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ABSTRACT: This article discusses the possibilities to study relevant quality aspects of food, such as color, nutrient
content, and safety, in a quantitative way via mathematical models. These quality parameters are governed by chem-
ical, biochemical, microbial, and physical changes. It is argued that the modeling of such quality aspects is in fact
kinetic modeling. Therefore, attention is paid to chemical kinetics, and its possibilities and limitations are discussed
when applied to changes occurring in foods. The discussion is illustrated with examples from the literature. A major
difficulty is that principles from chemical kinetics are strictly speaking only valid for simple elementary reactions,
and foods are all but simple. Interactions in the food matrix and variability are 2 complicating factors. It is discussed
how this difficulty can be tackled, and research priorities are suggested to come to better models in food science, and
thereby to a better control of food quality.

Introduction
Food quality is obviously an important issue. Quality in a very

broad sense means satisfying the expectation of the consumer; in
other words, quality experience delivered by a food should match
quality expectations of a consumer. Though not the topic of this
article, the link with the consumer should not be forgotten. This
aspect is discussed, for instance, by Saguy and Moskowitz (1999),
van Boekel (2005), and Linnemann and Van Boekel (2007). Here,
we will focus more on the quantitative modeling of indicators for
quality. Incorporating quality into product and process design
is the big challenge for a food manufacturer. Product and pro-
cess designs need to be flexible these days for several reasons,
and reaching quality by trial and error does not seem the best
way anymore. A more systematic way is by use of modeling; in
fact, one could think of the design process as being simulated in
a virtual lab using quantitative models. Modeling can be done
on several levels. This article concentrates on kinetic modeling.
Other types of modeling are also important in food design, such
as response surface models and multivariate statistical tools. A
useful reference for these aspects is Hu (1999); the topic will not
be discussed here.

For the purposes of this review, we assume that we have an
idea about the desired quality and that we can decompose that
into manageable quality indicators, and our task is to see if and
how we can model these. That is to say, we are looking for math-
ematical models that describe the fate of quality indicators as a
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function of conditions in the food chain. Examples of such indi-
cators could be color, presence or absence of certain flavor com-
pounds, presence or absence of certain microorganisms, texture,
vitamins, protein composition, and so on. Building mathemati-
cal models with which we can simulate such quality indicators
requires knowledge of food science and nutrition, as well as of
modeling. First, it is essential to know what to model and for what
purpose. It makes a difference whether a model is used to gain
scientific insight in food properties, or whether it will be used to
predict quality upon manufacturing a food. We will come back
to this while discussing some applications.

The first thing a food technologist would tend to do is to relate
quality changes to chemical and physical processes taking place
in the food. We start, therefore, with a short overview of key re-
actions that have an effect on quality. After that we give a general
description of models and some possible applications. The goal
of this article is to critically evaluate food quality models, how
good they are, how they can be integrated in engineering models,
and to show what the needs are for further work in this area.

Reactions in Foods That Affect Quality
Quality indicators are not constant: the quality of a food

changes over time. The most important quality-related changes
are:
� Chemical reactions, mainly due to either oxidation or Maillard

reactions.
� Microbial reactions: microorganisms can grow in foods; in the

case of fermentation this is desired, otherwise microbial growth
will lead to spoilage and, in the case of pathogens, to unsafe
food.

� Biochemical reactions: many foods contain endogenous en-
zymes that can potentially catalyze reactions leading to quality
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loss (enzymatic browning, lipolysis, proteolysis, and more). In
the case of fermentation, enzymes can be exploited to improve
quality.

� Physical reactions: many foods are heterogeneous and contain
particles. These particles are unstable, in principle at least, and
phenomena such as coalescence, aggregation, and sedimen-
tation lead usually to quality loss. Also, changes in texture can
be considered as physical reactions, though the underlying
mechanism may be of a chemical nature.
Foods are unstable in the thermodynamic sense. This means

that they have the tendency to change from a low-entropy, high
enthalpy state to a high-entropy, low enthalpy state. Food tech-
nology is in fact a battle against this thermodynamic instability.
However, there are barriers to overcome this tendency so that
foods can be in a kinetically stable state (without such barriers
life would be impossible!). Thermodynamics indicate the direc-
tion of change but not the rate at which this occurs, which is why
we need kinetics. The models that are used in quality change
modeling are therefore kinetic models, describing degradation
of compounds (such as vitamins), formation of undesired com-
pounds (such as acrylamide), kinetics of aggregation in texture for-
mation, kinetics of inactivation of enzymes and microorganisms,
and kinetics of crystallization and sedimentation. When models
are developed to describe quality changes, it must be acknowl-
edged that foods are very complex, and that many interactions
may occur. For instance, the growth of microorganisms may lead
to pH changes, which in turn may have consequences for chemi-
cal reactions if they are acid-catalyzed. Nevertheless, models can
help in controlling and predicting food quality attributes and their
changes.

Table 1 gives an overview of the most important reactions in
foods. General references are Fennema (1996), Owusu-Apenten
(2005) for chemical reactions, Whitaker and others (2003) for bio-
chemical reactions, Walstra (2003) for physical reactions, while
Jay and others (2005) is a reference for microbial reactions. Some
reviews on kinetics of quality changes in food are by Hindra
and Baik (2006), van Boekel and Walstra (1995), and van Boekel
(2007).

Another way to look at reactivity and consequences for quality
is to look at the various ways in which the main components in
foods can react (Table 2).

These tables indicate that quality indicators may be affected in
many ways. When models are proposed, one should be aware of
possible interactions. In many cases, model parameters will in fact
embed all kinds of confounding factors. As long as this is realized,
that is not a severe problem, but if one wants to draw conclusions
in chemical and physical terms, there could be a serious problem
when making predictions and extrapolations; some examples will
be shown.

Table 1 --- Overview of reactions in foods affecting quality (adapted from van Boekel 2007).

Example Type Consequences

Nonenzymatic browning Chemical reaction (Maillard reaction) Color, taste and aroma, nutritive value, formation of
toxicologically suspect compounds (acrylamide)

Fat oxidation Chemical reaction Loss of essential fatty acids, rancid flavor, formation of
toxicologically suspect compounds

Fat oxidation Biochemical reaction (lipoxygenase) Off-flavors, mainly due to formation of aldehydes and ketones
Hydrolysis Chemical reaction Changes in flavor, vitamin content
Lipolysis Biochemical reaction (lipase) Formation of free fatty acids, rancid taste
Proteolysis Biochemical reaction (proteases) Formation of amino acids and peptides, bitter taste,

flavor compounds, changes in texture
Enzymatic browning Biochemical reaction of polyphenols Browning
Separation Physical reaction Sedimentation, creaming
Gelation Combination of chemical and physical reaction Gel formation, texture changes

