
Information and Software Technology 56 (2014) 395–407
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Dynamic stopping criteria for search-based test data generation for path
testing
0950-5849/$ - see front matter � 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2014.01.001

⇑ Corresponding author at: Department of Computer Science, Bogor Agricultural
University, Indonesia. Tel.: +62 8111174974.

E-mail addresses: i.hermadi@student.adfa.edu.au, irmanhermadi@apps.ipb.ac.id
(I. Hermadi), c.lokan@adfa.edu.au (C. Lokan), r.sarker@adfa.edu.au (R. Sarker).

Downloaded from http://www.elearnica.ir
I. Hermadi a,b,⇑, C. Lokan b, R. Sarker b

a Department of Computer Science, Bogor Agricultural University, Indonesia
b School of Engineering and Information Technology, UNSW Canberra, Canberra, ACT, Australia

a r t i c l e i n f o
Article history:
Received 30 October 2012
Received in revised form 14 December 2013
Accepted 2 January 2014
Available online 10 January 2014

Keywords:
Path testing
Evolutionary algorithm
Software reliability growth model
a b s t r a c t

Context: Evolutionary algorithms have proved to be successful for generating test data for path coverage
testing. However in this approach, the set of target paths to be covered may include some that are infea-
sible. It is impossible to find test data to cover those paths. Rather than searching indefinitely, or until a
fixed limit of generations is reached, it would be desirable to stop searching as soon it seems likely that
feasible paths have been covered and all remaining un-covered target paths are infeasible.
Objective: The objective is to develop criteria to halt the evolutionary test data generation process as soon
as it seems not worth continuing, without compromising testing confidence level.
Method: Drawing on software reliability growth models as an analogy, this paper proposes and evaluates
a method for determining when it is no longer worthwhile to continue searching for test data to cover un-
covered target paths. We outline the method, its key parameters, and how it can be used as the basis for
different decision rules for early termination of a search. Twenty-one test programs from the SBSE path
testing literature are used to evaluate the method.
Results: Compared to searching for a standard number of generations, an average of 30–75% of total com-
putation was avoided in test programs with infeasible paths, and no feasible paths were missed due to
early termination. The extra computation in programs with no infeasible paths was negligible.
Conclusions: The method is effective and efficient. It avoids the need to specify a limit on the number of
generations for searching. It can help to overcome problems caused by infeasible paths in search-based
test data generation for path testing.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Testing is a critical but expensive part of the software develop-
ment life cycle [1–3]. There is considerable interest in ways to
automate testing, to reduce the cost and to gain more confidence
in the result [4].

A major task in software testing is test data generation [3].
Search-based test data generation aims to automate this task, by
searching for test cases (inputs, or pairs of input–output) that sat-
isfy chosen testing criteria.

Most research in this area considers ‘‘white box’’ testing, or
structural coverage, in which the aim is to ensure that executing
a collection of test cases results in all parts of a program being
tested. This can be interpreted in various ways, including ‘‘state-
ment coverage’’ (when the program is tested with all of the test
cases, somewhere along the line every statement in the program
is executed at least once), ‘‘branch coverage’’ (both outcomes at
every logical branch in the program are executed at least once),
and ‘‘path coverage’’ (every distinct path through the code is exe-
cuted at least once). Path coverage is the strongest form of struc-
tural coverage [5]. This paper considers path coverage.

Many approaches have been used in path testing [2,6]. Evolu-
tionary path testing, which uses an evolutionary algorithm (e.g. ge-
netic algorithm ‘‘GA’’) as the search engine has been found effective
[6,7]. In this research, GA is used as the search engine.

