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a b s t r a c t

Generally seepage analysis and stress–strain analysis are conducted separately in the analysis
of dams with varied water levels, which neglects the impact of soil deformation on seepage.
The impact, however, is significant when the water level varies greatly. In this study, a simplified
approach for consolidation analysis of unsaturated soil is used to conduct numerical simulations of
water-filling in an earth-rock dam. Pore water pressure and phreatic line are simultaneously obtained
in addition to stress and displacement within the dam. The computational results show that due to the
coupling effect between deformation and pore water pressure, the development of phreatic line within
the core-wall of the dam is quicker than that computed from unsaturated seepage analysis without
coupling deformation. The variations of pore water pressure are related not only to unsaturated
seepage induced by variations of water level, but also to the excess pore water pressure induced by
deformation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

When a dam is subjected to varied water levels, its seepage
analysis and stress–strain analysis are usually conducted sepa-
rately. Seepage analysis is firstly carried out and subsequently
followed by stress–strain analysis. Based on such an approach, the
impact of stress–strain properties of soil on seepage is neglected.
Seepage analysis is a classic topic in soil mechanics and it can be
conducted by using many numerical methods such as the
routine finite difference method, the finite-volume method, the
boundary-fitted coordinate transformation method, the finite
element method, the numerical manifold method, the meshless
method etc. (Bathe and Khoshgoftaar, 1979; Darbandi et al., 2007;
Desai, 1976; Jiang et al., 2010; Jie et al., 2004; Lam and Fredlund,
1984; Li et al., 2003; Zheng et al., 2005). The soil mass below
the phreatic line is under saturated conditions with positive
pore water pressure, then seepage theories for saturated
soil are applicable. Regarding the soil mass above the phreatic
line with negative pore water pressure, seepage theories for
unsaturated soil are required and the coefficient of permeability
varies with negative pore water pressure (Fredlund and Rahardjo,
1993).

If the variation in water level is small, it is generally believed
that the seepage is marginally affected by the stress–strain

properties of soil. However, when the water level varies greatly,
the impact of stress–strain properties of soil on seepage cannot be
neglected and consolidation theories are required. Biot’s consoli-
dation theory has been extensively used in the analysis of
saturated soil (Biot, 1941; Sandhu and Wilson, 1969). However,
if negative pore water pressure exits, the consolidation theories
for unsaturated soil will be more suitable.

The consolidation model coupling deformation, pore water
pressure and pore air pressure was first proposed by Barden
(1965). Closed formulations were derived by using continuity
equations of water and gas, Darcy’s law, suction state function,
Bishop’s effective stress equation and the relationship between
porosity and effective stress. Other typical consolidation formula-
tions were proposed by Scott (1963), Lloret and Alonso (1980),
and Fredlund et al. (Fredlund and Hasan, 1979; Fredlund and
Morgenstern, 1976; Fredlund and Rahardjo, 1993).

In this paper, a simplified approach for consolidation
analysis of unsaturated soil suggested by Shen (2003) is used to
conduct consolidation analysis of an earth-rock dam subjected
to water filling. This approach is based on Bishop’s effective
stress (Bishop, 1959). By introducing the air drainage ratio, pore
air pressure can be solved indirectly and is no longer treated as an
unknown quantity in governing equations, greatly simplifying the
amount of computation and the complexity of programming. It
has been successfully used to analyze surface cracks on clay by
Deng and Shen (Deng et al., 2003, 2006; Deng and Shen, 2006).
Here, this approach is employed to analyze the seepage in an
earth-rock dam during water filling and to study the impact of
deformation of soil on the development of phreatic line.
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2. Methodology

2.1. Governing equations for consolidation analysis

To be consistent with the general mechanical analysis, sign
convention used in elasticity mechanics is adopted in this section
unless otherwise stated. Such sign convention is opposite to that
generally used in soil mechanics. In order to assure the value of
suction positive, suction is defined as s¼uw#ua, different from
the conventional definition s¼ua#uw, where ua is the pore air
pressure and uw is the pore water pressure.

Bishop’s effective stress is adopted with its definition as
follows:

s0 ¼ s#uaþwðua#uwÞ ð1Þ

where s0 is the effective stress and s is the total stress. This
expression is identical to that using sign convention in soil
mechanics.