Kinetic Modeling of Food Quality Attributes
The previous section suggested that chemical, biochemical,

microbial, and physical quality changes can be tackled by kinet-
ics. Kinetic modeling implies that changes can be captured in
mathematical models containing characteristic kinetic parame-
ters, such as activation energies and rate constants. Before dis-
cussing this, let us take a closer look at the purpose of model-
ing. Following Haefner (2005), modeling in science can serve
3 goals: understanding, prediction, and control. As for under-
standing, modeling is a tool in applying the scientific method,
and in that sense it can contribute to our understanding of the
chemistry and physics taking place in the studied food. If this is
the intention of kinetic modeling, it makes sense to make a link to
the thermodynamics and chemical kinetics. This will then yield
insight in the mechanisms of reactions at the molecular level and
results in fundamental kinetic parameters such as activation ener-
gies, enthalpies, and entropies. Thus, kinetic modeling of changes
in foods can lead to a better understanding at the molecular level
of what we observe in foods. There is, however, a pitfall here.
Connecting to fundamental reaction mechanisms and associated
kinetic parameters yields parameters that are only valid for ele-
mentary reactions in simple, usually dilute, ideal systems. Foods
are all but dilute, ideal systems, and the observed changes may
be due to many interacting, complex reaction mechanisms rather
than a single elementary step. One of the ways to get around this
problem in food science is that simplified model systems are used
rather than real foods. While this indeed can contribute signifi-
cantly to scientific understanding, it is not straightforward to trans-
late such results to real foods, and it is really necessary to adapt
the model systems to specific food properties if one wants to make
this translation (Wedzicha and others 1993). As for the prediction
and control purposes of modeling, this serves more an engineer-
ing goal. The difference between prediction and control is that
prediction implies a quantitative prediction of the future state of
a food, based upon knowledge of the food and the processing
steps that are applied. Control, on the other hand, implies that
we set processing conditions and food properties in such a way
that a desired outcome (say, a certain desired quality) is realized.
If we can use kinetic models based on fundamental scientific in-
sight for prediction and control purposes of changes taking place
in real foods, this would be the most ideal situation. However,
the question is whether this is possible with our current state of
knowledge. Foods are so incredibly complex that there is a real
danger in applying models directly to food when these models are
based on fundamental reactions studied in model systems. The al-
ternative is, of course, to study kinetics directly in real foods. The
price to be paid then is that the derived parameters cannot im-
mediately be interpreted as they would be in well-defined dilute
ideal systems. In other words, the derived models are empirical,
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Table 2 --- Reactions of key components in foods (adapted from van Boekel 2007).

Component Reaction Consequences

Proteins Denaturation Gelation, precipitation, solubility, inactivation of
antinutritional factors (ANFs)

Hydrolysis Formation of peptides and amino acids, texture changes
Deamidation Loss of charge and change in reactivity
Maillard reaction Crosslinking, loss of nutritional value, browning

Lipids Oxidation Loss of essential fatty acids, rancidity
Fat hardening Formation of trans fatty acids
Hydrolysis (usually enzymatically) Formation of free fatty acids, leading to a soapy off-flavor

Mono- and disaccharides Maillard reaction Nonenzymatic browning.
Caramelization Taste and flavor changes
Hydrolysis Sugar inversion

Polysaccharides Hydrolysis (enzymatically during ripening, Softening of tissue, texture changes
chemically during cooking)

Physical interaction with other components Gelation, phase separation
Gelatinization and retrogradation of starch Staling of bread

Polyphenols Enzymatic polymerization Browning
Interaction with proteins Crosslinking, gelation

Vitamins Oxidation Loss of nutritional value

or at best semi-empirical. As long as one is aware of this, there
is not a real problem and one can use such models especially
for prediction and control purposes. However, as with all (semi)
empirical models, one should be very cautious in applying such
models outside the parameter region on which the models are
based.

The goal of fundamental and empirical models alike is to state
something quantitatively. Mathematical models consist of equa-
tions that provide an output (such as vitamin content) based on a
set of input data (for example, time, temperature). It is a concise
way to express physical behavior in mathematical terms. Mod-
eling as such is not new in food technology. One of the earliest
models was developed in the 1920s to predict the inactivation of
microorganisms as a function of heating time and temperature, the
so-called Bigelow model, which is effectively a 1st-order model,
to be discussed subsequently. This model has been of great help
in optimizing processes for the sterilization of foods, especially
in the canning industry. Every food technologist is familiar with
the D- and Z -values that are used in this model. Incidentally, this
model has been criticized recently and new models have been
proposed (van Boekel 2002; Peleg 2006a, 2006b). Also, the in-
corporation of the Bigelow model in a process model has been
updated recently (Simpson and others 2003).

As argued previously, modeling food quality attributes means
modeling changes: the quality of a food nearly always changes
over time. Food quality modeling is therefore almost synony-
mous with kinetic modeling. The consequence is that differen-
tial equations frequently form the basis for mathematical models;
these can sometimes be solved analytically, but if not it is rela-
tively easy nowadays to solve them numerically with the available
software, or even using spreadsheets. A few examples of chemi-
cal, biochemical, physical, and microbial phenomena are given
below.

Modeling chemical reactions
Suppose we have a reaction between 2 molecules A and B,

which yield 2 products P and Q:

A + B → P + Q (1)

The rate r is then defined as:

r = −d[A]
dt

= −d[B]
dt

= d[P]
dt

= d[Q]
dt

= k[A][B] (2)

The proportionality constant k is the so-called rate constant. For
molecules to react, they must first come together, and this happens
via diffusion. If the encounter frequency is rate limiting, a reaction
is called diffusion limited, which implies that the reaction itself
takes place very rapidly. This is the case for acid-base reactions
and radical reactions, for instance. The bimolecular rate constant
for such a case is:

kdif = 8 · 103 RT
3η

(dm3
/mol/s) (3)

R is the gas constant (J/mol/K), T absolute temperature (K), η the
viscosity of the solution (Pa s). If we take Eq. 3 as the measure for
the fastest bimolecular reaction possible, it is found that for η = 1
mPas (viscosity of water at 20 ◦C) kdif = 6.6 × 109 dm3/mol/s and
at 100 ◦C kdif = 3 × 1010 dm3/mol/s. These should be roughly the
upper limits for bimolecular reaction rate constants in aqueous
solutions at the temperature indicated. The effect of temperature
on the encounter rate is incorporated via the effect of temperature
on the viscosity of the solvent.

In most cases, however, the actual reaction step will be rate
limiting rather than the encounter rate. Instead of using Eq. 2 we
move to the most simple equation possible, the so-called general
rate law, which is for a single reactant at concentration c:

r = −dc
dt

= kcn (4)

This differential equation is thus in the form of a power law ex-
pression, where n is the so-called order of the reaction. The equa-
tion reflects the dependence of rate r on concentration for just 1
component; k is again the reaction rate constant. The unit for k
for a reaction having order n is (dm3/mol)n−1/s. Equation 4 can
be integrated with respect to time to obtain the course of the
concentration as a function of time:

c1−n = c1−n
0 + (n − 1)kt for n 
= 1 (5a)
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c = c0 exp(−kt ) for n = 1 (5b)

c0 is the initial concentration at t = 0.
Figure 1 shows a decomposition reaction for dimensionless

scales and varying order, using Eq. 5a and 5b. It appears that
no real distinction can be made between the models if the frac-
tional conversion is less than, say, 20% to 30%. In other words,
for a proper estimation of the order, one should conduct the ex-
periment such that a considerable extent of reaction is reached.
Proper experimental design is therefore of utmost importance; in
this case it is the product k · t · c0

n–1 that determines the extent of
the reaction. If t > 1/[(1-n)c0

n−1k] for n < 1, ct /c0 = 0, whereas
for n ≥ 1 ct /c0 approaches 0 asymptotically. It should also be
noted that in a closed system a reaction order n = 0 cannot run
indefinitely; the order will have to change at some point in time.

