
� Traditionally, scheduling plans are often determined after pro-

cess plans. In the scheduling phase, scheduling planners have
to consider the determined process plans. Fixed process plans
may drive scheduling plans to end up with severely unbalanced
resource loads and create superfluous bottlenecks.
� In most cases, both for process planning and scheduling, a single

criterion optimization technique is used for determining the
best solution. However, the real production environment is best
represented by considering more than one criterion simulta-
neously (Kumar & Rajotia, 2003). Furthermore, the process
planning and scheduling may have conflicting objectives. Pro-
cess planning emphasizes the technological requirements of
an operation, while scheduling involves the timing aspects. If
there is no appropriate coordination, it may create conflicting
problems.
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To overcome these problems, there is an increasing need for
deep researches and applications of the integrated process plan-
ning and scheduling (IPPS) system. It can introduce significant
improvements to the efficiency of manufacturing through elimi-
nating scheduling conflicts, reducing flow-time and work-in-
process, improving production resources utilizing and adapting
to irregular shop floor disturbances (Lee & Kim, 2001). Without
IPPS, a true computer integrated manufacturing system (CIMS),
which strives to integrate the various phases of manufacturing
in a single comprehensive system, may not be effectively real-
ized. Therefore, in a complex manufacturing situation, it is ideal
to integrate the process planning and scheduling more closely to
achieve the global optimum in manufacturing, and increase the
flexibility and responsiveness of the systems (Li & McMahon,
2007).

In the beginning research of CIMS, some researchers have
found that the IPPS is very important to the development of
CIMS (Tan & Khoshnevis, 2000). The preliminary idea of IPPS
was introduced by Chryssolouris, Chan, and Cobb (1984) and
Chryssolouris and Chan (1985). Beckendorff, Kreutzfeldt, and
Ullmann (1991) used alternative process plans to improve the
flexibility of manufacturing systems. Khoshnevis and Chen
(1989) introduced the concept of dynamic feedback into IPPS.
The integration model proposed by Zhang (1993) and Larsen
(1993) extended the concepts of alternative process plans and
dynamic feedback and defined an expression to the methodology
of the hierarchical approach. Some earlier works of IPPS had
been summarized in Tan and Khoshnevis (2000) and Wang,
Shen, and Hao (2006). In recent years, in the area of IPPS, several
models have been reported, and they can be classified into three
basic models based on IPPS (Li, Gao, Zhang, & Shao, 2010a): non-
linear process planning (Kim, Song, & Wang, 1997; Thomalla,
2001), closed loop process planning (Seethaler & Yellowley,
2000; Usher & Fernandes, 1996) and distributed process plan-
ning (Wang, Song, & Shen, 2005; Zhang, Gao, & Chan, 2003).

In the past decades, the optimization approaches of the IPPS
problems also have achieved several improvements. Especially,
several optimization methods have been developed based on
the modern artificial intelligence technologies, such as evolution-
ary algorithms, simulated annealing (SA) algorithm, particle
swarm optimization (PSO) algorithm and the multi-agent system
(MAS) based approach. Kim, Park, and Ko (2003) used a symbi-
otic evolutionary algorithm for the integration of process plan-
ning and job shop scheduling. Shao, Li, Gao, and Zhang (2009)
used a modified genetic algorithm (GA) to solve IPPS problem.
Li, Gao, Shao, Zhang, and Wang (2010b) proposed the mathemat-
ical models of IPPS and an evolutionary algorithm based ap-
proach to solve it. Chan, Kumar, and Tiwari (2009) proposed
an enhanced swift converging SA algorithm to solve IPPS prob-
lem. Guo, Li, Mileham, and Owen (2009a, 2009b) proposed the
PSO based algorithms to solve the IPPS problem. Shen, Wang,
and Hao (2006) provided a literature review on the IPPS, partic-
ularly on the agent-based approaches for the IPPS problem.
Wong, Leung, Mak, and Fung (2006) presented an online hybrid
agent-based negotiation MAS for integrating process planning
with scheduling/rescheduling. Shukla, Tiwari, and Son (2008)
presented a bidding-based MAS for solving IPPS. Li, Zhang, Gao,
Li, and Shao (2010c) developed an agent-based approach to facil-
itate the IPPS.

