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This study proposes an integrated framework to model and estimate relatively large dependence ma-
trices using pair vine copulas and minimum risk optimal portfolios with respect to five risk measures
within the context of the global financial crisis. We apply this methodology to two 20-asset mining (gold
and iron ore-nickel) sector portfolios from the Australian Securities Exchange. The pair vine copulas
prove to be powerful tools for the modeling of changing dependence risk under three different period
scenarios combined with the optimization of portfolios that have complex patterns of dependence. The
portfolio optimization results converge, on average, in some stocks.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The recent global financial crisis (GFC) had contributed to
global dependence shifts and portfolio losses, mainly due to
changes in joint dynamics and network-dependence relationships,
and the large increases in volatility spillovers between interna-
tional financial markets (Brunnermeier, 2009; Moshirian, 2011;
Florackis et al., 2014). Doubtlessly, the severe financial fluctua-
tions, which resulted from this global crisis, have put into question
the reliability and the estimation abilities of the status quo math-
ematical and statistical models used in dependence estimation
and portfolio optimization. This in turn has led to the quest for
finding techniques that more accurately approximate the under-
lying interactions of the variables and better optimize portfolios,
while considering important risk factors other than the traditional
ones.
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The copula approach in the form of bivariate copula and pair
vine copula models (e.g., c-vine, d-vine and r-vine) has recently
been proposed to more accurately estimate the dependence ma-
trix of financial variables (e.g., Chollete et al., 2009; Aloui et al.,
2011; Low et al., 2013).2 It overcomes the restrictive and de-
terministic features of the bilateral correlation coefficient ap-
proach, traditionally used in portfolio optimization algorithms,
due to its suitability to capture the distributional characteristics of
asset returns such as volatility clustering, fat tails, tail dependence
and asymmetric correlation.3 In the context of multivariate de-
pendence modeling, the pair vine copulas, which are built on the
theory of graphical models, provide greater flexibility than the
bivariate copulas because they allow for dissections and decom-
positions, while capturing, in a more localized and specialized
manner, the distributional characteristics of different forms (see,
2 C-vine, d-vine and r-vine refer to the canonical, the drawable and the regular
vine copulas. These copula models have been found to outperform alternative
models in terms of dependence structure estimation (e.g., Low et al., 2013).

3 Asymmetric correlations between financial markets in bear and bull periods
have been documented by, among others, Erb et al. (1994), Ang and Bekaert (2002),
and Patton (2004). They refer to the fact that negative returns are more correlated
than positive returns, suggesting that financial markets tend to be more dependent
in crisis times characterized for low or no confidence in the financial markets. Aloui
et al. (2011) find evidence of asymmetric dependence of stock returns between the
BRIC and U.S. markets.
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e.g., Aas et al., 2009; Czado et al., 2012,2013).
This article deals with dependence structure estimation and

optimal asset allocation with respect to the variance, the mean
absolute deviation (MAD), the minimizing regret (Minimax), the
conditional Value-at-Risk (CVaR) and the conditional Drawdown-
at-Risk (CDaR) measures. The returns of the assets in the portfolios
are random variables generated under various market conditions.
We first contribute to the related literature by adopting a flexible
pair vine copula approach to model the dependence risk and the
risk features of Australian gold and iron ore-nickel stock portfolios.
This task is carried out within the context of three financial period
scenarios: the pre-GFC, the GFC and the post-GFC periods. The first
distinction of this specific type of methodology and analysis is that
it allows one to find out the market conditions under which one
sector portfolio may be more volatile and risky than the other.
Besides, it enables one to identify the type of vine copula model
which better accounts for dependence in the tails.

Our second contribution stems from the integration of the pair
vine copula and portfolio optimization models. This combined
modeling approach is applied to investigate the portfolio alloca-
tion characteristics of the gold and iron ore-nickel stock portfolios
under consideration. In practice, we introduce into the portfolio
optimization models the pair vine copula estimates of the de-
pendence structure which captures the linear and nonlinear de-
pendence relationships between the gold stocks as well as be-
tween the iron ore-nickel stocks. We expect the use of pair vine
copulas in portfolio optimization to provide an estimation edge
over the rest of the models.

Our third contribution arises from the multi-angled portfolio
optimization approach implemented. We specifically propose an
alternative avenue to address the problem of investment con-
fidence that the mining portfolio investors face when a variety of
optimal weight allocations is presented to them for selection.4 The
proposed approach handles the multiple weight allocation in-
vestment possibilities in terms of “average model convergence”.
This means that while we are still interested in finding the best
risk measure to be used for the optimization of portfolios, we
particularly focus on identifying the stocks to which most of the
alternative optimization models converge without a large devia-
tion from a mean of weights. While this approach represents a
shift of perspective in the analysis, evaluation and interpretation of
multiple optimal weight allocations, it is also thought to be an
effective way to deal with the problem of investment confidence.

Empirically, we illustrate the relevance of our analytical ap-
proach for dependence modeling and dependence shift detection
by considering two mining portfolios (gold versus iron ore –

nickel) of 20 stocks, which trade on the Australian Securities Ex-
change (ASX).5 We select these two mining portfolios because they
4 Investment confidence is the issue underlying any type of portfolio optimi-
zation approach. The abandonment of the single risk measure-based portfolio
optimization is partially driven by the inability of that approach to adequately
address the problem of investment confidence. Although the optimization of
portfolios with respect to multiple risk measures to some extent successfully ad-
dresses the problem by providing more information and investment choices, which
could cater to a wider variety of investors, it does not offer a generalized and
quantitatively objective approach for the selection of stocks. Instead it adopts a
relativistic and subjective perspective for the selection of stocks. On the contrary,
the “average model convergence” approach proposed for the analysis, evaluation
and interpretation of the multiple weight allocation scenarios does provide the
investment confidence investors require by finding the models’ points (i.e. stocks in
our case) of convergence.

5 As of December 2012, the mining stocks (including coal and uranium stocks
in this category) which are listed on the ASX accounted for approximately 39% of
the total market capitalization of the total market, with the gold and the iron-ore
nickel sectors playing an important role in the functioning and development of the
Australian economy. While the pair vine copula approach can handle a larger
portfolio, we only illustrate its use by a 20-stock portfolio as the higher number of
include highly important mineral commodities which are ex-
tracted, processed, and traded in and exported from Australia.
During the 2008–2009 global financial crisis, for instance, the
production and export of gold had contributed to softening the
effect of the financial crisis on the Australian economy. On the
other hand, the 2015 sharp decline in prices of iron ore has proven,
in terms of the harsh domestic budgetary adjustments that took
place, how important the iron-ore production and exports are to
the Australian economy. In this context, the identification of stocks
for investment and the stock portfolios' risk profile is important to
portfolio managers, investors and policymakers since the obtained
results could be used to manage the resource allocation risk,
market downturn risk and market sector risk. Another important
reason for selecting those mining portfolios is that they are dif-
ferent in terms of structure, volatility, uses and their importance in
asset investment than other sectors, which enables one to test and
analyze the behavior of different components in our integrated
modeling framework (i.e., vine copulas, risk measures and port-
folio optimization).6 The gold stock sector, for instance, does not
have a dominant company that has exceptionally high correlations
with the rest of the stocks in the portfolio. Instead, there are a
handful of companies having relatively high correlations with each
other but none of them is dominant. This is not the case for the
iron ore – nickel stock portfolio, which has BHP BILLITON (BHPX)
as the dominant stock in the sense that it has high correlation
values with the rest of the stocks in this portfolio. Through the
modeling of the dependence structure of the portfolios, we are
also able to address the question of whether the Australian gold
stocks can serve as a hedge and safe haven during financial crisis
periods.