In the food science literature, quality changes are usually mod-
eled by means of a zero-, 1st-, or 2nd-order reaction, as pioneered
by Labuza (summarized in Labuza 1984) and Karel (Saguy and
Karel 1980). From Eq. 5a it follows that for n = 0 for a decompo-
sition reaction:

−dc
dt

= k (6)

Integration leads to:

c = c0 − kt (7)

Zero-order reactions are rather frequently reported for changes
in foods, especially for formation reactions when the amount of
product formed is only a small fraction of the amount of precur-
sors present, or for decomposition reactions where only a small
amount of product is formed from a reactant. The reactant is
then in such large excess that its concentration remains effectively
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Figure 1 --- Decomposition of a component for a reaction
having the same initial concentration and rate constant
but a varying order n.

constant throughout the observation period, and hence the rate
appears to be independent of the concentration. A frequently re-
ported example of a zero-order reaction is the formation of brown
color in foods as a result of the Maillard reaction: see Figure 2.
Color is the quality indicator here.

The kinetics of Maillard-type browning is rather intricate, and it
is just fortuitous that a zero-order reaction equation fits. A much
more detailed analysis of the kinetics of the Maillard reaction
is given by Martins and van Boekel (2004, 2005). However, it
depends on the purpose and application of a model which ap-
proach is the best. For scientific understanding, the multiresponse
approach would give much more insight, whereas for a quick idea
of color formation a zero-order model is much more effective and
efficient.

First-order reactions are also frequently reported for reactions
in foods. The equations for a degradation reaction for n = 1 are:

−dc
dt

= kc (8)

Integration leads to:

c = c0 exp(−kt ) (9)

(see also Eq. 5b). Frequently, the logarithmic form is used instead
of the exponential equation:

ln c = ln c0 − kt (10)

The nonlinear Eq. 9 is thus transformed into the linear Eq. 10. An
example of a food-related 1st-order reaction is shown in Figure 3.
It concerns the heat-induced degradation of betanin, a natural
color compound from red beets; betanin is thus the quality indi-
cator here. Figure 3A shows the 1st-order plot for untransformed
data according to Eq. 9, while Figure 3B shows the plot for log-
arithmically transformed data according to Eq. 10. A log plot re-
sulting in a straight line is frequently taken as proof of a 1st-order
reaction. The plot in Figure 3B indeed looks reasonably straight.

0

10

20

30

40

50

60

0 50 100 150 200 250

time (days)

op
tic

al
 d

en
si

ty
/g

 p
ow

de
r

25 oC

35 oC

45 oC

Figure 2 --- Example of a zero-order reaction reported for
the nonenzymatic browning of whey powder (adapted
from Labuza 1983).
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1st-order reaction
for the
degradation of
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a 1st-order
reaction, Eq. 9 and
(B)
log-transformed
data fitted by a
linear line
according to Eq.
10. Adapted from
Saguy and others
(1978).

While this may be done for a visual check, such a transforma-
tion should not be performed for estimating the rate constant,
for statistical reasons. The problem is that upon transformation
not only the data are transformed but also the error structure re-
lated to the data, and this may lead to bias in estimation because
then some assumptions that underlie regression are violated (van
Boekel 1995). With the available software nowadays, it is not
a problem anymore to perform nonlinear regression. A remain-
ing problem is that sometimes the error estimates resulting from
nonlinear regression are nonsymmetric (van Boekel 1996), de-
pending on the nonlinearity of the model and the quality of the
data.

The equation for a 2nd-order reaction, n = 2, is:

−dc
dt

= kc2 (11)

Integration leads to:

c = c0

1 + c0kt
(12)

In its linearized form it reads:

1
c

= 1
c0

+ kt (13)

Second-order reactions are sometimes reported for changes of
amino acids involved in the Maillard reaction. A case in point is
the loss of lysine (bound in proteins, hence the ε-amino group
of lysine) in sterilized milk due to the Maillard reaction; loss of
lysine is the quality indicator for loss of quality here. According
to the literature this is a 2nd-order reaction in lysine; namely, a
plot of the inverse of [lysine] compared with time gives a straight
line (Eq. 13): see Figure 4. Here also, there is a statistical caveat
in transforming data by taking the inverse; one should use these
plots only for visual examination, not for estimation of the pa-
rameters (van Boekel 1996). Incidentally, the actual mechanism
of lysine loss is much more complicated than a relatively simple
bimolecular reaction: apart from the initial condensation with
lactose, there is regeneration of lysine (it acts as a catalyst), but

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 500 1000 1500 2000 2500

time (s)

1/
[ly

si
ne

] (
l/m

g 
)

Figure 4 --- Lysine loss in milk heated at 160 ◦C plotted as
1/[lysine] compared with time according to a 2nd-order
model (drawn line). Adapted from Horak (1980).

subsequent further reaction of lysine residues also occurs with
intermediate and advanced Maillard reaction products (Brands
and van Boekel 2002). Again, it depends on the purpose or ap-
plication which model should be used.

Second-order kinetics is reported in the food science literature
not as frequently as one might perhaps expect. A likely reason
is the following. If we take Eq. 1 and suppose that one of the
reactants, say B, is present in excess, it follows that:

−d[A]
dt

= k[A][B] = k ′[A] (14)

k ′ = k[B] (15)
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k’ is called a pseudo 1st-order rate constant, which is constant as
long as [B] does not change notably. This goes to show that the
experimentally observed kinetics of a reaction does not necessar-
ily correspond to the actual mechanism.

Even though simple kinetics are frequently applied in food
science, reactions are usually much more complicated. Exam-
ples are fat oxidation and the Maillard reaction; they cannot be
given in 1 simple equation; a network of linked reaction steps
is more appropriate. Unraveling of such a network can be done
by so-called multiresponse mechanistic modeling, as explained
by Brands and van Boekel (2002), Martins and van Boekel (2004,
2005), and van Boekel (1999, 2000). Such models are very helpful
in scientific explanations, probably less so for practical applica-
tions. There are also models proposed for color formation in the
Maillard reaction that simplify reaction networks to a few critical
steps (Leong and Wedzicha 2000; Mundt and Wedzicha 2003,
2007; Wedzicha and Roberts 2006).

Another critical remark is that there is often not a compelling
theoretical reason to choose for a certain order of a reaction. In
fact, in many cases reported in the literature the order is just a
fit parameter. For this reason, it is recently proposed to consider
alternative models that are just of an empirical nature (Corradini
and Peleg 2006a, 2006b). Such models are not better or worse
than the commonly used models of a certain order, and they are
certainly worth considering, in the view of this article’s author. In
some cases, they might provide a better fit.