Most of the current researches on IPPS have been concen-
trated on the single objective. However, because different
departments in a company have different expectations in order
to maximize their own profits, for example, the manufacturing
department expects to reduce costs and improve work efficiency,
the managers want to maximize the utilization of the existing
resources, and the sale department hopes to better meet the
delivery requirements of the customers, in this case, only consid-
ering the single objective can not meet the requirements from
the real-world production. Therefore, further studies are required
for IPPS, especially on the multi-objective IPPS problem. How-
ever, only seldom papers focused their researches on the mul-
ti-objective IPPS problem. Morad and Zalzala (1999) proposed a
GA based on weighted-sum method to solve multi-objective IPPS
problem. Li and McMahon (2007) proposed a SA based approach
for multi-objective IPPS problem. Baykasoglu and Ozbakir (2009)
proposed an approach which made use of grammatical represen-
tation of generic process plans with a multiple objective tabu
search (TS) framework to solve multi-objective IPPS effectively.
Zhang and Gen (2010) proposed a multi-objective GA approach
for solving process planning and scheduling problems in a dis-
tributed manufacturing system.

In this paper, a novel approach has been developed to facilitate
the multi-objective IPPS problem. A game theory based hybrid
algorithm has been applied to solve the multi-objective IPPS
problem.

The remainder of this paper is organized as follows: problem
formulation is discussed in Section 2. In Section 3, the game theory
model of the multi-objective IPPS has been presented. A proposed
algorithm for solving multi-objective IPPS problem is given in Sec-
tion 4. Experimental results are reported in Section 5. Section 6 is
conclusions.

2. Problem formulation

The IPPS problem can be defined as follows (Guo, Li, Mileham, &
Owen, 2009b):

‘‘Given a set of n parts which are to be processed on machines with
operations including alternative manufacturing resources, select
suitable manufacturing resources and sequence the operations so
as to determine a schedule in which the precedence constraints
among operations can be satisfied and the corresponding objectives
can be achieved’’.

In this research, scheduling is often assumed as the job shop
scheduling, and the mathematical model of IPPS is based on the
mixed integer programing model of the job shop scheduling prob-
lem (JSP). In this research, the following three criteria are consid-
ered to be optimized simultaneously: in order to improve the
work efficiency, selecting the maximal completion time of ma-
chines, i.e., the Makespan, as one objective; in order to improve
the utilization of the existing resources, especially for the ma-
chines, selecting the maximal machine workload (MMW), i.e., the
maximum working time spent on any machine, and the total work-
load of machines (TWM), i.e., the total working time of all ma-
chines, as the other two objectives.

In order to solve this problem, the following assumptions are
made:

(1) Jobs are independent. Job preemption is not allowed and
each machine can handle only one job at a time.

(2) The different operations of one job can not be processed
simultaneously.

(3) All jobs and machines are available at time zero
simultaneously.

(4) After a job is processed on a machine, it is immediately
transported to the next machine on its process, and the
transmission time is assumed to be negligible.

(5) Setup time for the operations on the machines is indepen-
dent of the operation sequence and is included in the pro-
cessing time.
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Based on these assumptions, the mathematical model of the
multi-objective IPPS problem is described as follows (Li et al.,
2010b):

The notations used to explain the model are described below:

N: the total number of jobs
M: the total number of machines
Gi: the total number of alternative process plans of job i
oijl: the jth operation in the lth alternative process plan of the
job i
Pil: the number of operation in the lth alternative process plan
of the job i
k: the alternative machine corresponding to oijl

tijlk: the processing time of operation oijl on machine k
cijlk: the earliest completion time of operation oijl on machine k
ci: the completion time of job i
Wk: the workload of machine k
A: a very large positive number

Xil ¼
1 the lth flexible process plan of job i is selected
0 otherwise

�

Yijlpqsk ¼
1 the operation oijlprecedes the operation opqs on machine k
0 otherwise