With respect to the literature that uses copulas in portfolio
optimization, our research is broadly linked to the contributions of
Kakouris and Rustem (2014), Low et al. (2013) and Brechmann and
Czado (2013) and Ye et al. (2012). The latter provided a measure-
ment methodology for the subprime crisis contagion based on
copula change point analysis, whilst Kakouris, Rustem (2014)
employ a mixture of copulas to derive CVaR and the worse-case
CVaR used for the optimization of a convex portfolio of stock in-
dices. Low et al. (2013) make use of the bivariate Clayton and the
Clayton canonical vine copulas to address the asset allocation for
loss-averse investors through the minimization of CVaR in port-
folios of up to 12 constituents. Brechmann and Czado (2013) de-
velop a regular vine copula-based factor model which is applied to
the asset returns of the Euro Stoxx 50 index constituents in order
to investigate the Value-at-Risk forecasting and asset allocation.
Compared to these studies, we use both the c-vine, d-vine and
r-vine copulas to draw information about the dependence risk and
the low and high risk features of the gold and iron ore-nickel
stocks in specific market conditions. Our study also is differ-
entiated from those studies by deliberately searching for average
model convergence in the weight allocations resulting from the fit
of various different portfolio optimization models with respect to
multiple risk measures.

Other applications of vine copulas, which relate to our study in
terms of dependence modeling, have explored the dynamic de-
pendence behavior between financial markets (e.g., Chollete et al.,
2009; Min and Czado, 2010; Mendes et al., 2010; Czado et al.,

 

 

(footnote continued)
stocks will make the estimation of the dependence matrix truly complex, parti-
cularly due to the consideration of almost all existing bivariate copula families.

6 Our empirical approach could be extended to modeling the mining sectors in
other countries, including those from African countries such as South Africa which
is a major producer of gold, platinum, diamond and coal. The mining sector in
South Africa makes up about 60% of the country’s exports where eight of the 10
largest individual export categories are commodities.  
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2012), the forecasting of portfolio Value-at-Risk (e.g. Weiß and
Supper, 2013), the modeling of systematic dependence risk (e.g.,
Brechmann et al., 2013), and the optimization and management of
portfolios (e.g., Low et al., 2013; Brechmann and Czado, 2013).7

Our main results show that the gold stock portfolio is less vo-
latile and less risky than the iron ore-nickel in financial crisis
periods, commonly characterized by low or no confidence in the
financial markets. A possible reason is that gold is not only an
industrial commodity but also an asset with a strong monetary
value. Also, while all three pair vine copula models enable one to
detect the shifts of dependence concentration across the financial
period scenarios, the r-vine copula model is suitable for capturing
in the gold portfolio the existence of higher concentration of de-
pendence in the center of the joint distributions within the gold
portfolio. The c-vine copula model, on the other hand, best cap-
tures the presence of larger concentration of dependence in the
tails of the iron ore-nickel portfolio. The combination of pair vine
copulas and portfolio optimization is found to produce an esti-
mation edge, indicating the suitability of pair vine copulas to
model the multivariate dependence and investment risk of sector-
specific portfolios. Finally, the optimal weight allocations pro-
duced by the multiple risk measure-based portfolio optimizations
are found to converge without a large variation from a mean of
weights in some stocks which could be seen as good candidates for
investment.

The remainder of this article is organized as follows. Section 2
introduces the pair vine copulas, the portfolio optimization pro-
blem and the risk measures. Section 3 presents the data. Section 4
reports and discusses the estimation results. Section 5 concludes
the article.
2. Empirical models

The bivariate copulas have been proven to be very successful
statistical tools for flexibly modeling the cross-sectional depen-
dence structure between random variables (Smith et al., 2010).
Bivariate copulas are designed to split the marginal distribution
from the joint dependence, while maintaining the original dis-
tribution of the marginals (Patton, 2012). They have a comparative
advantage over traditional methods of correlations because they
include various families that are capable of modeling joint dis-
tributions of different characteristics. They also can be used as the
building blocks of a vine tree structure to model the dependence
structure of high dimensional distributions. On the other hand, the
pair vine copulas are graphical tree models consisting of marginal
distributions and bivariate copulas at the nodes that enable a lo-
calized and specialized measurement of complex multivariate
distributions. They are more flexible and advantageous than the
bivariate copulas because they account for the distributional dif-
ferences in the pairs of variables' joint distributions (Brechmann
and Schepsmeier, 2011).

2.1. Pair vine copulae

2.1.1. Vines and Sklar's theorem
Graphical vine trees were initially employed by Bedford and

Cooke (2001, 2002) as a means to organize and specify multi-
variate statistical models known as regular vines. A vine V is a
graphical structure of n elements so that in V T T, , n1 1=( ⋯ )− every Ti is
a connected tree with nodes N Ei i 1= − and edge set Ei, implying that
7 Low et al. (2013) specifically use the multi-dimensional elliptical and asym-
metric copula models to forecast the returns on portfolios of financial assets and
find that the c-vine copulas are ‘worth it’ when managing relatively large portfolios
with 3–12 constituents.
the edges of the tree Ti are the nodes of the tree Ti 1+ (Kurowicka
and Cooke, 2006). The theorem of Sklar (1959) laid the statistical
framework, which led to the development of analytical-inferential
models such as Eqs. (1) and (3) for the separation of a multivariate
density function into factors replaceable by the bivariate copulas
and marginals. The three necessary elements for the estimation
and selection tasks of the pair vine copula modeling are: the vine
trees which identify the pairs of variables to be modeled; the pair
copula families used to capture the characteristics of the bivariate
joint distributions; and the parameters of the selected bivariate
copula families.

2.1.2. Canonical, drawable and regular vines
Regular vines encompass a large number of tree structures

which include but are not limited to the c-vine (canonical vine) and
the d-vines (drawable vine). Bedford and Cooke (2001, 2002) uti-
lize them to orderly display and organize multivariate distribu-
tions. A regular vine is called a canonical vine if its trees are
comprised of nodes (the node with the maximal degree in T1 of a
canonical vine is the root) and edges and, each tree Ti has a unique
node of degreen i− . On the other hand, a regular vine is called a
drawable vine if each node in Ti has a degree of at most 2. Both
types of vines are subject to the proximity condition which states
that for i n2, , 1,= ⋯ − if a b E, ,i{ }ϵ then a b 2# ∆ = , (∆ denotes a
union without the intersection). In other words, if a and b are
nodes of a tree Ti connected by an edge, where a a a,1 2= { } and
b b b,1 2={ }, then exactly one of the ai equals to one of thebi.

Canonical vines have a star-like shape and for every tree Ti,
i n1, , 1 ,∈ { ⋯ − } a root node is selected based on the criterion of
having the highest correlation with the rest. They are suggested in
applications where, among the variables involved in the modeling,
there is one (i.e. the root node) having the highest correlation with
the rest (Czado et al., 2013). The d-vines are in general more sui-
table to model datasets where no dominant variables exist (i.e.,
none of them has exceptionally high correlation values with the
rest). They are represented through line trees, and every node of
any Ti cannot be linked to more than two edges. Here instead of a
single node, the first tree of the vine and the order of the variables
in it play a defining role in subsequent trees and in the structure of
the entire vine (Min and Czado, 2010).