The previously given models are so-called deterministic mod-
els: they give always the same output when given the same input.
In a sense, deterministic models are not realistic because the real
world is not deterministic; there is always variability and uncer-
tainty. Variability is inherent in the world we live in: biological
materials are never completely the same as time progresses. Un-
certainty reflects our state of knowledge about the system that
we study. Variability is typical for a given system and it cannot
be reduced, but uncertainty can be reduced by doing more and
better measurements. In any case, it is important to account for
variation and uncertainty. Therefore, stochastic models are intro-
duced, such as for a 1st-order model:

c = c0 exp(−kt ) + ε (16)

The symbol ε reflects the error, or uncertainty, involved. In Eq.
16 it is an additive model. In some cases, multiplicative errors
may be more appropriate, in which case a log transformation is
actually needed (van Boekel 1996). The point to note is that varia-
tion can be modeled as well. The numerical value of parameters
can be estimated from experimental data by means of regres-
sion. However, since experimental data always contain errors,
the estimates will also contain error and, consequently, model
predictions will be uncertain. It is therefore very important to al-
ways state an estimate of the errors involved. It makes no sense
to report, for instance, an activation energy of 100 kJ/mol just like
that. Such information is really useless if the uncertainty in the
estimate is not supplied. We would interpret a value of 100 ± 90
completely different from a value reported as 100 ± 10 kJ/mol.
Furthermore, it should be indicated how the error is reported: as
standard deviation, standard error, or 95% confidence interval.

When the number of parameters in a model increases, the fit
to a data set becomes better. The price to be paid for this is that
the uncertainty in the parameter estimates also increases with the
number of parameters, which is undesirable. It should be clear
that the uncertainty in model predictions increases dramatically
with increase in parameter uncertainty due to propagation of er-
ror (van Boekel 1996). Therefore, one should always strive for a
model with the lowest number of parameters that still gives an
acceptable fit. This is the so-called principle of parsimony, or Oc-

cam’s razor. If more models seem to give a reasonable fit, model
discrimination is a useful procedure. A useful discrimination tool
is the so-called Akaike criterion, which uses the residual sums-
of-squares of the various models but adds a penalty for the model
that has more parameters (Burnham and Anderson 1998). Other
model discrimination tools are the log-likelihood ratio and the
Bayesian Information criteria. In relation to discrimination of ki-
netic models, the articles of Stewart and others (1996, 1998) are
relevant. The use of R2 as a model discrimination tool is discour-
aged (van Boekel 1995).

Modeling temperature dependence
of chemical reactions

Arrhenius’ law was empirically derived to describe the temper-
ature dependence of simple chemical reactions. It has proven to
be very worthwhile in chemical kinetics. It relates the rate con-
stant k of a reaction to absolute temperature T :

k = A exp
(

− E a

RT

)
(17)

The linearized form is:

ln k = ln A − E a

RT
(18)

in which A is a so-called “pre-exponential factor” (sometimes
called the frequency factor), Ea the activation energy, and R and
T the gas constant and absolute temperature, respectively. The
dimension of A should be the same as that of the rate constant k;
it therefore does have units of frequency only in the case of a 1st-
order reaction. The activation energy can be seen as the energy
barrier that molecules need to cross in order to be able to react.
The proportion of molecules able to do that increases with tem-
perature, which qualitatively explains the effect of temperature on
rates. Arrhenius’ equation gives a quantitative account. The phys-
ical meaning of A is that it represents the rate constant at which all
molecules have sufficient energy to react (E a = 0). Incidentally, it
is not a good idea to derive the activation energy parameters from
linear regression of lnk compared with 1/T because of the trans-
formation of data points with their errors by taking logarithms;
rather, nonlinear regression should be used, as discussed previ-
ously. Another remark in this respect is that the 2-step procedure
of first deriving rate constants and then regressing them versus
temperature usually results in very wide confidence intervals if
only 3 to 4 temperatures have been studied, as is frequently the
case. As argued previously, the imprecision in parameters results
in very imprecise predictions. A better approach is, therefore, to
substitute the rate constant in the appropriate rate equations and
perform a nonlinear regression (van Boekel 1996). For instance,
for a 1st-order reaction this would be:

c = c0 exp
[
−A exp

(
− E a

RT

)
· t

]
(19)

In this way, all data are used at once to estimate the activation
parameters and a much more precise estimate of these parameters
is obtained. It probably remains a good idea to present Arrhenius’
expression in the form of a plot of lnk or ln(k/T ) compared with
1/T because any deviation of the data from these expressions
becomes immediately apparent. In doing so, however, the values
of the parameters estimated by nonlinear regression should be
used to construct the plot. The 1st step should always be to check
the validity of the law of Arrhenius, and only if it appears to be
correct should the next step be the estimation of the activation
parameters. Obvious as this may seem, this rule is not always
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obeyed. It is essential to realize that the concept of activation
energies is strictly speaking only valid for elementary reactions.

It is possible to reparameterize the Arrhenius equation; and it
is actually desired from a statistical point of view because of the
strong correlation between A and E a (van Boekel 1996). A very
simple reparameterization is to introduce a reference temperature
T ref. The basis for this arises from the application of Eq. 17 at 2
temperatures T 1 and T 2:

k1 = A exp
(

− E a

RT1

)

k2 = A exp
(

− E a

RT2

)

If one arbitrarily chooses a reference temperature, say T 2 =
T ref, one can combine these 2 equations, assuming that the pre-
exponential factor and Ea do not depend on temperature:

k
kref

= exp
[
− E a

R

(
1
T

− 1
Tref

)]
(20)

The actual result of this is that the pre-exponential factor A is
replaced by a rate constant at some reference temperature k ref.
The reference temperature should preferably be chosen in the
middle of the studied temperature regime.

It is perhaps instructive to consider the range of values that
rate constants can take. Table 3 shows orders of magnitude for
rate constants, depending on conditions. The very large effect of
activation energy on the rate of a reaction is apparent. In fact,
without activation barriers, reactions would be so fast that foods
would spoil immediately.

There are also other Arrhenius-like equations proposed in the
literature (Laidler 1987) that could be used just as well, but
which are not commonly used. The following equation would
do equally well as the Arrhenius equation:

k = A exp
(

− B
T

)
(21)

with A and B as fit parameters without a physical meaning. Al-
though this seems undesirable, one has to realize that sometimes
parameters do not really have a physical meaning. For instance,
if one determines an activation energy for microbial inactivation,
what does it mean if an activation energy of, say 300 kJ/mol,
has been derived? A mole of bacteria is somewhat hard to en-
visage. It would actually be better to use Eq. 21 for phenomena
that do show Arrhenius-like behavior but do not really reflect

Table 3 --- Orders of magnitude for rate constants of bi-
molecular reactions in aqueous solutions at 25 ◦C.