�

Zijlk ¼
1 if machine k is selected for oijl

0 otherwise

�

Objectives:

(1) Minimizing the maximal completion time of machines
(Makespan):
Min f 1 ¼ Makespan ¼ Maxcijlk i 2 ½1;N�; j 2 ½1; Pil�;
l 2 ½1;Gi�; k 2 ½1;M�: ð1Þ
(2) Minimizing the maximal machine workload (MMW):
Min f 2 ¼ MMW ¼ Max Wk k 2 ½1;M�: ð2Þ
(3) Minimizing the total workload of machines (TWM):
Min f 3 ¼ TWM ¼
XM

k¼1

Wk k 2 ½1;M�: ð3Þ
Subject to:

(1) For the first operation in the lth alternative process plan of
job i:
ci1lk þ A 1� Xilð ÞP ti1lk i 2 ½1;N�; l 2 ½1;Gi�; k 2 ½1;M�: ð4Þ
(2) For the last operation in the lth alternative process plan of
job i:
ciPil lk � Að1� XilÞ 6 Makespan i 2 ½1;N�; l 2 ½1;Gi�;
k 2 ½1;M�: ð5Þ
(3) The different operations of one job can not be processed
simultaneously:
cijlk � ciðj�1Þlk1
þ A 1� Xilð ÞP tijlk i 2 ½1;N�; j 2 1; Pil½ �;

l 2 ½1;Gl�; k; k1 2 ½1;M�: ð6Þ
(4) Each machine can handle only one job at a time:
cpqsk � cijlk þ Að1� XilÞ þ Að1� XpsÞ þ Að1� YijlpqskÞP tpqsk; ð7Þ
cijlk � cpqsk þ Að1� XilÞ þ Að1� XpsÞ þ AYijlpqsk P tijlk i;

p 2 ½1;N�; j; q 2 ½1; Pil;ps�; l; s 2 ½1;Gi;p�; k 2 ½1;M�: ð8Þ
(5) Only one alternative process plan can be selected of job i:
X
l

Xil ¼ 1 l 2 ½1;Gi�: ð9Þ
(6) Only one machine for each operation should be selected:
XM

k¼1

Zijlk ¼ 1 i 2 ½1;N�; j 2 ½1; Pil�; l 2 ½1;Gl�: ð10Þ
The objective functions are Eqs. (1)–(3). In this research, these
three objectives have been considered for the IPPS problem. The
constraints are in-Eqs. (4)–(10). Constraint (6) expresses that the
different operations of a job are unable to be processed simulta-
neously. This is the constraint of different processes for a job.
Constraints (7) and (8) show that each machine can handle
only one job at a time. This is the constraint of a machine.
Constraint (9) ensures that only one alternative process plan
can be selected for each job in one schedule. Constraint (10)
guarantees that only one machine for each operation should be
selected.

Many studies have been devoted to do the research on the mul-
ti-objective optimization. These developed methods can be gener-
ally classified into three following different types (Hsu, Dupas,
Jolly, & Goncalves, 2002):

� The first type is using the weighted-sum method to transform
the multi-objective problem to a mono-objective problem.
� The second type is the non-Pareto approach. This method uti-

lizes operators for processing the different objectives in a sepa-
rated way.
� The third type is the Pareto approach. This method is directly

based on the Pareto optimality concept.

In this paper, the Nash equilibrium in game theory based
approach has been used to deal with the multiple objectives. After
dealing with the multiple objectives, a hybrid algorithm has been
used to optimize the multi-objective in the vast search space.

3. Game theory model of multi-objective IPPS

Game theory is a good method to analyze the interaction of
several decision makers. It is a very important tool in the mod-
ern economy. Recently, it has been used to solve some complex
engineering problems, such as power systems, collaborative
product design, etc. (Li, Gao, Li, & Guo, 2008). In this paper,
Non-cooperative game theory has been applied to deal with
the conflict and competition among the multiple objectives in
multi-objective IPPS problem. In this approach, the objectives
of this problem can be seen as the players in the game,
and the Nash equilibrium solutions are taken as the optimal
results.