The following models for the separation of multivariate den-
sities and inference of c-vine and d-vine pair-copula structures are
proposed by Aas et al. (2009)
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In Eqs. (1) and (2), i identifies the trees and j runs over the
edges in each tree. F xi( ) represents the distribution function of xi,
the return distribution. On the other hand, xf ( ) represents the
return distribution density function. The term ci i j i, 1: 1|+ ( − ) accounts
for the bivariate copulas.

An r-vine copula structure on n variables is the one in which
two edges in tree j are joined by an edge in tree j 1+ only if these
edges share a common node. This is due to the proximity condi-
tion described above. The shape of the r-vine, unlike those of the
c-vine and d-vine, can vary significantly according to the statistical
features of the multivariate distribution being modeled. An exact
and generalized analytical model has not yet been proposed for

 

 

 



S. Bekiros et al. / Resources Policy 46 (2015) 1–114
the decomposition of multivariate densities and the inference of
r-vine structures, most likely because the set of possible r-vine
structures is vast, diverse and complex to be captured by an
equation. Despite this obstacle, Kurowicka and Cooke (2006) build
the following analytical model to decompose the multivariate
densities and approximate the inference of the r-vine structures:

⎡
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where X X X, , n1= ( ⋯ ) is a vector of random variables, f x x, , n1( ⋯ )
stands for a multivariate density, cj e k e D e, |( ) ( ) ( ) represents a bivariate
conditional density copula with j e( ) and k e( ) as the conditioned
nodes, and D e( ) as the conditioning set. The parameter
e j e= ( ), k e( )| D e( ) is an edge that belongs to the edge set
ε E E, , n1 1={ ⋯ }− . The vector XD e( ) is a vector of variables conditioned
by the components of the conditioning set D e( ). Eq. (3) is uniquely
determined since there is not a common-based tree structure
shared among the r-vine statistical models (Kurowicka and Cooke,
2006).

The use of multiple risk measures is important because the
portfolio optimization problem is addressed through different
angles. Besides, it exposes the difficulties involved in the optimi-
zation of portfolios and the limitations of mathematical models to
account for all the information and sources of risk. Each of the risk
measures applied in this study differs from the others by stressing
a particular portfolio optimization component, as opposed to
various methodologies already presented in the recent relevant
literature, such as in Hassanzadeh et al. (2014), Levy and Levy
(2014), Utz et al. (2014) or Ponomareva et al., (2015). For instance,
in our work the CVaR and CDaR measures stress the modeling of
returns values falling below a threshold value commonly ex-
pressed as a horizontal line (i.e. boundary line). The five competing
risk measures include the variance, the mean absolute deviation
(MAD), the minimizing regret (Minimax), the conditional Value-at-
Risk (CVaR), and the conditional Drawdown-at-Risk (CDaR). Since
these risk measures may have different theoretical and practical
advantages, their simultaneous use in our study enables the
comparison of multiple and diverse optimal portfolio holdings.

The application of the variance risk measure to the quadratic
programming (QP) portfolio optimization problem given in Eqs.
(4)–(7) defined below rests on the assumptions of normally dis-
tributed returns and investors' preferences being expressed
through a quadratic utility function.8 The optimization problem to
be solved is

min
n

w r
1

4w i

n

j

m
j i j j

1
1 ,

2( )( )∑ ∑ μ−
( )=

=

subject to

w
5j

m

j j P
1

∑ μ μ=
( )=

w 1
6j

m

j
1

∑ =
( )=

w for m0, 1, , 7j ≥ = ⋯ ( )
8 The QP method is based on a measure of central tendency (mean) and it
penalizes deviations from the center with an escalating rate due to the square
feature of the quadratic objective function.
where pμ is the return of the portfolio. Eqs. (5)–(7) are common to
all portfolio specification problems in this section and respectively
represent the targeted return of the portfolio, the constraint on the
sum of the portfolio weights wj to be equal to one, and the
constraint on every weight to be positive semi-definite (i.e., short
sales are not considered). These three equations are omitted in
subsequent portfolio problem specifications to avoid repetition.

In contrast to the variance risk measure applied in the opti-
mization problem defined by Eqs. (4)–(7), the MAD risk measure,
which is applied in the linear portfolio optimization problem (8)
below, penalizes deviations from the center with a linear rate. This
feature, while allowing for faster solutions to large optimization
problems, does not adequately represent most investors' pre-
ferences and demands. However, since the risk measure does not
scale or penalize leptokurtic observations as heavily as the QP
does, it could be considered as more robust. The optimization
problem to be solved is

n
dmin

1

8w d
i

n

i
,

1

∑
( )=

subject to
r w y n, 1, ,j

m
i j j j i i1 ,( )μ∑ − ≤ ∀ ∈{ ⋯ }=

r w y n, 1, ,j
m

i j j j i i1 ,( )μ∑ − ≥ − ∀ ∈{ ⋯ }= where the parameter di

accounts for absolute deviations of returns from the forecast mean.
The constraints with the summation terms delineate the lower
boundaryyiand the upper boundaryyifor the optimization problem.
Constraints (6)–(8) are also part of formulation (9).

The Minimax risk measure for portfolio optimization in the
linear programming problem (9) below is perhaps the most con-
servative because according to the first constraint, the difference
between the maximum loss of the portfolio Mp and the forecast
return of the portfolio is targeted to be less than or equal to zero.

Mmin
9M w

p
,p ( )

subject to

M w r n0, 1, ,p
j

m

j ij i
1

∑− ≤ ∀ ∈{ ⋯ }
=

The CVaR measure applied in the portfolio optimization pro-
blem (10) is desirable not only because it is a coherent measure of
risk (e.g., when the probability distribution function is continuous)
but also because it is more in tune with the loss function of the tail
distribution. The optimization problem to be solved is

na
d vmin
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w r v d n, 1, ,
j

m

j i j i i
1
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d n0, 1, ,i j≥ ∀ ∈{ ⋯ }

where pμ as explained above represents the target return of the
portfolio, v is theVaR at the a-coverage rate, and di accounts for the
deviation values below the VaR.

The CDaR measure for portfolio optimization in the linear
programming problem (11) expresses the path dependent nature
of the measure. The draw down events in the historical return
distribution play an important role in the CDaR weight allocation.
The optimization problem to be solved is

 

 

 



Table 1
Stock names and codes of the gold and iron ore-nickel portfolios.