Order of magnitude
Conditions of k (dm3/mol/s)

No diffusion limit and no barriera 1014

Diffusion limit, no activation energyb 1010

No diffusion limit:
activation energy 25 kJ/mol 1010

activation energy 50 kJ/mol 105

activation energy 100 kJ/mol 10−4

aThis is in fact the value of the pre-exponential factor in the Arrhenius equation,
corresponding to the hypothetical situation that T → ∞.
bAs given by Eq. 3.

a defined chemical reaction. For instance, the effect of temper-
ature on diffusivity can often be described using the Arrhenius
equation, but there is no activation energy for molecular mo-
bility (though there may be barriers), and therefore it does not
make much sense to report an activation energy for diffusion;
temperature coefficients A and B like in Eq. 21 seem more appro-
priate. Another way to model temperature dependencies is via
purely empirical models (Peleg and others 2002). The rationale
behind this is that, in most cases described in the food science
literature, the temperature dependence is studied for complicated
reactions, not for simple reactions for which the Arrhenius equa-
tion was developed. Hence, the activation energies derived seem
to be of a fundamental nature but they are in fact empirical and
in that sense comparable to the alternative models suggested by
Peleg and coworkers. Therefore, it is an interesting approach to
investigate the performance of these purely empirical models and
compare them with the (semi-empirical) Arrhenius parameters.

The parameters that have been discussed so far, orders, rate
constants, activation parameters, are actually all that is needed
in (chemical) kinetics. It has become the habit to use several
other kinetic parameters in food science. They originate from
days gone by when it was necessary to derive parameters and
models to describe (mainly microbial) changes in foods during
processing and storage when no use was made yet of modern
reaction kinetics. We give a brief overview of these parameters
so that the reader can see how they relate to the fundamental
parameters discussed previously.

The parameter Q10 describes the temperature dependence of a
reaction as the factor by which the reaction rate is changed when
the temperature is increased by 10 ◦C:

Q10 = kT+5

kT−5
≈ kT+10

kT
(22)

If the Arrhenius equation holds, it can be shown that:

Q10 = exp
(

10E a

RT 2

)
(23)

The parameter Q10 is thus seen to depend strongly on tempera-
ture, which is a drawback and so if it is reported the temperature
range for which it applies should be mentioned.

Another parameter to describe temperature dependence is Z ,
which expresses the increase in temperature that would produce
an increase in rate by a factor of 10. Z is defined as:

Z = 2.303RT 2

E a
= 10

log Q10
(24)

Like the parameter Q10, Z is temperature dependent which re-
stricts its use. Z is frequently used in bacteriology to describe
inactivation of cells.

Also used is the parameter D, especially in thermobacteriology.
It is the decimal reduction value, the time needed to reduce a
concentration by a factor of 10. D is nothing other than an inverse
rate constant. For a 1st-order reaction:

D = ln 10
k

= 2.303
k

(25)

and for a 2nd-order reaction:

D = 9
c0k

(26)
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A plot of log D compared with T ’ (in ◦C) is usually taken to be
a straight line (for a limited temperature range); see Figure 5. D
relates to the Z-value, as k is related to E a,:

log D = log DR − T ′ − T ′
R

Z
(27)

DR is the reference value of D at the reference temperature T ′
R

(often chosen as 250 ◦F for historical reasons, which is equal to
121.1 ◦C). Equation 27 is referred to as the TDT curve (thermal
death time curve) or the Bigelow model.

As shown, all these parameters can be linked to the more fun-
damental kinetic parameters. They still serve a purpose. On one
hand, they are usually estimated in real foods and as such reflect
a time–temperature dependence characteristic (not pretending it
is something like an activation energy) that can be used for engi-
neering purposes; less so, however, for understanding behavior at
the molecular level. On the other hand, the parameters are used
commonly by regulatory agents in food safety programs in rela-
tion to thermal treatments. While this is as such not a reason to
maintain these parameters, it is a fact that they helped in ensuring
food safety, and if better models are coming up they will have to
prove in practice that they are indeed performing better also in
food safety aspects.

Modeling enzyme reactions
Biochemical reactions are important for food quality, as men-

tioned previously in “Reactions in Foods That Affect Quality,” be-
cause many foods, being biological materials, contain enzymes.
Sometimes these enzymes are desired (for instance, in cheese
ripening) but mostly enzymes need to be deactivated because
otherwise their action will lead to deterioration of food quality.
Examples are the enzymatic browning of apples, potatoes, and
cauliflower due to polyphenoloxidase, or formation of a soapy or
rancid taste in raw milk due to the action of lipases. If one wants to
exploit enzymes, enzyme kinetics is useful. In most cases reported
in the literature, Michaelis–Menten kinetics is applied, although
one should check whether or not Michaelis–Menten kinetics is
actually applicable. The Michaelis–Menten equation reads:

T ‘(oC)

logD

2

1

0

-1

-2

Z

Figure 5 --- Schematic example of a TDT curve and inter-
pretation of the Z-value.

v = vmax
[S]

[S] + KM
(28)

in which v is the initial rate of the reaction, vmax the maximum
rate of the enzyme under the conditions studied, [S] is the sub-
strate concentration, and K M the Michaelis constant. vmax and
K M are the parameters of the equation. With knowledge of these
parameters the rate of the enzymatic reaction can be predicted.
Frequently, Lineweaver–Burke plots are made to estimate the ki-
netic parameters, but this should not be done because of trans-
formation of errors, thereby violating some critical assumptions
underlying regression, as discussed previously. Nonlinear regres-
sion estimation is preferable. Figure 6 gives a simple example of
Michaelis–Menten kinetics.

An extensive overview of enzyme kinetics can be found in
Marangoni (2003).

If one wants to prevent the action of enzymes, inactivation
kinetics is needed. Enzymes are proteins and inactivation is due
to unfolding of the protein. A general model for that is:

N
k1�
k2

D
k3−→ I (29)

in which N represents the native protein, D the denatured protein,
I the inactivated protein, and k1, k2, k3 the rate constants for each
step. The importance of the equilibrium between N and D is that
proteins can refold after denaturation and, hence, enzyme activity
may be restored upon removing the cause of denaturation. In most
cases in foods, the cause of denaturation is heating. In any case,
if the denatured protein is subject to further reactions leading to
the inactive form I, the enzyme cannot return to its active form
and, consequently, enzyme activity is lost. In most cases, a 1st-
order model as given in Eq. 9 appears to be applicable to describe
enzyme inactivation. This implies that the 3rd step in Eq. 29 is
rate-determining. Many examples of inactivation curves can be
found in the food science literature. Figure 7 shows an example
in which 1st-order behavior is apparent. Figure 8 on the other
hand shows an example of biphasic behavior, which can also be
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Figure 6 --- Nonlinear regression fit (solid line) of the
Michaelis–Menten equation to initial rates of sucrose hy-
drolysis by yeast invertase as a function of substrate con-
centration. Adapted from Chase and others (1962).
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frequently observed, so one should not automatically assume that
enzyme inactivation is by definition 1st-order behavior.