The above equation can be written as

s¼ s0þua#wðua#uwÞ ð2Þ

Then we can get:

Ds¼Ds0þDua#Dwð#sÞ#wðDua#DuwÞ ð3Þ

and

Dw¼ @w
@s

Ds¼
@w
@s
ðDuw#DuaÞ ð4Þ

Substituting the above equation into Eq. (3) yields

Ds¼Ds0þ 1#w# @w
@s

s

! "
Duaþ wþ @w

@s
s

! "
Duw ð5Þ

The above expression can also be derived by using sign
convention in soil mechanics.

According to the simplified approach for consolidation analysis
(Deng et al., 2003; Shen, 2003), pore air content (pore air volume
in unit total soil volume) is defined as

na ¼ ½1#ð1#chÞSr'n ð6Þ

where n is the porosity, Sr is the degree of saturation and ch is the
volumetric coefficient of air solubility, which is approximately
0.02 at 20 1C. From Boyle’s law, the incremental formulation for
pore air pressure is determined as

Dua ¼#ð1#xÞ
paþua

na
Dna ¼#PDna ð7aÞ

P¼ ð1#xÞ
paþua

na
ð7bÞ

where pa is the atmospheric pressure and x is the air drainage
ratio, which is defined as the ratio of partially drained gas mass to
completely drained gas mass, i.e.

x¼ Dqa

raDna
ð8Þ

where Dqa is the drained gas mass and ra is the pore air density.
When pore air content is changed from initial pore air content

na0 to na, the pore air pressure is changed from 0 to ua accord-
ingly. Eq. (7) can be re-written as

Dua

uaþpa
¼#

1#x
na

Dna ð9Þ

When the air drainage ratio x is constant, integrating the
above equation yields the following relationship between pore air
pressure and pore air content:

ua ¼
na0

na

! "1#x
#1

" #

pa ð10Þ

where na0 is the initial pore air content, ¼[1#(1#ch)Sr0]n0, n0 is
the initial porosity and Sr0 is the initial degree of saturation.

If the air is completely drained,

x¼ 1, ua ¼ 0 ð11Þ

If the air is completely undrained,

x¼ 0, ua ¼
na0

na
#1

! "
pa ð12Þ

From Eq. (6), na is a function of Sr and n. By differentiating na

with respect to Sr and n, we can get

Dna ¼
@na

@Sr
DSrþ

@na

@n
Dn¼

@na

@Sr

@Sr

@s
ðDuw#DuaÞþ

@na

@n
Dn ð13Þ

where

DSr ¼
@Sr

@s
Ds¼

@Sr

@s
ðDuw#DuaÞ ð14Þ

From Eqs. (7) and (13), we can get

Dua ¼#
P @na
@Sr

@Sr
@s

1#Pð@na=@SrÞð@Sr=@sÞ
Duw#

P @na
@n

1#Pð@na=@SrÞð@Sr=@sÞ
Dn ð15Þ

For a soil, the change in porosity is equal to the change in
volumetric strain, i.e. Dn¼Dev. Substituting Eq. (15) into Eq. (5) yields

Ds¼Ds0þA1DuwþA2Dev ð16aÞ

where

A1 ¼
wþð@w=@sÞs#Pð@na=@SrÞð@Sr=@sÞ

1#Pð@na=@SrÞð@Sr=@sÞ
,

A2 ¼
ðwþð@w=@sÞs#1ÞPð@na=@nÞ

1#Pð@na=@SrÞð@Sr=@sÞ
ð16bÞ

2.2. Numerical schemes

The continuity equation in consolidation analysis is expressed as

@ux

@x
þ
@uy

@y
þ
@uz

@z
þ

1
rw

@ðrwnSrÞ
@t

¼ 0 ð17Þ

where ux, uy and uz are the velocities along x, y and z directions
respectively and rw is the density of pore water. Then we can get

#
1
gw

@
@x

kx
@h
@x

 !
þ
@
@y

ky
@h
@y

 !
þ
@
@z

kz
@h
@z

 !" #
þ ~Sr

@ev

@t
þSs

@h
@t
¼ 0

ð18aÞ

~Sr ¼ Srþ
nPð@na=@nÞð@Sr=@sÞ

1#Pð@na=@SrÞð@Sr=@sÞ
, Ss ¼ nbSr#

nð@Sr=@sÞ
1#Pð@na=@SrÞð@Sr=@sÞ

ð18bÞ

where h¼ gwh¼ gwz#uw and b¼ ð1=rwÞð@rw=@uwÞ.
Hence, the corresponding finite element formulations are

obtained:

~Sr½Kc'T f _dgþ½Ks'fhgfþ½Kp'f
_hg¼#

Z
½N'Tunds ð19Þ

where [Kc], [Ks] and [Kp] are computing matrices; {d} is the
deformation matrix; fhg is the matrix of water head; (d) denotes
partial differentiation with respect to time; ½N' is the matrix of
shape function; and un is the flow rate on the boundary.