Gold stock's codes Gold stock's names Iron ore–nickel stocks' codes Iron ore–nickel stocks' names

C1:D10:SBMX ST Barbara C1:D12:BHPX BHP Billiton
C2:D9:NWRX Northwest resources C2:D19:GBGX Gindalbie metals
C3:D5:NSTX Northern star C3:D14:MCRX Mincor resources
C4:D12:SHKX Stone resources of Australia C4:D8:WSAX Western areas
C5:D8:DEGX Degrey mining C5:D6:AGOX Atlas iron
C6:D13:RSGX Resolut mining C6:D11:FMSX Flinders mines
C7:D4:AXMX Apex minerals C7:D20:GRRX Grange resources
C8:D16:ORNX Orion gold C8:D7:ARHX Australasian resources
C9:D11:RCFX Redcliffe resources C9:D5:ARI Arrium
C10:D6:EXMX Excalibur mining C10:D2:FCNX Falcon minerals
C11:D1:TAMX Tanami gold C11:D13:POSX Poseidon nickel
C12:D14:GLNX Gleneagle gold C12:D9:HRRX Heron resources
C13:D3:MOYX Millenium minerals C13:D1:MGXX Mount Gibson iron
C14:D20:EVNX Evolution mining C14:D15:ADYX Admiralty resources
C15:D7:AUZX Australian mines C15:D4:FMGX Fortescue metals
C16:D2:HEGX Hill end gold C16:D17:ILUX Iluka resources
C17:D15:KMCX Kalgoorlie Mining C17:D3:IGOX Independence group
C18:D18:IRCX Intermin resources C18:D16:SHDX Sherwin iron
C19:D19:HAOX Haoma mining C19:D10:MLMX Metallica minerals
C20:D17:CTOX Citigold C20:D18:MOLX Moly mines
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where parameters z and u are auxiliary vectors representing the
lower and upper bounds. The parameter v accounts for the CDaR at
the a quantile level (Ghalanos, 2013).
9 SBMX started as an oil endeavor in 1969 and then refocused its operations on
gold in the 2000s. BHPX calls itself the world leading diversified resources com-
pany. It develops and converts natural resources to fuel development and growth
all over the world. It is among the world’s largest producers of iron ore. 
3. Data

The portfolios are comprised of 20 gold and 20 iron ore-nickel
stock return series accessed from the Australian stock market. It is
worth noting that iron ore is the second most traded commodity
worldwide after oil. The series are daily and the sample period
spans from January 2005 to July 2012. Thus, the data set accounts
for three financial period scenarios revolving around the 2008/
2009 global financial crisis. We specifically divide the entire return
series period (i.e. the full sample) into the pre-GFC (January 2005–
July 2007), the coincident GFC (July 2007–December 2009) and
the post-GFC (January 2010–July 2012) financial period scenarios.
The logarithmic returns are first computed and then filtered with
an ARMA (1,1)-GARCH (1,1) process with Student-t innovations.
This filtering model is selected because it offers the possibility of
capturing not only the distributional characteristics of mining
portfolio returns, but also the potential of analyzing the tail be-
havior that is prevalent during turbulent times. As shown later, our
gold stocks tend to display a strong positive tail behavior during
crisis periods, while the iron ore-nickel stocks have a negative tail
behavior in similar market conditions. A probability integral
transform is then applied to the standardized residuals in order to
obtain the “copula data” to be used in the pair vine copula
modeling.
The stock names and codes are listed in Table 1. For the d-vine
modeling, the group of stocks in the first tree influences the rest of
the stocks in the portfolios through high correlation values. For the
c-vine modeling, the rootstock of the first tree has a key role in the
shaping of the entire vine structure due to the high correlation
values it has with the rest of the stocks in the portfolio. According
to the c-vine column order of the data sets, the St. BARBARA
(SBMX) and BHP BILLITON (BHPX) stocks occupy the first columns
in the gold and iron ore-nickel portfolios, respectively.9
4. Empirical applications

4.1. Dependence matrix estimation

Since they are essential to portfolio optimization, multiple
scenario dependence matrices of the gold and the iron ore-nickel
portfolios are estimated. This task is carried out through the ap-
plication of the c-vine, d-vine and r-vine copula models which
make use of a wide range of bivariate copulas families listed to-
gether with their conventional numbers in Table 2. The numbering
of the bivariate copula families will become useful when esti-
mating and analyzing the dependence structure contained in the
diagonal matrices presented in this section. Since all the stocks in
both portfolios are found to correlate positively under all financial
period scenarios, we only present Kendall's tau correlation matrix
corresponding to the full sample period scenario.

It should be noted that all copulas in Table 2 are bivariate co-
pulas and should not be confused with pair vine copulas. The bi-
variate Gaussian and Frank copulas are suitable to model greater
dependence in the center of joint return distribution. The main
difference between them is that the Frank bivariate copula can
also account for the nonlinearities in the center of the joint dis-
tribution, while the Gaussian bivariate copula can only focus on
linear dependence relationships. The Student-t copula specializes
in modeling symmetrically greater dependence in both, the posi-
tive and negative tails. The bivariate Clayton, the 180° rotated
Gumbel and Joe copulas are adequate to model greater



Table 2
Repertoire of bivariate copula families employed by the vine models.

One Par Archimedean 2Par 90 Rotated 180 Rotated 270 Rotated

Gaussian (1) Clayton-Gumbel(BB1) (7) Clayton (23) Clayton (13) Clayton (33)
Student-t (2) Joe-Gumbel(BB6) (8) Gumbel (24) Gumbel (14) Gumbel (34)
Clayton (3) Joe-Clayton(BB7) (9) Joe (26) Joe (16) Joe (36)
Gumbel (4) Joe-Frank(BB8) (10) Clayton-Gumbel (BB1) (7) Clayton-Gumbel (BB1) (17) Clayton-Gumbel(BB1) (37) (37)
Frank (5) Joe-Gumbel (BB6) (28) Joe-Gumbel(BB6) (18) Joe-Gumbel(BB6) (38)
Joe (6) Joe-Clayton(BB7) (29) Joe-Clayton(BB7) (19) Joe-Clayton(BB7) (39)

Joe-Frank(BB8) (30) Joe-Frank(BB8) (20) Joe-Frank(BB8) (40)

Notes: These copulas allow one to capture different forms of dependence including symmetric and asymmetric in the center and in the tails.The numbering of the bivariate
copula families facilitates the analysis, evaluation and interpretation of the dependence structure contained in the diagonal matrices presented below.

Table 3
Gold portfolio summary of vine models' bivariate copula selection.

Bivariate copula Full sample Pre-GFC GFC Post-GFC

Vine model C-vine D-vine R-vine C-vine D-vine R-vine C-vine D-vine R-vine C-vine D-vine R-vine

Clayton 6 8 11 12 18 19 9 11 12 15 12 18
Gumbel180 16 16 15 22 14 14 14 15 12 9 12 11
Studen-t 20 23 21 14 14 17 16 19 21 19 17 19
Joe 180 1 8 8 15 15 10 3 7 6 0 0 8
Joe-Frank 180 26 28 19 0 0 8 8 8 11 0 0 6
Clayton 270 0 0 0 5 8 0 0 0 0 5 7 0
Frank 54 46 54 48 49 51 85 69 72 58 59 53
Gaussian 17 17 15 27 25 22 17 21 18 30 26 28
Gumbel 15 14 11 13 4 10 0 0 3 9 11 9
Clayton 180 0 0 6 11 18 14 8 6 13 10 11 9
Clayton 90 4 5 0 4 4 0 0 0 0 7 8 0
Studen-t 20 23 21 14 14 17 16 19 21 19 17 19
Joe 0 0 3 0 0 3 0 0 5 0 0 6
Joe-Frank 15 16 20 7 3 2 7 8 4 0 0 4

Notes: the top row of the table states the four financial period scenarios modeled with the pair vine copulas. The three types of vine copula models implemented are the
c-vine, d-vine and r-vines. The first column of the table lists the bivariate copulas used most frequently by the vine copula models to measure the dependence between pair
of stocks. Each number in the table represents the number of times a certain bivariate copula has been selected by a certain vine copula model. The full sample period spans
from January 2005 to July 2012, the pre-GFC stretches from Jan 2005 to July 2007; the GFC period covers from July 2007 to Dec 2009, and the post-GFC period accounts for
the volatility between Jan 2010 and July 2012.
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dependence in the negative tail. On the contrary, the bivariate
Gumbel, Joe and the180° rotated Clayton bivariate copulas are
suitable to model greater dependence in the positive tail.