Modeling physical reactions
Physical processes frequently lead to quality change. Examples

are creaming or sedimentation, fracture phenomena, viscosity
changes, gelation of biopolymers, crystallization, and moisture
migration. Modeling these phenomena is not easy because the
changes are rather complex and may be accompanied by chemi-
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Figure 7 --- An example of apparent 1st-order heat-induced inactivation kinetics of pectin-methylesterase from tomato
at 69.8 ◦C, presented as a logarithmic plot (A) and as relative activity plot (B). The lines represent a 1st-order model.
Adapted from Anthon and others (2002).
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Figure 8 --- Logarithmic plot showing biphasic
inactivation of the enzyme cathepsin D in milk
at 62.6 ◦C. Adapted from Hayes and others
(2001).

cal changes. As an example, 2 models are presented for predicting
viscosity of dispersions. The first one is an equation derived by
Einstein for dilute dispersions:

η

ηs
= 1 + 2.5ϕ (30)

in which η represents the viscosity of the dispersion, ηs the vis-
cosity of the solvent, and ϕ the volume fraction of the dispersed
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particles (Einstein 1906, 1911). The interesting aspect of this equa-
tion is that only the volume fraction, but not the size of the dis-
persed particles, is of importance in determining the viscosity.
However, this equation is only valid for very dilute dispersions
(ϕ < 0.01) and, therefore, not very suitable for foods. For more
concentrated dispersions, an empirical relation has been derived,
which is the so-called Eilers equation:

η

ηs
=


1 +


 1.25ϕ

1 − ϕ

ϕmax







2

(31)

This equation works quite well for foods. Anema and others
(2004) applied this model to skimmed milk samples with vary-
ing volume fraction of casein micelles. Manski and others (2007)
used such a model to describe the influence of dispersed particles
on deformation properties of concentrated caseinate composites.
Such equations can thus be used to predict the rheological prop-
erties of a food if one knows the volume fraction of dispersed
particles. As indicated previously, there are numerous models
describing physical phenomena, such as aggregation and floccu-
lation, crystallization kinetics, drying and dehydration. A useful
reference for all kinds of physical models can be found in Walstra
(2003).

A critical remark here is that physical quality indicators are fre-
quently modeled as if they concern a simple chemical reaction.
A case in point is texture changes, for instance, during cooking
of potatoes. The reason why there is softening of tissue is the
result of very complicated processes, among which is the degra-
dation of pectin. However, this is not what is measured; one uses
a physical device to measure texture. This can, for instance, be
modeled as a 1st-order reaction, and the resulting rate constant is
then further evaluated in the Arrhenius equation. Subsequently,
an activation energy is reported in kJ/mol. Now the question is of
course what that actually means: a mole of potatoes is hard to get
by. In such cases, empirical models such as that reported in Eq.
21 or suggested by Peleg and others (2002) are probably better.

Modeling microbial changes
Microbiological changes are due to the growth of microorgan-

isms. This is usually desirable in a fermentation, but mostly un-
desirable in other environments because microbial growth may
lead to spoilage and even health-threatening situations when
pathogens come into play. Regardless of this fact, the ability to
predict growth of bacteria in foods is of the utmost importance
for food design and predicting shelf life. A frequently used growth
model is the modified Gompertz model:

ln
N
N0

= As exp
{
− exp

[
µmaxe

As
(λ − t ) + 1

]}
(32)

in which N is the number of microorganisms, N0 the number
of microorganisms at time zero, As is the asymptotic value of the
maximum number of microorganisms, µmax the maximum growth
rate, λ the lag phase, and e is the number 2.718 ( = exp(1)).
Figure 9 shows an example of the modified Gompertz model
applied to the growth of Salmonellae in a laboratory medium.

It should be noted that there are many more growth models
published. A quick scan of the International Journal of Food Mi-
crobiology, Journal of Food Protection, and Food Microbiology
will overwhelm the reader with the many variations on a theme.
However, a useful overview of the state of the art is McKellar and
Lu (2004) and Brul and others (2007).

Another important aspect related to microbiology is the ability
to inactivate microorganisms in foods, and for that we need in-
activation kinetics. As mentioned previously, the 1st model pub-
lished in food science was on this topic in the 1920s; it is actually
a 1st-order model as displayed in Eq. 9:

S(t ) = exp
(

− t
D

)
(33)

or

log S(t ) = − t
D

(34)

in which

S(t ) = N
N0

(35)

Equation 34 is the so-called Bigelow model, which is still used
today, with D the decimal reduction time already displayed in
Eq. 25. This model is widely applied in food science, probably
because it is so simple. Nevertheless, there are problems with
it. Equation 34 shows that a plot of logS(t) compared with time
should be linear, but if one screens the literature it is found that
most plots are surprisingly nonlinear. This fact is simply ignored
by many authors. In order to account for this nonlinearity, a new
model has come up (Peleg and Cole 1998), which has been tested
for a number of cases by van Boekel (2002). The model is a so-
called Weibull model:

S(t ) = exp

[
−

(
t
α

)β
]

(36)

and

log S(t ) = − 1
2.303

(
t
α

)β

(37)
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Figure 9 --- Example of the fit of the modified Gompertz
equation to the growth of Salmonellae in a laboratory
medium. Fit parameters: As = 13.1 ± 0.3, λ = 4.4 ± 0.5 h,
µmax = 0.70 ± 0.04/h (± 95% standard deviation). Adapted
from Gibson and others (1988).
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In comparison with Eq. 33 and 34 one extra parameter is added,
namely, β. This is the so-called shape factor because its value
determines the shape of the inactivation curve (2 examples are
given below). The parameter α has units of time and could be con-
sidered as the alternative for the D-value. The interesting aspect
is that if β = 1, then the Weibull model reduces to the Bigelow
model; it is thus a rather flexible model. However, there are only
a few cases in which β = 1 (van Boekel 2002). Both Figure 10
and 11 show an example of the fit of the Weibull model to the
inactivation of microorganisms.

Applications of Models to Reactions in Foods
When the effect of temperature on reactions in foods has been

established, the value of the parameters needs some discussion.
For instance, if a high activation energy is found, the conclu-
sion is sometimes drawn that the reaction will proceed slowly or
will be difficult. This is not necessarily true, because the reaction
may proceed quite fast at very high temperature. Furthermore, if
a high value of activation energy goes along with a high value
of the pre-exponential factor, the reaction may indeed proceed
at a noticeable rate; this is the case, for instance, for protein de-
naturation. The point is that a high activation energy indicates
a strong temperature dependence; that is to say, it will run very
slowly at low temperature, but relatively fast at high temperature.
What is relevant for foods is that chemical reactions (such as the
Maillard reaction) have a “normal” activation energy of about
100 kJ/mol, whereas the inactivation of microorganisms can be
characterized by a high activation energy, say, 300 kJ/mol (even
though, as already mentioned, it is incorrect to express it in this
way because the killing of microorganisms is not a simple elemen-
tary reaction). Figure 12 illustrates this difference in temperature
sensitivity. These phenomena are exploited in processes such as
HTST (high-temperature short-time heating) and UHT (ultra-high-
temperature treatment). These processes are designed by choos-
ing time–temperature combinations such that desired changes
are achieved (microbial inactivation), while undesired changes
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Figure 10 --- Fit of the Weibull model to the inactivation of
Salmonella Typhimurium. Weibull parameters α = 2.8 ±
0.3 min and β = 2.4 ± 0.3 (± 95% confidence intervals).
Adapted from Mackey and Derrick (1986).