3.1. Game theory model of multi-objective optimization problem

The definition of general multi-objective optimization problem
(MOP) is described as follows:

General MOP contains n variables, k objectives and m con-
straints. The mathematical definition of MOP is described as
follows:

Max=Min y ¼ f ðxÞ ¼ f1ðxÞ; f 2ðxÞ; . . . ; fkðxÞf g;
s:t: eðxÞ ¼ e1ðxÞ; e2ðxÞ; . . . ; emðxÞf g 6 0;

x ¼ x1; x2; . . . ; xnð Þ 2 X y ¼ y1; y2; . . . ; ykð Þ 2 Y:

ð11Þ

x is the variable, y is the objective, X is the variables space, Y is the
objectives space, eðxÞ 6 0 is the constraints.
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In order to apply game theory to deal with the multiple objec-
tives, the mapping between MOP and game theory should been
presented. This means that the game theory model of the MOP
should be constructed.

Comparing the MOP with the game theory, the MOP can be de-
scribed by game theory as follows: k objectives in MOP can be de-
scribed as the k players in game theory, X in MOP can be described
as the decision space S in game theory, fi(x) in MOP can be de-
scribed as the utility function ui in game theory, e(x) in MOP can
be described as the constraints in game theory.

Defining mapping ui: X ? Si as the decision strategies space of
the ith player, and

Sk
i¼1Si ¼ X; defining mapping ui : fi ! ui as the

decision strategies set of the ith player, and then the game theory
model of MOP can be defined as follows:
G ¼ fS; Ug ¼ S1; S2; . . . ; Sk; u1;u2; . . . ; ukf g: ð12Þ
3.2. Nash equilibrium and MOP

Nash equilibrium is a very important concept in the non-coop-
erative game theory. In Nash equilibrium, the strategy of each
player is the best strategy when giving the strategies of the other
players. If the number of the players is limited, at least, the game
has one Nash equilibrium solution.

The Nash equilibrium can be defined as follows:
s� ¼ fs�1; s�2; . . . ; s�kg is a strategy set of the game in Eq. (12). If the

s�i is the best strategy for the ith player when giving the strategies
(s�...i) of the other players, i.e., for the any ith player and the sj

i 2 Si,
Eq. (13) is right, s⁄ can be seen as one Nash equilibrium solution in
this game:
ui s�i ; s
�
...i

� �
P ui sj

i; s�...i
� �

;

s�...i ¼ s�1; s
�
2; . . . ; s�i�1; s�iþ1; . . . ; s�k

� �
:

ð13Þ
Therefore, for a MOP (Eq. (11)), {f1(x), f2(x), . . . , fk(x)} can be seen as
the k players in a game. The decision strategies space S equals to
the variables space X. And the utility function for each player is
fi(S). The Nash equilibrium solution s� ¼ fs�1; s�2; . . . ; s�kg can be seen
as one solution of the MOP (Eq. (11)).

Therefore, in Nash equilibrium, each objective has its own effect
on the whole decision of the MOP, no one can dominate the deci-
sion-making process.
3.3. Non-cooperative game theory for multi-objective IPPS problem

In order to use the Non-cooperative game theory to deal with
the multiple objectives in multi-objective IPPS problem, the game
theory model of multi-objective IPPS problem should be con-
structed. In this paper, multi-objective IPPS problem has three
objectives. They can be seen as three players in the game. The util-
ity function of the first player is the first objective function (u1 = f1),
the utility function of the second player is the second objective
function (u2 = f2), and the utility function of the third player is
the third objective function (u3 = f3) (f1, f2 and f3 see Section 2).
The game theory model of the multi-objective IPPS problem can
be described as follows:
Fig. 1. Work flow of the proposed algorithm.
G ¼ S; u1;u2;u3f g: ð14Þ

The Nash equilibrium solution of this model is taken as the opti-
mal result of the multi-objective IPPS problem.
4. Applications of the proposed algorithm on multi-objective
IPPS