A challenge for any search-based approach is deciding when to
terminate the search. If everything sought has been found, the
search can stop, but what if not every target has been found yet?
Further searching might find more targets, or it might be fruitless
because the remaining targets are infeasible (cannot ever be
found). If we do not know whether unfound targets are feasible
or not, there is a tradeoff between possibly wasting effort searching
for something infeasible and possibly missing something feasible
by stopping the search too early. In general, an evolutionary algo-
rithm requires one or more stopping criteria to halt the evolution
[8]. So far, the most widely used criteria are objective value, fitness

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.01.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.01.001
mailto:i.hermadi@student.adfa.edu.au
mailto:irmanhermadi@apps.ipb.ac.id
mailto:c.lokan@adfa.edu.au
mailto:r.sarker@adfa.edu.au
http://dx.doi.org/10.1016/j.infsof.2014.01.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


396 I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407
value, number of generations, time elapsed, number of stall gener-
ations, and stall time.

In path testing, some target paths may be infeasible. An infeasi-
ble path is one for which there is no test data that will cause it to be
executed. Searching for data to cover such a path can never suc-
ceed. Some criterion is needed to stop the search, to save worthless
searching. This means being confident that further searching is in-
deed worthless: that every path that has not been covered yet is
infeasible.

Some stopping criteria used in path testing are path achieve-
ment [9], number of generations [10–19], and convergence (lack
of fitness improvement) [2,4,20]. Number of generations is the
most popular stopping criterion for path testing, followed by con-
vergence. Deciding the maximum number of generations means
defining the value of a parameter. This is more a trial and error pro-
cess than an analytic one. The convergence criterion monitors the
best fitness value improvements for certain number of generations.
This involves two parameters: improvement size, and the number
of stall (or monitored) generations. For example, Mansour and
Salame [2] watched for no best fitness improvement for consecu-
tive 50 generations in order to stop the search. Bueno and Jino
[4,20] used the convergence stopping criterion in conjunction with
infeasible path detection.

The research objective is to find one or more criteria that can be
used to decide to terminate the evolutionary test data generation
process as soon as it is not worth continuing, without lessening
the testing confidence level. This can be achieved if there is a
mechanism that can predict the likelihood that the generator will
produce new test data that can cover an as-yet-uncovered path
in the next generations. Searching can stop when that likelihood
becomes low, suggesting that paths that have not been covered
yet in the search process are most likely infeasible.

The method proposed in this paper was inspired by reliability
growth models that are used in software testing [21]. These models
can predict the testing time required to achieve given reliability, or
the reliability achieved after a certain testing duration has elapsed.

In software reliability growth modeling, reliability means the
probability of failure-free operation of software at a particular time
in a certain environment; in other words, the probability that fur-
ther testing will not expose new bugs. When this reaches chosen
levels, testing can stop. There is a risk that undiscovered defects re-
main, but the risk is judged to be low. Analogously, in search-based
test data generation, it can be interpreted as the probability that
further searching will not find test data that covers new target
paths. There is a risk that test data could still be found to cover
uncovered paths, but the risk is judged to be low.

The stopping criterion we propose and evaluate is to halt the GA
at the point where it is judged with high confidence that the prob-
ability of finding test data to cover a new path in the next genera-
tion of searching is less than some threshold.

This paper is organized as follows: Section 3 describes related
work. Section 2 presents some theoretical background to under-
standing this research, and Section 4 describes the proposed ap-
proach in detail. Section 5 describes the test programs, and the
experimental design and setup. Section 6 presents the results.
The results are analysed and discussed in Section 7. Threats to
validity are discussed in Section 8. Section 9 concludes the paper.
2. Background

2.1. Path testing

The objective of path testing is to search for a collection of test
cases (inputs to a program) that between them lead to the traversal
of all logical paths through the program.
In general, path testing process consists of two major steps: tar-
get paths generation, and test data generation.

2.1.1. Target paths generation
Target paths generation means identifying a set of logical exe-

cution pathways through the program, that we hope should all
be exercised during testing.

The source code is needed to construct its logical control flow,
which can be presented in a control flow graph (CFG). This graph
can be automatically generated by using appropriate programming
language grammar in which the program is written.

From the CFG, the different logical paths through the program
need to be enumerated. A logical path is a particular flow of execu-
tion through the program, which is determined by the decisions
made at each decision point between the program’s entry point
and its exit point.