4.1.1. The gold portfolio
According to the cross financial period scenario vine models'

frequency of the bivariate copula selection displayed in Table 3 and
partially in Fig. 1, the Frank bivariate copula is the most pre-
dominant in all financial period scenarios of the gold portfolio,
suggesting that most of the dependence in the gold portfolio is
concentrated in the center of the joint return distribution. This
finding implies that the return on gold portfolio is likely to fluc-
tuate in normal market conditions and is not exposed to extreme
values. It can thus be deduced that the gold stocks are less volatile
and less risky in financial crisis periods characterized by low or no
confidence in the financial markets. Arriving at these findings
through the application of pair vine copulas is significant because
gold indeed has gained the reputation of being a safe haven in
times of financial uncertainty, commonly featured by low levels of
confidence in the financial markets. This hedging feature of gold
was particularly observed during the global financial crisis of
2008–2009 where the price of this precious metal experienced
extreme appreciation movements as the confidence in the fi-
nancial stock markets eroded.

A comparison between the pre-GFC and the post-GFC financial
period scenarios of the gold portfolio indicates that the number of
stocks having a nonlinear or non-normal relationship is larger in
the pre-GFC. This fact is also particularly observed through a larger
presence of the Gaussian copula in the post-GFC period. The pre-
GFC experienced an unprecedented boom in commodity prices.
The Frank copula has its largest presence in the GFC period, im-
plying that the returns of the gold portfolio during the period are
driven by complex relationships of dependence. In general, the
level of complexity in the dependence relationships of the gold
stocks appears to decrease as the financial stock market con-
fidence increases. The noticeable decrease of the copulas for the
modeling of asymmetric dependence in the negative tail confirms
the immunity of gold to financial crisis periods.

With respect to model selection, the r-vine model selects the
Frank copula most frequently in the full sample and pre-GFC
period scenarios; however, the c-vine model selects it in more
occasions in the GFC period, while the d-vine does this selection in
the post-GFC. Hence, the r-vine copula model overall best accounts
for the multivariate dependence structure in the center of the gold
portfolio. In order to confirm empirically our judgment about the
r-vine being the most adequate model to capture the multivariate
dependence structure of the gold portfolio, we run on the fit of the
c-vine, d-vine and r-vine to the portfolios the ECP and ECP2
goodness-of-fit tests, which are based on the empirical copula
processes. For further details on the goodness of fit tests see
Schepsmeier (2013, 2014), and Genest et al. (2009). The ECP and
ECP2 goodness-of-fit tests implemented are non-parametric and
are based on the Cramer-von Mises (CvM) and Kolmogorov-Smir-
nov (KS) test statistics.

The resulting p-values from the goodness-of-fit testing dis-
played in Table 4 confirm that the r-vine is the most suitable
model to capture the dependence structure of the gold portfolio. 



Fig. 1. Dependence structure & Kendall's tau correlation matrix of the gold stock portfolio. Notes: Panel (a) displays the full sample period c-vine (on the left) and d-vine (on
the right) copula family specification matrices. Panel (b) shows the c-vine estimated Kendall's tau correlation matrix. The numbers contained in the diagonal matrices of
Panel (a) are the bivariate copula families selected by the c-vine and d-vine models to measure the dependence and correlation between the pairs of gold stocks. The
function of every bivariate copula has been described beneath Table 2.
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4.1.2. The iron ore-nickel portfolio
A comparison between the dependence structure of the port-

folios displayed in Tables 3–5 indicates that the presence of the
Frank copula in all financial periods of the iron ore-nickel portfolio
is significantly smaller. With specific focus on the dependence
structure of the iron ore-nickel portfolio, the number of selected
bivariate copulas which model greater dependence in the negative
tail is larger than that of the selected bivariate copulas which
model greater dependence in the center of the joint return dis-
tribution. Thus, most of the dependence structure in the iron ore-
nickel portfolio is concentrated in the left tail of the joint return
distribution. As compared to the gold portfolio, this result implies
that the iron ore-nickel portfolio becomes riskier in times of fi-
nancial turbulences and crises featured by low or absence of
confidence in the financial markets. In this regard, it is now well
known that the price of the iron ore commodity indeed suffered
significant declines during the global financial crisis of 2008–2009.

When we look at the results over different subperiods, this
portfolio shows dependence concentration shifts from the positive
tail to the negative tail. The shifts occur specifically from the pre-
GFC to the GFC, indicating the presence of the left-tail dependence
risk between stocks of the iron ore-nickel portfolio during the GFC
period potentially due to investors' loss of confidence, and thus an
increase in the probability that the iron ore-nickel portfolio rea-
lizes negative returns. On the other hand, the shifts of dependence
concentration from the negative tail to the positive tail which took
place from the GFC to the post-GFC reflect an improvement in
investors' confidence, economic recovery, and a decrease in the
probability that the iron ore-nickel portfolio is to suffer large
losses.

As to model selection, the results indicate that the c-vine, re-
lative to the d-vine and r-vine, is more frequently selected under
all financial period scenarios for the modeling of negative tail
dependence. Thus, it can be inferred that that the c-vine copula
model better accounts for the multivariate dependence structure
of the iron ore-nickel portfolio. The goodness-of-fit testing results
from Table 4 confirm that the c-vine is the model that best fits the
multivariate dependence of the iron ore-nickel portfolio.

4.2. Portfolio optimization

We optimize the gold and iron ore-nickel portfolios under
consideration by inserting different risk measures (variance, MAD,
Minimax, CVaR and CDaR) into the linear and nonlinear portfolio
optimization models in order to estimate the minimum risk op-
timal portfolios. The integration of the pair r-vine and c-vine co-
pulas (i.e., several types of bivariate copula families including the
Frank copula are used in the vine structure) into the portfolio
optimization is only possible when we estimate the variance risk
measure which is inserted into the QP optimization models. From
a methodological point of view, the combination of pair vine co-
pulas and portfolio optimization models allows one to capture the
dependence in the center, and the negative and the positive tails.

In practice, we rely on the relationship between the pair-copula
dependence parameters in Section 4.1 and the corresponding
Kendall's tau to compute the correlation coefficients among the 



Table 4
Gold & iron ore–nickel portfolios' goodness-of-fit testing for the c-vine, d-vine & r-vine.