4.1. Work flow of the proposed algorithm

In order to solve the game theory model of the multi-objective
IPPS problem effectively, one approach with a hybrid algorithm
(the hybrid of GA and TS) has been proposed. The work flow of
the method is shown in Fig. 1. The basic procedure of the method
is described as follows:

Step 1: Set the parameters of the algorithm, including the
parameters of the hybrid algorithm and the Nash equilibrium
solution algorithm.
Step 2: Initialize population randomly.
Step 3: Evaluate all population, and calculate all the three objec-
tives of every individual.
Step 4: Use the Nash equilibrium solutions algorithm to find the
Nash equilibrium solutions in the current generation, and
record them.
Step 5: Is the terminate criteria satisfied?
If yes, go to Step 8.
Else, go to Step 6.

Step 6: Generate the new population by the hybrid algorithm.
Step 6.1: Generate the new population by the genetic opera-
tions, including reproduction, crossover and mutation.
Step 6.2: Local search by TS for every individual.

Step 7: Go to Step 3.
Step 8: Use the Nash equilibrium solutions algorithm to com-
pare all the recorded Nash equilibrium solutions in every gener-
ation, and select the best solutions.
Step 9: Output the best solutions.

The Nash equilibrium solutions algorithm and the hybrid algo-
rithm are presented in the next sub-sections.



Table 2
The data of problem 1 (Baykasoglu & Ozbakir, 2009).

Job Operation Alternative machines
with processing time

Alternative operation
sequences

M1 M2 M3 M4 M5

1 O1 57 40 88 62 77 O3–O4–O1–O2

O2 7 10 11 10 5 O4–O3–O1–O2

O3 95 74 76 71 93 O2–O4–O1–O3

O4 24 18 22 28 26 O3–O1–O4–O2

2 O1 84 76 68 98 84 O1–O2–O3

O2 20 10 15 20 19 O1–O3–O2

O3 91 88 98 87 90 O3–O2–O1

O2–O1–O3

3 O1 65 87 58 80 74 O2–O4–O1–O3

O2 46 21 38 52 18 O1–O4–O2–O3

O3 19 22 19 14 22 O1–O4–O5

O4 73 56 64 72 60 O4–O2–O1–O3

O5 96 98 96 95 98

4 O1 13 7 13 12 11 O1–O2–O4–O3

O2 52 64 97 47 40 O2–O1–O4–O3

O3 20 30 17 11 14 O4–O2–O1–O3

O4 94 66 80 79 95 O3–O2–O4–O1

5 O1 94 97 55 78 85 O3–O1–O2

O2 31 23 19 42 17 O3–O4

O3 88 65 76 64 80 O3–O2–O1

O4 88 74 90 92 75 O1–O3–O2

Fig. 2. Work flow of the Nash equilibrium solutions algorithm.

Table 1
The parameters of the proposed algorithm.

Parameters

The size of the population, Popsize 400
Total number of generations, maxGen 200
The permitted maximum step size with no improving,

maxStagnantStep
20

The maximum iteration size of TS, maxIterSize 200 � (curIter/
maxGen)

Probability of reproduction operation, pr 0.05
Probability of crossover operation, pc 0.6
Probability of mutation operation, pm 0.1
Length of tabu list, maxT 10
Nash equilibrium solution factor, e 0.1

Fig. 3. Work flow of the hybrid algorithm.

Table 3
Experimental results of problem 1 (the data marked by ⁄ was adopted from
Baykasoglu and Ozbakir (2009)).

Criteria Grammatical
approach⁄

Solution
1

Solution
2

Makespan 394 165 170
Maximal machine workload

(MMW)
328 159 158

Total workload of machines
(TWM)

770 764 740

Table 4
Selected operation sequence for each job of problem 1.