The incremental expression of Eq. (19) within a time incre-
ment t#Dt(t is

~Sr½Kc'T fDdgþðyDt½Ks'Tþ½Kp'Þfhg¼#Dt
Z
½N'T ½yunþð1#yÞun#1'ds

þ½Kp'fht#Dtg#Dtð1#yÞ½Ks't#Dtfht#Dtg ð20Þ

where y is a constant. Its value varies between 0.5 and 1, and is
generally 2/3.
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The equilibrium equation in consolidation analysis is written as
Z
½B'T fDsgdV ¼ fDFg ð21Þ

where {DF} is load increment matrix. Eq. (16a) is re-written in
matrix form as

fDsg¼ fDs0gþA1fMgDuwþA2fMgfMgT fDeg¼ ½D'fDegþA1fMgDuw

ð22Þ

where

½D' ¼ ½D'þA2fMgfMgT ð23aÞ

fMg¼ 1 1 1 0 0 0
# $T ð23bÞ

Substituting Eq. (22) into Eq. (21) and taking into account
Dh¼#Duw yield

½K'fDdg#A1½Kc'fDhg¼ fDFg ð24aÞ

where [K] is stiffness matrix. By considering Dh¼ ht#ht#Dt ¼
h#ht#Dt , we can get

½K'fDdg#A1½Kc'fhg¼ fDFg#A1½Kc'fhgt#Dt ð24bÞ

To maintain the symmetry of coefficient matrix when
Eq. (24b) is grouped with Eq. (20) as simultaneous equations,
A1½Kc'fhg is revised as ~Sr ½Kc'fhgþðA1# ~SrÞ½Kc'fhg. Subsequently,
Eq. (24b) is further re-written as

½K'fDdg# ~Sr ½Kc'fhg¼ fDFgþ½Kc'½ðA1# ~SrÞfhg#A1fhgt#Dt' ð25Þ

Eqs. (25) and (20) can be solved together. Iterative calculation
is required due to the unknown quantity h on the right-hand side
of Eq. (25).

3. Results

The simplified consolidation approach for unsaturated soils
better corresponds to reality than that for saturated soils regard-
ing numerical simulations of earth-rock dams. At the same time,
computational complexity is not increased too much. So it is very
feasible in carrying out numerical analysis of earth-rock dams.

Fig. 1 shows the mesh of the cross-section of a high core-wall
dam. The bottom elevation of the mesh is 142 m and the top
elevation is 283 m. Upstream side is on the left and the highest
water level is 278 m. Downstream side is on the right and the
water level is kept at zero.

As shown in Fig. 1, the core-wall is located in the central zone
and its two sides are rockfill zones. The saturated permeability of
the core-wall material is 8.64)10#5 m/d (i.e., 1.0)10#7 cm/s)
and that of rockfill material is 86.4 m/d (i.e., 0.1 cm/s). The degree
of saturation and relative permeability coefficient of the two
materials are provided in Tables 1 and 2 (Wu, 1998).

The parameter w in Eq. (1) is related to suction as suggested by
Khalili and Khabbaz (1998)

w¼ ðs=seÞ#m, if sZse; w¼ 1, if sose ð26Þ

where se is air entry value and m is a constant (usually its value
is 0.55).

The constitutive model proposed by Shen and Zhang (1988) is
used in this study. The deformation modulus in this model is
similar to that in Duncan–Chang’s model (Duncan and Chang,
1970), i.e.,

Et ¼ 1#
Rf ð1#sinfÞðs1#s3Þ
2ccosfþ2s3 sinf

% &2

KPa
s3

Pa

! "n

ð27Þ

Different from Duncan–Chang’s model, the Poisson ratio in this
model is calculated as

mt ¼
1
2
#cd

s3

pa

! "nd EiRf

ðs1#s3Þf

1#Rd

Rd
1#

Rf Sl

1#Rf Sl

1#Rd

Rd

! "
ð28Þ

where Ei ¼ KPaðs3=PaÞn; cd, nd, Rd are parameters.
The parameters of constitutive model used in this analysis are

shown in Table 3.

Core-wall 
Rockfill zone Rockfill zone 

Fig. 1. FEM mesh of a core-wall dam.

Table 1
Degree of saturation, relative permeability coefficient and suction of the rockfill
material.