Portfolios and copulas Gold Iron ore–nickel

Vine model c-vine d-vine r-vine c-vine d-vine r-vine

Full sample
ECP(CvM) ts¼0.016 ts¼0.003 ts¼0.004 ts¼0.023 ts¼0.039 ts¼0.028

p¼0.44 p¼0.975 p¼ 0.985 p¼0.71 p¼0.70 p¼0.515
ECP2(CvM) ts¼0.000 ts¼0.000 ts¼0.000 ts¼0.000 ts¼0.000 ts¼0.000

p¼1.00 p ¼1.00 p¼1.00 p¼1.00 p ¼1.00 p¼1.00
ECP (KS) ts ¼1.825 ts¼0.952 ts¼1.339 ts¼2.028 ts¼3.018 ts¼2.072

p ¼0.23 p¼0.425 p¼0.045 p¼0.73 p¼0.04 p¼0.645
ECP2(KS) ts¼0.022 ts¼0.022 ts¼0.022 ts¼0.055 ts¼0.066 ts¼0.047

p¼1.00 p¼1.00 p¼1.00 p¼1.00 p¼1.00 p¼1.00
Pre-GFC
ECP(CvM) ts¼0.003 ts¼0.003 ts¼0.003 ts¼0.008 ts¼0.008 ts¼0.009

p¼1.00 p¼1.00 p¼1.00 p¼0.96 p¼0.98 p¼0.95
ECP2(CvM) ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001

p¼1.00 p¼1.00 p¼1.00 p¼1.00 p¼1.00 p¼1.00
ECP (KS) ts¼0.607 ts¼0.849 ts¼0.824 ts¼0.438 ts¼0.354 ts¼0.336

p¼0.285 p¼0.27 p¼0.345 p¼0.53 p ¼0.78 p¼0.80
ECP2(KS) ts¼0.039 ts¼0.039 ts¼0.039 ts¼0.039 ts¼0.079 ts¼0.078

p¼1.00 p ¼1.00 p¼1.00 p¼1.00 p ¼1.00 p¼1.00
GFC
ECP(CvM) ts¼0.012 ts¼0.004 ts¼0.003 ts¼0.015 ts¼0.016 ts¼0.018

p¼0.77 p¼1.00 p¼1.00 p¼0.88 p¼0.965 p¼0.78
ECP2(CvM) ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001

p¼1.00 p ¼1.00 p¼1.00 p¼1.00 p ¼1.00 p¼1.00
ECP (KS) ts¼1.010 ts¼0.770 ts¼0.367 ts¼1.308 ts¼1.580 ts¼1.553

p¼0.395 p ¼0.22 p¼0.78 p¼0.575 p ¼0.200 p¼0.320
ECP2(KS) ts¼0.077 ts¼0.039 ts¼0.076 ts¼0.062 ts¼0.039 ts¼0.039

p¼1.00 p¼1.00 p¼1.00 p¼1.00 p ¼1.00 p¼1.00
Post-GFC
ECP(CvM) ts¼0.002 ts¼0.001 ts¼0.002 ts¼0.013 ts¼0.013 ts¼0.010

p¼1.00 p¼1.00 p¼1.00 p¼1.00 p¼1.00 p¼1.00
ECP2(CvM) ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001 ts¼0.001

p¼1.00 p ¼1.00 p¼1.00 p¼1.00 p¼1.00 p¼1.00
ECP (KS) ts¼0.431 ts¼0.131 ts¼0.304 ts¼1.053 ts¼0.983 ts¼0.849

p¼0.055 p¼1.00 p¼0.43 p¼0.425 p¼0.29 p¼0.625
ECP2(KS) ts¼0.078 ts¼0.039 ts¼0.039 ts¼0.039 ts¼0.078 ts¼0.039

p¼1.00 p ¼1.00 p¼1.00 p¼1.00 p ¼1.00 p¼1.00

Notes: The abbreviations p and ts stand for p-value and t-statistic. The ECP and ECP2 refer to the empirical copula processes. The CvM and KS stand for the Cram von Mises and
Kolmogorov-Smirnov test statistics.
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assets of the same portfolio (see, Heinen and Valdesogo, 2009).
Note also that the use of the QP nonlinear optimization method
with pair vine copulas does not constrain the distribution of the
Table 5
Iron ore–nickel portfolio summary of vine models' bivariate copula selection.

Bivariate Copula Full sample Pre-GFC

Vine model C-vine D-vine R-vine C-vine D-vine R

Clayton 18 17 23 24 22 2
Gumbel 180 16 15 23 23 17 2
Student-t 36 35 31 10 11 1
Joe 180 13 12 9 22 22 2
Joe-Frank 180 32 34 31 0 0
Clayton 270 0 0 3 0 0
Frank 22 33 17 32 38 3
Gaussian 6 13 11 15 16 1
Gumbel 0 0 9 0 0
Clayton 180 0 0 13 17 13 1
Clayton 90 0 0 2 0 0
Student-t 36 35 31 10 11 1
Joe 0 0 5 0 0 1
Joe-Frank 0 0 8 0 0

Notes: the top row of the table states the four financial period scenarios modeled with
c-vine, d-vine and r-vines. The first column of the table lists the bivariate copulas used m
of stocks. Each number in the table represents the number of times a certain bivariate co
from January 2005 to July 2012, the pre-GFC stretches from Jan 2005 to July 2007; the G
the volatility between Jan 2010 and July 2012.
gold and iron ore-nickel returns to be normal but can capture the
stylized facts of the univariate return distributions as well as the
asymmetric and nonlinear dependence between stocks. It is
GFC Post-GFC

-vine C-vine D-vine R-vine C-vine D-vine R-vine

0 30 22 30 19 14 14
0 27 28 30 22 20 14
2 8 11 10 20 16 24
3 13 10 14 19 9 19
6 12 8 3 7 13 9
6 0 0 5 0 0 4
7 34 36 30 37 47 37
6 16 25 23 14 25 16
6 0 0 6 0 0 5
6 0 0 11 0 0 12
5 0 0 4 0 0 7
2 8 11 10 20 16 24
1 0 0 8 0 0 5
0 0 0 3 0 0 2

the pair vine copulas. The three types of vine copula models implemented are the
ost frequently by the vine copula models to measure the dependence between pair
pula has been selected by a certain vine copula model. The full sample period spans
FC period covers from July 2007 to Dec 2009, and the post-GFC period accounts for

 



S. Bekiros et al. / Resources Policy 46 (2015) 1–11 9
therefore expected that the portfolio optimization which uses pair
vine copulas performs better than alternative linear portfolio op-
timization models with their corresponding risk measures.

As stated earlier, another important feature of our portfolio
optimization framework is related to the interpretation of the
multiple optimal weight allocations produced by the various
portfolio optimization models applied. The perspective we adopt
looks at the array of investment possibilities in terms of “average
model convergence”. There are positive implications and ad-
vantages for portfolio optimization from the adoption of this
perspective. Firstly, the stocks where some, most or all of the
models converge are spotlighted. This fact gives a reason to con-
sider a more thorough investigation of those stocks since they
could be good candidates for investment. Secondly, the relevance
of the problem (a problem with a subjective and relativistic solu-
tion) of trying to find the best risk measure to be used for the
optimization of portfolios is reduced significantly by shifting the
focus on the search for average model convergence. Finally, the
average model convergence identified provides objective con-
fidence for the mining investors with respect to where to invest
and how much to invest. The multiple risk measure-based port-
folio optimization that does not look at the weights allocations in
terms of average model convergence would thus not provide the
confidence required by mining investors.

We consider the full sample period and arbitrarily set the target
portfolio return pμ to be equal to 4.2% for both portfolios. By doing
so we can compare the portfolios in terms of investment risk and
maintain a realistic investment scenario.