Job Solution 1 Solution 2

1 O3–O4–O1–O2 O3–O4–O1–O2

2 O1–O2–O3 O3–O2–O1

3 O2–O4–O1–O3 O2–O4–O1–O3

4 O4–O2–O1–O3 O4–O2–O1–O3

5 O3–O4 O3–O4
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4.2. Nash equilibrium solutions algorithm for multi-objective IPPS

In Nash equilibrium, the strategy of each player is the best strat-
egy when giving the strategies of the other players. The main pur-
pose of Nash equilibrium solution is to keep every objective trying
its best to approximate to its own best result and can not damage
the benefits of the other objectives. In Nash equilibrium, each
objective has its own effect on the whole decision of the MOP, no
one can dominate the decision-making process, and one criterion
which has been proposed to judge the solutions is described as
follows:
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NashEj ¼
X3

i¼1

DOBJji ð15Þ

DOBJji ¼
CurrentObjectiveji � BestObjectivei

BestObjectivei
; ð16Þ

NashEj is the Nash equilibrium criterion of the jth individual. DOBJii

is calculated by the Eq. (16). CurrentObjectiveji is the objective of the
ith objective of the jth individual. BestObjectivei is the best objective
of the ith objective.

The work flow of the Nash equilibrium solutions algorithm is
shown in Fig. 2. The basic procedure of this algorithm is described
as follows:

Step 1: Firstly, use the hybrid algorithm (Li, Shao, Gao, and Qian,
(2010d)) to optimize the mono-objective IPPS problem and get-
ting the best result for every objective.
Step 2: Calculate the NashEj for every individual in the current
population.
Step 3: Find the best NashEj, and set it as the NashEbest.
Fig. 4. Gantt chart of the so

Fig. 5. Gantt chart of the so
Step 4: Compare each NashEj with the NashEbest.
Step 5: Is j 6 Popsize?

If yes, go to Step 6.
Else, go to Step 9.

Step 6: Is NashEj � NashEbest 6 e? (e is the Nash equilibrium solu-
tion factor).

If yes, go to Step 7.
Else, go to Step 8.

Step 7: Record this solution and j = j + 1, go to Step 4.
Step 8: j = j + 1, go to Step 4.
Step 9: Output the Nash equilibrium solutions for this
generation.

This algorithm is also used to the select the final results from all
the recorded Nash equilibrium solutions in every generation.

From the work flow of this algorithm, we can find that every
objective is trying its best to approximate to its own best result
and no one of them can dominate the whole decision of the mul-
ti-objective IPPS problem.
lution 1 of problem 1.

lution 2 of problem 1.



Table 5
The data of problem 2.

Job Operation Alternative machines with processing time Alternative operation sequences