Suction, s (kPa) Degree of
saturation, Sr

Relative permeability
coefficient, kr

0 1 1
5.38 0.79 0.32
12.3 0.39 0.012
17.7 0.32 1.3e-3
23.8 0.29 1.6e-4
37.7 0.25 4.0e-5
68.9 0.22 1.3e-5
100 0.20 1.0e-5
200 0.17 2.3e-6
500 0.15 5.2e-7
1000 0.13 1.3e-8
1500 0.13 3.2e-10

Table 2
Degree of saturation, relative permeability coefficient and suction of the core-wall
material.

Suction, s (kPa) Degree of
saturation, Sr

Relative permeability
coefficient, kr

0 1 1
16.4 0.95 0.61
21.2 0.9 0.38
29.2 0.825 0.14
44.8 0.75 0.054
61.2 0.70 0.027
85.6 0.65 0.014
140 0.575 6.3e-3
210 0.50 2.9e-3
330 0.425 1.2e-3
940 0.35 1.3e-4
1440 0.325 1.0e-4

Table 3
Parameters for the core-wall dam.

Item c (kPa) f0 (deg.) Df (deg.) Rf K n cd nd Rd

Upstream rockfill zone 0 50.8 7.36 0.63 766 0.44 0.0038 0.727 0.658
Core-wall 20 28 0 0.71 256 0.27 0.0039 1.217 0.802
Downstream rockfill zone 0 40 5 0.78 750 0.50 0.0038 0.727 0.658
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The values of other relevant parameters are set as follows. For
the rockfill material, the unit weight is 21 kN/m3, the initial
porosity 0.20, the initial degree of saturation 0.29, the air entry
value se¼20 kPa, the constant m¼0.55, and x¼1. For the core-
wall material, the unit weight is 20 kN/m3, the initial porosity
0.38, the initial degree of saturation 0.90, the air entry value
se¼20 kPa, the constant m¼0.55, and x¼1.

The simulated process includes the construction of dam and
subsequent increasing of upstream water level to 278 m. The rate
of dam construction is 0.2 m/d, i.e., 1 m rise per five days. During
the water filling, the rate of water level increase is 0.5 m/d, i.e.,
1 m rise per two days.

Fig. 2 shows the contour lines of stress, displacement and pore
water pressure on the completion of dam construction. Fig. 3
shows the results as water level climbs to the elevation of 278 m.
Fig. 4 shows the results after 10 years of water filling.

Figs. 5–10 show the computation results by decreasing soil
modulus to 2/3 and 1/2, i.e., replacing K in Eq. (27) with (2/3)K
and (1/2)K, respectively. It is found that as soil modulus
decreases, the deformation of dam becomes larger and the
corresponding phreatic line and pore water pressures are higher.
The coupling effect among pore water pressure, soil modulus and
deformation is obvious.

Fig. 11 shows the variations of phreatic line within the core-
wall computed from unsaturated seepage analysis in which the
coupling effect between deformation and pore water pressure is
not considered. From left to right, this figure shows the phreatic
lines at 0th year, 0.5th year, 3rd year, 10th year, 20th year, 50th
year, 100th year and 200th year after the water level reaches the
elevation of 276 m. It is found that due to the extremely low
permeability of core-wall material, the seepage may stabilize
until after 200 years. In the coupled analysis with simplified
consolidation approach, the pore water pressure increases
because of the deformation of core-wall as well as the seepage
of the water, hence the rising of phreatic line is quicker as

Fig. 2. Contour lines of stress, displacement and pore water pressure on the
completion of dam construction. (a) Vertical effective stress (unit: kPa).
(b) Horizontal effective stress (unit: kPa). (c) Vertical displacement (unit: m).
(d) Horizontal displacement (unit: m). (e) Pore water pressure (unit: kPa).

Fig. 3. Contour lines of stress, displacement and pore water pressure when the
upstream water level climbs to 278 m elevation. (a) Vertical effective stress (unit:
kPa). (b) Horizontal effective stress (unit: kPa). (c) Vertical displacement (unit: m).
(d) Horizontal displacement (unit: m). (e) Pore water pressure (unit: kPa).

Fig. 4. Contour lines of stress, displacement and pore water pressure after 10
years of keeping upstream water level at 278 m elevation. (a) Vertical effective
stress (unit: kPa). (b) Horizontal effective stress (unit: kPa). (c) Vertical displace-
ment (unit: m). (d) Horizontal displacement (unit: m). (e) Pore water pressure
(unit: kPa).
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compared with the uncoupled analysis. That is to say, the pore
water pressure at the bottom of core-wall is related not only to
the unsaturated seepage caused by change of water level, but also

to the excess pore water pressure induced by deformation. As soil
modulus decreases, the deformation of dam becomes larger and
the rising of phreatic line is quicker.