(chemical reactions leading to quality loss) are minimized. An-
other important consequence for foods is that reactions with rel-
atively low activation energy will continue at a measurable rate
at low temperatures, for instance, during storage, leading to a
limited shelf life.

Several types of reaction can occur in foods, as discussed pre-
viously in “Reactions in Foods That Affect Quality.” Chemical
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Figure 11 --- Fit of the Weibull model to the inactivation of
Salmonella enteriditis in egg yolk. Weibull parameters α
= 0.002 ± 0.001 min and β = 0.3 ± 0.03 (± 95% confidence
intervals). After Michalski and others (1999).
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Figure 12 --- Schematic presentation of the temperature
dependence of a chemical reaction and microbial in-
activation. The UHT region is characterized by time–
temperature combinations that induce enough microbial
inactivation and limited chemical reactions.
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reactions more or less obey the Arrhenius equation as would be
expected.

Several physical reactions are less temperature dependent and
often diffusion controlled. The concept of activation energy does
not actually apply to physical reactions (such as coalescence, ag-
gregation) because there are no molecular rearrangements. How-
ever, physical phenomena do usually have an energy barrier (due
to, for instance, electrostatic repulsion), which provide stability
to colloidal systems. Hence, the concept of a kind of activation
energy does apply but not with a temperature dependence as in
the case of chemical reactions. The effect of temperature will be
mainly on the rate of encounters. Sometimes, activation energies
are reported for physical phenomena such as the temperature de-
pendence of diffusion or viscosity. This would seem to be impos-
sible, since there is nothing to activate and there is no reaction.
As discussed previously, the point is that the temperature depen-
dence of diffusion, for example, apparently obeys Arrhenius’ law
in several systems, but the parameter that comes out of it does
not have the physical meaning of an activation energy!

Quite different results are obtained with protein denaturation
and microbial inactivation. (Microbial inactivation is, according
to some researchers, due to an enzyme’s protein denaturation.
It is questionable whether this is the sole cause of inactivation.)
Protein denaturation is characterized usually by a high activation
energy, but the reaction rate is still noticeable because of a high
pre-exponential factor. As a result, the temperature dependence
of such reactions is very high, much higher than that of chemical
reactions.

With biochemical reactions, such as enzyme-catalyzed reac-
tions, there is moderate temperature dependence, as is to be ex-
pected for catalyzed reactions. It is of interest to note that the rate
enhancement by enzymes, as compared to the uncatalyzed reac-
tion, is much higher at lower temperatures than at higher tempera-
tures: Figure 13 gives a schematic impression. Enzymes lower the
activation energy considerably (as compared to the uncatalyzed
reaction), whereas the pre-exponential factor is only changed a
little. However, with enzyme-catalyzed reactions, enzymes be-
come inactivated above a certain temperature, and the catalyzed
reaction effectively comes to an end. Most enzymes relevant in
food tend to become inactivated between 50 and 80 ◦C, though
some notably heat-resistant enzymes are known. The same goes

lnk

1/T

kcatalyzed

kuncatalyzed

rate enhancement

Figure 13 --- Schematic drawing of rate enhancement ac-
complished by enzymes as compared to the uncatalyzed
reaction.

for microbial growth: first there is an increase with temperature
but eventually microbes start to die. A highly schematic picture
of the effect of temperature on microbial growth and enzyme
action alike is shown in Figure 14; it should be noted that the ac-
tual response to temperature can be time dependent. In the case
of microorganisms, there is also a minimum temperature below
which there is no growth. For that reason, empirical relations
have been derived to describe temperature dependence of mi-
crobial growth, for instance, the square root model that describes
the effect of temperature on the maximum growth rate:

√
µmax = b1[T − Tmin][1 − exp(c1(T − Tmax))] (39)

In this equation, b1 and c1 are fit constants, and T min,max are
the minimum and maximum temperatures for growth of the mi-
croorganism under study. In the same way, empirical relations
are described for temperature dependencies of lag time λ (the
lag time represents the time before a microorganism starts off in
its exponential phase). See McKellar and Lu (2004) and Brul and
others (2007) for more details.

Photochemical reactions and radical reactions are not or are
only slightly temperature dependent because the changes at the
molecular level hardly depend on thermal energy. Both types of
reactions are of importance in foods. Photochemical reactions
cause, for instance, oxidation of vitamins, they may activate cer-
tain enzymes, and they may cause flavor defects. Radical reac-
tions are most notable for oxidation reactions (of unsaturated fats
or of vitamins).

The role of water activity in food stability has long been recog-
nized in food science. Two recent reviews discuss water activity:
one on a fundamental level (Blandamer and others 2005) and an-
other more applied to food (Schmidt 2004). In the past decade,
research has shifted to the effects of glass transitions on food sta-
bility (Roos and others 1996). Different models are needed to
describe temperature dependence of viscosity in foods undergo-
ing a glass transition. In general, a glass is an amorphous solid
characterized by a very high viscosity. The phenomenon has been
described first for synthetic polymers. Polymer science principles
applied to foods appeared to describe also glassy phenomena in
foods (Slade and Levine 1991). Examples are low moisture foods,
such as milk powder and dried pasta, but also frozen foods where
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activity

Inactivation

1/T

Figure 14 --- Schematic presentation of the effect of tem-
perature on growth and activity of enzymes and microor-
ganisms and their inactivation.
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liquid water has been transformed into ice. Processes that can
lead to the glassy state are baking, concentration, drying, extru-
sion, and freezing, so long as water is removed quickly. Foods in
the glassy state usually have a high stability and a long shelf life
because of the fact that the molecular mobility is so low. Glass
transition is characterized by an enormous increase in viscos-
ity when an amorphous matrix is formed. As a rule of thumb,
the viscosity ηg at the glass transition temperature Tg is around
1012 Pa s. The molecular mobility depends strongly on T–Tg , so
how much the actual temperature is away from the glass transi-
tion temperature. It should be realized though that glassy foods
are in a nonequilibrium state, and therefore there is an inherent
tendency to change, albeit at an infinitely slow rate, at least in
principle. The effective diffusion coefficient is almost zero for the
compounds forming the glass. However, small molecules such as
water and oxygen are still able to diffuse, be it slowly. The glass
transition temperature is strongly dependent on composition and
especially the water content. Water can act as a plasticizer, or
in other words, the viscosity may increase drastically at a certain
water content, changing from the amorphous glassy state to a
supercooled, viscous or rubbery state. Or stated in another way,
when the water content increases, the glass transition tempera-
ture decreases. When water acts as a plasticizer, it leads to drastic
changes in mechanical properties and stability of the food, some-
times referred to as collapse of the matrix, and causing stickiness.