M1 M2 M3 M4 M5 M6 M7 M8

1 O1 7 8 6 7 8 9 10 8 O1–O2–O3–O4

O2 20 19 21 22 18 23 20 21 O2–O1–O3–O4

O3 10 11 12 9 10 13 10 11 O1–O2–O4–O3

O4 30 32 33 29 31 32 33 30 O2–O1–O4–O3

2 O1 50 54 48 52 51 53 50 48 O2–O1–O3–O4

O2 10 8 9 10 11 13 12 15 O2–O3–O4–O1

O3 10 10 10 11 12 12 13 10 O2–O4–O3–O1

O4 20 20 19 21 22 24 18 20

3 O1 7 7 6 8 10 9 9 8 O2–O3–O1–O4

O2 10 12 14 13 14 15 10 11 O3–O2–O4–O1

O3 30 31 35 29 32 35 33 32 O3–O4–O2–O1

O4 40 42 44 45 38 40 43 40

4 O1 57 60 62 61 63 68 58 59 O1–O2–O3–O4

O2 10 12 14 15 13 16 12 11 O1–O2–O4–O3

O3 30 28 32 31 29 30 27 33
O4 20 18 19 21 23 22 20 18

5 O1 8 7 6 9 10 12 10 11 O1–O2–O4–O5–O3

O2 12 11 11 12 10 13 9 10 O1–O3–O4–O5–O2

O3 20 22 24 25 23 18 19 21 O1–O2–O5–O4–O3

O4 18 20 21 22 19 25 24 23 O1–O2–O3–O5–O4

O5 30 33 36 40 28 29 33 34

6 O1 9 6 7 8 10 12 11 8 O5–O1–O3–O2–O4

O2 7 6 7 8 9 12 10 8 O5–O3–O1–O2–O4

O3 10 12 11 9 10 13 14 8 O5–O1–O2–O4–O3

O4 20 24 22 23 25 21 18 19 O1–O5–O2–O3–O4

O5 40 44 42 38 36 37 39 41

7 O1 20 22 21 24 26 23 24 25 O1–O2–O3–O4–O5

O2 10 18 16 12 11 13 15 9 O2–O3–O1–O4–O5

O3 50 53 55 45 47 48 49 51 O3–O2–O4–O5–O1

O4 30 32 33 34 29 31 28 35 O4–O5–O3–O2–O1

O5 21 23 24 26 28 27 20 23

8 O1 70 73 79 80 65 67 69 68 O1–O2–O3–O4–O5

O2 7 8 9 10 8 10 11 13 O1–O3–O2–O4–O5

O3 16 18 15 14 12 13 20 14 O3–O1–O2–O4–O5

O4 25 26 25 24 20 23 21 26 O3–O2–O1–O4–O5

O5 11 12 13 14 16 10 12 15 O2–O1–O3–O4–O5

Table 6
Experimental results of problem 2.

Criteria Solution 1 Solution 2 Solution 3

Makespan 122 122 123
Maximal machine workload (MMW) 106 102 107
Total workload of machines (TWM) 751 784 750

Table 7
Selected operation sequence for each job of problem 2.

Job Solution 1 Solution 2 Solution 3

1 O1–O2–O3–O4 O1–O2–O3–O4 O1–O2–O3–O4

2 O2–O3–O4–O1 O2–O3–O4–O1 O2–O1–O3–O4

3 O2–O3–O1–O4 O2–O3–O1–O4 O2–O3–O1–O4

4 O1–O2–O3–O4 O1–O2–O3–O4 O1–O2–O4–O3

5 O1–O3–O4–O5–O2 O1–O3–O4–O5–O2 O1–O2–O4–O5–O3

6 O5–O1–O2–O4–O3 O5–O1–O2–O4–O3 O5–O1–O3–O2–O4

7 O4–O5–O3–O2–O1 O4–O5–O3–O2–O1 O1–O2–O3–O4–O5

8 O2–O1–O3–O4–O5 O2–O1–O3–O4–O5 O3–O2–O1–O4–O5
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4.3. Applications of the hybrid algorithm on multi-objective IPPS

The JSP had been proved to be a NP-hard problem. The IPPS
problem is more complicated than the JSP problem. It is also a
NP-hard problem. For the large scale problems, the conventional
algorithms (including the exact algorithms) are often incapable
of optimizing non-linear multi-modal functions in the reasonable
time. To address this problem effectively, one modern optimization
algorithm has been used to quickly find a near optimal solution in a
large search space through some evolutional or heuristic strategies.
In this research, the hybrid algorithm (HA) which is the hybrid of
the GA and the TS has been applied to facilitate the search process.
This algorithm has been successfully applied to solve the mono-
objective IPPS problem (Li et al., 2010d). Here, this algorithm has
been developed further to solve the multi-objective IPPS problem.
The working steps of this algorithm are explained here for
illustration.

The HA is used in this research to generate the new generations.
Therefore, there is no fitness function to evaluate the population.
The work flow of the HA is shown in Fig. 3. The basic procedure
of the proposed algorithm is described as follows:

Step 1: Set the parameters of HA, including size of the popula-
tion (Popsize), maximum generations (maxGen), reproduction
probabilistic (pr), crossover probabilistic (pc), mutation probabi-
listic (pm), parameters of the tabu search.
Step 2: Initialize population randomly, and set Gen = 1.
Step 3: Is the terminate criteria satisfied?
If yes, go to Step 7.
Else, go to Step 4.