Fig. 6. Contour lines of stress, displacement and pore water pressure when the
upstream water level climbs to 278 m elevation (2/3K). (a) Vertical effective stress
(unit: kPa). (b) Horizontal effective stress (unit: kPa). (c) Vertical displacement
(unit: m). (d) Horizontal displacement (unit: m). (e) Pore water pressure (unit: kPa).

Fig. 7. Contour lines of stress, displacement and pore water pressure after 10
years of keeping upstream water level at 278 m elevation (2/3K). (a) Vertical
effective stress (unit: kPa). (b) Horizontal effective stress (unit: kPa). (c) Vertical
displacement (unit: m). (d) Horizontal displacement (unit: m). (e) Pore water
pressure (unit: kPa).

Fig. 8. Contour lines of stress, displacement and pore water pressure on the
completion of dam construction (1/2K). (a) Vertical effective stress (unit: kPa).
(b) Horizontal effective stress (unit: kPa). (c) Vertical displacement (unit: m).
(d) Horizontal displacement (unit: m). (e) Pore water pressure (unit: kPa).

Fig. 5. Contour lines of stress, displacement and pore water pressure on
the completion of dam construction (2/3K). (a) Vertical effective stress (unit: kPa).
(b) Horizontal effective stress (unit: kPa). (c) Vertical displacement (unit: m).
(d) Horizontal displacement (unit: m). (e) Pore water pressure (unit: kPa).
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Additionally, the parameter K in Eq. (27) is increased by
1.5 and 2.0 times to compute variations of stress, displacement
and pore water pressure. Fig. 12 shows the contour lines of pore

water pressure after 10 years of keeping the upstream water level
at 278 m elevation. The results show that as the soil modulus
increases, the coupling effect between deformation and excess
pore water pressure becomes weaker and thus the computed
phreatic line is more close to that computed from unsaturated
uncoupled seepage analysis.

4. Conclusions

In this study, a simplified approach for consolidation analysis
of unsaturated soil is applied to numerical simulation of an earth-
rock dam during the process of water-filling. The computational
results include stress and displacement fields within the dam and
the variations of pore water pressure and phreatic line. The
results show that due to the coupling effect between deformation
and pore water pressure, the development of pore water pressure
in the core-wall of the dam is quicker than that computed from
unsaturated seepage analysis without coupling deformation. As
soil modulus decreases, the deformation of the dam becomes
larger and the coupling effect is stronger, leading to quicker
development of pore water pressure and phreatic line. The
variations of pore water pressure within the core-wall are related
not only to unsaturated seepage induced by variations of water
level, but also to the excess pore water pressure induced by
deformation. These may explain why there is high water pressure
measured shortly after the completion of earth-rock dam.

It should be noted that the computations of transient seepage
for unsaturated soils are difficult to converge as compared with

Fig. 9. Contour lines of stress, displacement and pore water pressure when the
upstream water level climbs to 278 m elevation (1/2K). (a) Vertical effective stress
(unit: kPa). (b) Horizontal effective stress (unit: kPa). (c) Vertical displacement
(unit: m). (d) Horizontal displacement (unit: m). (e) Pore water pressure (unit: kPa).

Fig. 10. Contour lines of stress, displacement and pore water pressure after 10
years of keeping the upstream water level at 278 m elevation (1/2K). (a) Vertical
effective stress (unit: kPa). (b) Horizontal effective stress (unit: kPa). (c) Vertical
displacement (unit: m). (d) Horizontal displacement (unit: m). (e) Pore water
pressure (unit: kPa).

t = 0a t = 0.5a 

t = 3a

t = 10a

t = 20a t = 50a

t = 100a

t = 200a

Fig. 11. Variations of phreatic line computed from unsaturated seepage analysis
at different times after the upstream water level reaches 278 m elevation.

Fig. 12. Contour lines of pore water pressure after 10 years of keeping the
upstream water level at 278 m elevation (computed by using different values of
soil modulus). (a) 1.5 K and (b) 2.0 K.
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steady seepage analysis due to iterative calculations related to a
variety of factors such as phreatic line, permeability coefficient
and soil modulus. The computational parameters should be in line
with engineering practice. Extreme values of permeability coeffi-
cient and of parameters of constitutive model may aggravate
computational convergence and meaningful results are not likely
to be achieved.
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