Arrhenius-like dependence is not obeyed in the rubbery state
(that occurs at temperatures above the glass transition). When
it comes to kinetic models describing the changes in the glassy
and rubbery state, the temperature dependence of mechanical
properties is mostly described by the so-called WLF (Williams–
Landel–Ferry) model, derived for synthetic polymers. It is reported
that the Arrhenius model does not function well for such cases.
The WLF model was developed for polymers but is nowadays
also applied to foods that undergo glass transitions. The WLF
model is actually not comparable to the Arrhenius equation, be-
cause it does not consider activation energies; it can be derived
from fundamental assumptions (Nelson and Labuza 1994) and
attempts to model viscosity as a function of temperature and the
glass transition temperature T ’g . The WLF model is:

ln
(

ηv

ηv,g

)
= −C1(T ′ − T ′

g)

C2 + (T ′ − T ′
g)

(38)

The parameters C 1 and C 2 are empirical constants, the numeri-
cal values of which are sometimes called universal: C 1 = 17.4
(dimensionless), C 2 = 51.6 ◦C, but these values may not be uni-
versal for foods. A critical appraisal on the importance of glass
transitions in foods can be found in Le Meste and others (2002).

The question now arises what happens to the rate of chem-
ical reactions in the glass transition range. The WLF equation
allows us to calculate the viscosity in the glass transition range,
and therefore we can calculate the diffusion coefficient. It is then
possible to see whether the reaction is diffusion limited or reac-
tion limited. It seems that there is no absolute stability in terms of
chemical and biochemical reactions when foods are in the glassy
state. Molecular mobility is decreased very much, but it does not
cease completely, which is not strange because also in a crystal
molecular diffusion can take place. As a result, reactions do take
place when a food is in a glassy stare, but at a very low rate, so
in practical terms foods may be stable for quite a long time when
they can be kept in the glassy state. It also appears that the WLF
equation is suitable to describe mechanical changes in the glass
transition range but less so for chemical reactions.

Shelf life prediction is an important topic, especially with re-
spect to microbial shelf life. However, the models should be ca-

pable of dealing with varying temperatures, a situation that will
often occur in a food chain, and not all models are able to deal
with that. A nice illustration of the use of kinetic models in shelf
life is the design of time–temperature integrators, devices that re-
spond to temperature changes as a function of time so that the
user can read information on the state of the food from these de-
vices. Some useful references are Taoukis and Labuza (1989a,
1989b), Fu and Labuza (1993), Labuza and Fu (1995), Shimoni
and others (2001), and Smolander and others (2002).

Conclusions and Outlook
Several types of models have been described that are currently

used in food science to model quality indicators. We seem to be
able to model several relevant quality indicators. Some important
remaining challenges in quality modeling are as follows.

1. How to account for effects of the food matrix and the com-
plexity of foods in general?

It can be concluded that most of the work is done on model
systems rather than on foods. This is quite understandable in view
of the complexity of foods. Nevertheless, there is a pitfall here,
namely, that large mistakes can be made if we translate the out-
comes for model systems directly to foods. There could be syn-
ergistic and antagonistic factors present in foods that completely
change the kinetics of a reaction, or even the reaction mecha-
nism. Also, many reactions occur simultaneously and they inter-
fere with each other. This is an area that requires more attention
in the future. We anticipate that this is one of the big challenges
for food science in the near future.

2. How to progress from specific models to more generic mod-
els?

Ideally, it would be best to have general models for, for ex-
ample, the Maillard reaction, that can be applied to all kinds of
foods; but due to very specific effects of foods, this is not yet pos-
sible and we are stuck with models that are food specific. While
this is not an overwhelming problem it would be helpful if our
models were as general as possible. As argued in the previous
remark, if we knew the effect of the food matrix better, we could
make a move in this direction.

3. How to deal with parameter uncertainty and variability?
In view of the biological variability of foods, it is time to study

the effect of variability in more detail, certainly if we want to
make real model predictions. We can do much better in terms of
parameter uncertainty. There has been little attention in the food
science literature, so far, for the statistical quality of parameter
estimates. Frequently, imprecision is not even mentioned, and
that is really unacceptable and a waste of time to report such
results. The use of techniques such as Monte Carlo simulations
is very promising and should be used much more often. A good
example of this has recently been published (Halder and others
2007).

Making better use of statistical design is urgently needed. There
is abundant literature on the statistical technique of design of ex-
periments (see, for instance, Box and others 1978; Dean and Vos
1999; Montgomery 1999; Tiao and others 2000). More specific
applications tailored to kinetic modeling are harder to find, but
they do exist. A good general introduction is given by Atkinson
and Donev (1992) and specific applications in kinetic modeling
by Atkinson and others (1997, 1998, 2002) and Xu and others
(2000). Optimal designs for the Arrhenius equation are discussed
by Rodriguez-Aragón and López-Fidalgo (2005). Some more spe-
cific food applications can be found in Balsa-Canto and others
(2007), Poschet and others (2005), Cunha and others (1997, 1998,
2000), and Nahor and others (2001). Hence, the scene is set and
the principles are clear but it is not practiced much yet in food
science, probably because many people experience statistics as
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difficult. Nevertheless, there is much to be gained if experiments
are designed according to sound statistical principles. This is es-
pecially so when models are to be used for prediction. A simple
calculation using principles from the propagation of errors shows
that predictions can become very imprecise with the imprecision
reported (if reported at all) in the literature (van Boekel 1996).

4. How to integrate product and process modeling?
There is as yet not much work published on how quality

changes are related to aspects such as heat and mass transfer, and
this is clearly needed for a better product and process design. As
regards food processing, modeling techniques are very promis-
ing with respect to computational fluid dynamics (CFD). Although
this is an application area that requires heavy computing, it allows
the engineer to do calculations that were not hitherto possible.
Applications are in the area of heat and mass transfer. It allows
a fine-tuning of processing in terms of heating, for instance. An
overview can be found in Nicolaı̈ and others (2001) and Norton
and Da-Wen-Sun (2006). An aspect that receives more attention
nowadays is the use of nonisothermal kinetics (Maeder and oth-
ers 1997; Dolan 2003; Peleg 2003, 2006b; Corradini and Peleg
2004; Corradini and others 2005, 2006). This is of importance
because most processes are in practice nonisothermal because
of heating-up and cooling-down times.

5. How to integrate quality attributes into overall quality?
The ultimate judgment of a consumer about a food product is

not on a quality attribute but of the quality of a food as a whole.
This is a major challenge for food technologists. It may be that
we need to resort to new types of modeling techniques based on
artificial intelligence, such as neural networks, fuzzy logic, and
Bayesian belief networks (Corney 2000). These modeling tech-
niques come from the area of artificial intelligence and do not
yet have many food applications, but they will probably become
more important in the future. The characteristics of neural net-
works and fuzzy logic are that such models can learn when they
process data. Bayesian belief networks can deal with uncertainty
(via probability distributions) and they allow the use of expert
knowledge (van Boekel and others 2004). Hence, they are useful
for decision support systems.

6. How to tailor the need for models to their application?
Most models published do not really specify the possible ap-

plication. It is left to readers whether they would like to use it for
better insight or to predict or control quality in a real food appli-
cation. It would perhaps help if we were clearer in this matter.

In conclusion, if we compare the present state of the art with
earlier reviews (for example, Saguy and Karel 1980; Labuza
1984), it seems that on one hand we still struggle with the same
type of problems, but on the other hand, it is also clear that the
computational possibilities have increased enormously in recent
years, while insights in the opportunities and limitations of mod-
els have become much more apparent. It is hoped that the food
science community will profit from these increased insights and
opportunities in terms of modeling food quality.
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