Step 4: Generate a new generation by genetic operations.
Step 4.1: Selection: the random selection scheme has been used
for selection operation.
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Step 4.2: Reproduction: reproduce the Popsize � pr individuals
from the parent generation to the Offspring generation.
Step 4.3: Crossover: the crossover operation with a user-
defined crossover probabilistic (pc) is used for IPPS crossover
operation.
Step 4.4: Mutation: the mutation operation with a user-
defined mutation probabilistic (pm) is used for IPPS mutation
operation.
Step 5: Local search by TS for every individual.
Step 6: Set Gen = Gen + 1, and go to Step 3.
Step 7: Use the Nash equilibrium solutions algorithm to com-
pare all the recorded Nash equilibrium solutions in every gener-
ation, and select the best solutions.
Step 8: Output the best solutions.
Fig. 6. Gantt chart of the so

Fig. 7. Gantt chart of the so
According to this algorithm, every individual evolves by the ge-
netic operations firstly, and then it focuses on the local search.
More details of the HA can refer to Li et al., (2010d).
5. Experimental results

In this paper, the proposed algorithm was coded in C++ and
implemented on a computer with a 2.0 GHz Core (TM) 2 Duo
CPU. To illustrate the effectiveness and performance of the pro-
posed algorithm in this paper, two instances have been selected.
The first instance is adopted from the other paper. Because of the
lack of benchmark instances on the multi-objective IPPS problem,
we presents the second instance. The parameters of the proposed
lution 1 of problem 2.

lution 2 of problem 2.



Fig. 8. Gantt chart of the solution 3 of problem 2.
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algorithm for these problem instances are given in Table 1. The
proposed algorithm terminates when the number of generations
reaches to the maximum value (maxGen); TS terminates when
the number of iterations reaches to the maximum size (maxIterSize,
curIter was the current generation of GA) or the permitted maxi-
mum step size with no improving (maxStagnantStep).

5.1. Problem 1

Problem 1 is adopted from Baykasoglu and Ozbakir (2009). It is
constructed with 5 jobs and 5 machines. The data is shown in Ta-
ble 2. Table 3 shows the experimental results and the comparisons
with the other algorithm. Table 4 shows the selected operation se-
quence for each job. Fig. 4 illustrates the Gantt chart of the solution
1 of the proposed algorithm. Fig. 5 illustrates the Gantt chart of the
solution 2.

From the experimental results of problem 1 (Table 3), the re-
sults of the proposed algorithm can dominate the results of the
grammatical approach. They are better than the results of the other
algorithm. This means that the proposed approach is more effec-
tive to obtain the good solutions of the multi-objective IPPS
problem.

5.2. Problem 2

Owing to the lack of the benchmark instances on the multi-
objective IPPS problem, we presents the problem 2. The data of
problem 2 is shown in Table 5. It is constructed with 8 jobs and
8 machines. Table 6 shows the experimental results. Table 7 shows
the selected operation sequence for each job. Fig. 6 illustrates the
Gantt chart of the solution 1 of the proposed algorithm. Fig. 7 illus-
trates the Gantt chart of the solution 2, and Fig. 8 illustrates the
Gantt chart of the solution 3.

From the experimental results of problem 2 (Table 6), the pro-
posed approach can obtain the good solutions of the multi-objec-
tive IPPS problem effectively.

6. Conclusions

Considering the complementarity of process planning and
scheduling, and the multiple objectives requirement from the
real-world production, the research has been conducted to develop
a game theory based hybrid algorithm to facilitate the multi-objec-
tive IPPS problem. In this proposed approach, the Nash equilibrium
in game theory has been used to deal with the multiple objectives.
And a HA has been used to optimize the IPPS problem. Experimen-
tal studies have been used to test the performance of the proposed
approach. The results show that the developed approach has
achieved satisfactory improvement. The contributions of this re-
search include:

� The game theory has been used to deal with the multiple objec-
tives of the IPPS problem. This is a new idea on the multi-objec-
tive manufacturing problems, and it also can be used to deal
with the multiple objectives of other problems in the manufac-
turing field, such as process planning problem, assembly
sequencing problem, scheduling problems and so on.
� To find optimal or near optimal solutions from the vase search

space efficiently, a HA has been applied to the multi-objective
IPPS problem. Experiments have been conducted and the results
have shown the effectiveness of applying this approach.
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