The use of the average model convergence on the optimal
weight allocations of the gold portfolio displayed in Table 6 in-
dicates that most of the optimization methods and the risk mea-
sures converge on average in the ST. BARBARA (SBMX) stock, when
the portfolio optimization with respect to the CDaR is ignored. If
the model specifications with respect to the CDaR and Minimax are
ignored, the remaining models' optimal weights converge on
average in NORTHWEST RESOURCES (NWRX) and RESOLUTE
Table 6
Optimal weights and performance of the gold portfolio under multiple risk measures.

Codes Portfolio optimization Weights' average Stocks' descriptive sta

Gold
stocks

CVaR (LP) CDaR(LP) Minimax (LP) MAD (LP) Var (QP) QP R-Vine

SBMX 30.01 44.28 24.25 24.93 29.23 5.04
NWRX 3.53 0 0 4.18 4.53 4.81
NSTX 19.62 6.39 31.72 23.75 19.95 0
SHKX 0 0 0 0 0 1.96
DEGX 0 0 0 0 0 3.56
RSGX 13.54 0 0 14.15 13.28 0
AXMX 0 0 0 0 0 0
ORNX 0 0 0 0 0 6.25
RCFX 0 0 0 0 0 0
EXMX 0 0 0 0 0 11.76
TAMX 0 0 0 1 0 2.77
GLNX 0 0 0 0 0 5.8
MOYX 0 0 0 0 0 14.06
EVNX 6.91 14.28 0 4.21 5.98 2.26
AUZX 0 0 0 0 0 5.13
HEGX 0 0 0 0 0 7.35
KMCX 0 0 0 0 0 12.51
IRCX 13.66 35.05 0 13.9 15.63 6.17
HAOX 6.97 0 0 5.24 3.59 4.57
CTOX 5.77 0 44.03 8.66 7.8 6
P-Ret 0.042 0.042 0.042 0.042 0.042 0.042
P-Risk 5.55 103.02 15.63 1.80 0.062 0.052

Notes: This table reports the minimum risk optimal weights (%) of the gold sector portfo
mean-variance quadratic programming, and the Gaussian, mean of weights, canonical an
P-Risk are the portfolio's return and risk, respectively. MW ex. CDaR and MW ex. Minim
CDaR measures, respectively. The target portfolio return is 0.042%.
MINING (RSGS). This type of model convergence could be dis-
cerned by gold portfolio investors as the model consensus and be
used to select stocks. In addition, those stocks could be good in-
vestment choices. Equally important, the different weight alloca-
tions produced by the various portfolio optimization models
would allow the investors in the mining sector to select a parti-
cular risk measure for the optimization of their portfolios, de-
pending on their return appetite and risk tolerance.

Out of those stocks only RESOLUTE MINING (RSGS) has a ne-
gative mean return value, while ST. BARBARA (SBMX) offers the
best risk-return trade-off in the entire portfolio. The average
model convergence is able to identify two stocks that could be
good investment choices in terms of the mean return and variance.
The ST. BARBARA (SBMX) stock is allocated large weights by most
of the optimization methods and risk measures. The model spe-
cifications with respect to the CDaR and Minimax produce the
most extreme weight allocations. The most balanced weight allo-
cations result from the optimizations based on the MAD and var-
iance risk measures. These patterns are encountered in both
portfolios.

An analysis of the risk and return of the gold portfolio shows
that the modeling framework, which combines the pair r-vine
copula with portfolio optimization, outperforms the mean var-
iance quadratic portfolio optimization, indicating that the pair vine
copulas are capable of better capturing complex dependence
structures. Hence, while the average model convergence identifies
ST. BARBARA (SBMX) and RESOLUTE MINING (RSGS) as potentially
good investment choices, the descriptive statistics indicate that
NORTHERN STAR (NSTX) could also be a good investment choice.

With respect to the minimum risk optimal weight allocations
of the iron ore-nickel portfolio displayed in Table 7, the optimi-
zation methods and risk measures are observed to converge on
average in the BHP BILLITON (BHPX) stock, when the optimal
weight allocations with respect to the CDaR and CVaR are ignored.
In addition, this stock is allocated large weights by most of the
optimization methods and the risk measures most likely because it

 

 

tistics

MW MW ex.
CDaR

MW ex. Minimax &
CDaR

μ 2σ K SK

26.29 22.69 22.30 0.07 0.18 4.56 �0.05
2.84 3.41 4.26 �0.02 0.44 26.64 �1.10
16.91 19.01 15.83 0.11 0.37 10.66 0.16
0.33 0.39 0.49 �0.17 0.30 4.29 0.47
0.59 0.71 0.89 �0.18 0.32 11.40 1.08
6.83 8.19 10.24 0.01 0.15 5.75 �0.23
0.00 0.00 0.00 �0.22 0.44 16.79 �0.15
1.04 1.25 1.56 �0.16 0.36 6.61 �0.03
0.00 0.00 0.00 �0.14 0.61 5.67 0.65
1.96 2.35 2.94 �0.17 1.78 13.85 0.02
0.63 0.75 0.94 �0.05 0.26 17.94 0.85
0.97 1.16 1.45 �0.41 1.14 563.41 �17.93
2.34 2.81 3.52 �0.15 0.45 22.31 0.11
5.61 3.87 4.84 0.00 0.32 10.79 0.74
0.86 1.03 1.28 �0.14 2.15 16.55 �0.00
1.23 1.47 1.84 �0.09 0.29 3.09 0.45
2.09 2.50 3.13 �0.21 0.53 45.01 �2.27
14.07 9.87 12.34 0.01 0.28 10.24 0.70
3.40 4.07 5.09 �0.02 0.67 18.06 1.85
12.04 14.45 7.06 �0.02 0.19 27.91 2.05
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA

lio. The abbreviations LP, QP, G, MW, C and VaR stand for the linear programing, the
d variance. The names and codes of the stocks are provided in Table 1. The R-ret and
ax & CDaR refer to the mean of weights excluding the CDaR and, the Minimax and

 



Table 7
Optimal weights and performance of the iron ore-nickel portfolio under multiple risk measures.

Codes Portfolio
optimization

Weights'
average

Stocks' descriptive statistics

Ore-nickel
stocks

CVaR (LP) CDaR (LP) Minimax
(LP)

MAD
(LP)

Var
(QP)

QP
C-vine

MW MW ex.
CDaR

MW ex.
Minimax &
CDaR

μ 2σ K SK

BHPX 46.72 53.15 39.52 39.38 39.62 9.81 38.03 35.01 33.88 0.04 0.05 4.10 �0.23
GBGX 0.00 0.00 0.00 2.27 0.62 0 0.48 0.58 0.72 0.09 0.20 5.25 0.32
MCRX 0.00 0.00 0.00 0.00 0.00 3.59 0.60 0.72 0.90 0.00 0.13 3.91 0.43
WSAX 1.70 0.00 0.00 5.50 2.74 7.77 2.95 3.54 4.43 0.05 0.10 4.62 0.08
AGOX 1.83 0.00 4.19 2.10 4.04 2.51 2.45 2.93 2.62 0.11 0.21 6.70 0.64
FMSX 1.48 0.86 0.00 3.15 2.21 0 1.28 1.37 1.71 0.08 0.64 283.20 10.78
GRRX 0.00 0.00 0.00 1.62 2.20 4.01 1.31 1.57 1.96 �0.01 0.20 10.65 0.39
ARHX 0.00 0.00 0.00 0.00 0.00 1.82 0.30 0.36 0.46 �0.13 0.33 8.81 1.01
ARI 0.00 0.00 0.00 0.00 0.00 12.29 2.05 2.46 3.07 �0.05 0.08 6.26 �0.18
FCNX 0.00 0.00 0.00 0.00 0.00 1.3 0.22 0.26 0.33 �0.18 0.37 12.14 0.72
POSX 0.00 0.00 0.00 0.00 0.00 1.76 0.29 0.35 0.44 �0.05 0.38 22.34 1.94
HRRX 0.63 0.00 0.00 4.12 2.59 4.91 2.04 2.45 3.06 �0.03 0.22 13.26 1.37
MGXX 0.00 0.00 0.00 0.00 0.00 5.47 0.91 1.09 1.37 0.05 0.16 6.59 0.12
ADYX 0.00 0.00 0.00 0.00 0.00 2.14 0.36 0.43 0.54 �0.11 0.42 13.36 1.46
FMGX 6.81 4.32 0.55 5.35 5.41 5.11 4.59 4.65 5.67 0.15 0.19 10.82 0.44
ILUX 27.35 41.66 46.59 22.64 27.38 16.14 30.29 28.02 23.38 0.04 0.07 3.30 0.10
IGOX 1.44 0.00 9.14 5.88 3.84 8.46 4.79 5.75 4.91 0.06 0.12 3.31 0.22
SHDX 3.32 0.00 0.00 2.70 2.46 3.94 2.07 2.48 3.11 �0.05 0.29 10.49 0.50
MLMX 8.71 0.00 0.00 5.27 6.87 5.38 4.37 5.25 6.56 0.02 0.22 2.91 0.36
MOLX 0.00 0.00 0.00 0.00 0.00 3.58 0.60 0.72 0.90 �0.12 0.29 5.61 0.67
P-Ret 0.042 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA
P-Risk 4.39 40.91 7.94 1.35 0.035 0.026 NA NA NA NA NA NA NA

Notes: This table reports the minimum risk optimal weights (%) of the iron ore-nickel sector portfolio. The abbreviations LP, QP, G, MW, C and VaR stand for the linear
programing, the mean-variance quadratic programming, and the Gaussian, mean of weights, the canonical and variance. The names and codes of the stocks are provided in
Table 1. R-ret and P-Risk are the portfolio's return and risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean weights excluding CDaR and Minimax
and CDaR, respectively. The target portfolio return is 0.042%.
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is the rootstock of the iron ore-nickel portfolio according to the
c-vine modeling. The descriptive statistics indicate that BHP BIL-
LITON (BHPX) has the largest return relative to risk in the entire
portfolio. The risk and return of the portfolios indicate that the
modeling framework, which combines the pair c-vine copula with
portfolio optimization, outperforms the quadratic portfolio opti-
mization based on the empirical variance-covariance matrix, an-
other indication that the pair vine copulas are suitable to capture
complex dependence features from the marginal and joint
distributions.

A synthesis of the portfolio optimization indicates that it is
worth considering pair vine copulas in portfolio optimization gi-
ven the edge they provide in the estimations. The interpretation of
the multiple weight allocations in terms of “average model con-
vergence” is shown to be an effective alternative way to deal with
the investment confidence problem faced by the mining investors
during the stock selection process. Our proposed modeling fra-
mework uncovers the dependence risk and resource allocation risk
of the Australian gold and iron ore-nickel portfolios.
5. Conclusions

The research into the fields of asset dependence and portfolio
optimization has attracted significant attention from both the fi-
nance academics and practitioners since the seminal work of
Markowitz (1952). It is now common that while the Markowitz
(1952)'s mean-variance optimization constitutes the foundation of
the modern portfolio theory, it suffers from several drawbacks
including, among others, the assumptions of normally distributed
returns and a constant linear correlation structure of portfolio
assets. Hence, an efficient approach to portfolio optimization must
appropriately accommodate not only the stylized facts in the dis-
tributional characteristics of asset returns (Samuelson, 1970;
Rubinstein, 1973; Clark, 1973) but also their conditional depen-
dence structure (Longin and Solnik, 2001; Engle, 2002).

This article addresses the dependence characteristics and risks
of Australian gold and iron ore-nickel stock portfolios under spe-
cific market conditions. The dependence structure and optimal
weight allocation characteristics of the portfolios is also examined.
The minimum risk optimal portfolios are estimated using multiple
risk measures combined with linear and nonlinear optimizations
methods. An integrated modeling framework of the pair vine co-
pulas and portfolio optimization with respect to the variance risk
measure is also implemented with the purpose of improving the
accuracy of the estimations.

Our results confirm the suitability of the r-vine and c-vine co-
pula models in gauging the complex and nonlinear dependence
structure of the stocks across three financial period scenarios of
the two portfolios: the pre-GFC (January 2005–July 2007), the
coincident GFC (July 2007–December 2009) and the post-GFC
(January 2010–July 2012). Based on the dependence risk of the
stocks and the high and low dependence risk features of the
portfolios in specific market conditions, the gold stocks are found
to be less risky than the iron ore-nickel stocks during times of fi-
nancial uncertainty and crisis periods characterized by low or no
confidence in the stock markets. Gold therefore retains the re-
putation it has ever commanded of being a safe haven in crisis
periods. On the other hand, the iron ore-nickel stocks are found to
be a better investment choice when the markets behave normally
since their dependence risk is rather high in times of financial
uncertainty characterized by low or no confidence in the stock
markets.

Regarding the multiple risk measure-based portfolio optimi-
zations, the weight allocation is not similar across models where
different risk measures are used. This finding suggests that in-
vestors in the Australian gold and iron ore-nickel sectors should be
aware of these weight differences and look for average model 
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convergence in order to mitigate the uncertainty they face when
selecting stocks for investment. We show that the average model
convergence occurs in some stocks which could be considered as
good candidates for investment. The use of the average model
convergence also has useful implications for portfolio manage-
ment and optimization as it spotlights the stocks where some,
most or all of the models converge. It also reduces the significance
of the problem of trying to find the best risk measure to be used
for the optimization of portfolios. From a practical point of view,
the weight allocation differences should be considered in order to
make an appropriate choice (based on the return appetite and risk
tolerance) of the risk measure to be used for the optimization of
portfolios. Finally, our results point out that the integration of the
pair vine copulas and portfolio optimization does provide an edge
in the estimations in terms of risk and return tradeoffs.

Overall, the financial methodology implemented in this paper
is useful for policy purposes and could also provide suggestions for
investing in the Australian mining sectors. The gold portfolio, for
instance, could be used to hedge investment positions in equity
sectors which have high dependence risk during crisis periods.
Moreover, if multiple sector portfolios are modeled, their depen-
dence risk characteristics and differences could be combined to
design risk management frameworks and hedging strategies that
can be used to manage the risk of loss during market downturns.
For their part, policymakers can apprehend the level of systemic
risk when the economy relies heavily on the performance of a
specific market sector (e.g., the mineral and energy resources
sectors in Australia and Canada), which has the potential to trigger
strong contagion affects and lead to recessions. By taking this in-
formation into consideration, policymakers could device risk
management frameworks to deal with extreme market downturn
events. The fit of the multiple risk measure-based portfolio opti-
mization also enables investors to identify, with greater con-
fidence, the mining stocks that are good candidates for
investment.
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