For a program without loops, the number of logical paths is
equal to its cyclomatic complexity (CC) number, or number of basic
paths.

The presence of loops can increase the number of logical paths
greatly. Each different number of iterations of a loop (e.g. zero: the
loop is not executed at all; one: the loop is executed only once be-
fore its termination condition is met; two: the loop is executed
twice before its termination condition is met) is considered to be
a different logical path. For many loops the possible number of iter-
ations is unknown. Target paths should include zero iterations, one
iteration, and multiple iterations.

In order to make testing practical, in this research we limit the
number of iterations to zero, one and two iterations. Thus a pro-
gram that has a single loop will have at least 3 target paths; not
entering the loop, entering the loop once, and repeating the loop
twice. Even with this limited version of path testing, the presence
of multiple loops greatly increases the number of target paths. Two
loops in sequence have 9 distinct logical paths (3 � 3 repetitions).
Nested loops have 7 distinct paths (1 + (2 � 3) repetitions).

2.1.2. Test data generation
Generating test data that fulfill path coverage is the main task in

path testing. It is the process of creating test data, either heuristi-
cally or randomly. In a heuristic approach, the process is guided by
some rules to search for required test data; the alternative is that
random test data is generated.

2.2. Evolutionary path testing

Path testing that uses any methods from the evolutionary algo-
rithms family is called evolutionary path testing.

In this work, genetic algorithm (GA) is used as the test data gen-
erator. A chromosome represents one set of test data (a collection
of input values that represents a single test case). Thus the popula-
tion is a collection of test cases. Each test case causes one target
path to be executed; most of the time a target path can be covered
by many test cases. The aim is to evolve a set of test cases that
causes all target paths to be executed.

Generic steps in GA are (1) Initialization, (2) Evaluation, and (3)
Do the following until any stopping criteria is met: (3.a) Selection,
(3.b) Perturbation, and (3.c) Go back to Step (2). Initialization gen-
erates the first population, randomly or with some knowledge.
Step (2) evaluates all members of the population using a given fit-
ness function. In (3.a) some members of the population are se-
lected for perturbation using genetic operators. Section (3.b)
applies those operators: crossover is responsible for mixing the ge-
netic traits, and mutation for introducing new genetic traits.

The generator keeps a list of target paths that have not yet been
covered. At the beginning of the evolution, every target path is in
that list. In each generation, each test case in the population is



I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407 397
evaluated (its fitness is calculated) against each uncovered target
path. When a test case is found to cover a target path, it is remem-
bered and that target path is removed from the list. As the search
progresses, the list of paths for which test data is sought changes
dynamically. Searching can stop if the list becomes empty, or when
some other stopping criterion is reached. If the list of target paths
contains infeasible paths, the list of uncovered paths will never be
empty, and another stopping criterion is essential.

2.3. Software reliability modeling

Software reliability growth models are designed to predict the
expected number of failures (failure intensity) at a certain point
in time during software testing. The calculation is based on the his-
tory of failures occurring during the testing so far.

The model used in this research is based on the Logarithmic
Poisson Execution Time Model proposed by Musa and Okumoto
in 1984 [21].

The following equations are the model basic forms [21].

lðsÞ ¼ 1
h

lnðk0hsþ 1Þ ð1Þ

kðsÞ ¼ k0

k0hsþ 1
ð2Þ

lðsÞ represents the number of failures occurred during execution
time s. kðsÞ is the failure intensity, the expected number of failures
at a certain point in time. k0 is the initial failure intensity. h is the
rate of reduction in the normalized failure intensity per failure.

In [21], the two unknown parameters k0 and h are estimated
using the maximum likelihood estimation method to guess the
product of U ¼ k0h by using conditional joint density function.
Two types of failure data were used for the estimations: failure
intervals and number of failures per interval. Assume that an
observation interval ð0; xp� is partitioned into a set of p disjoint sub-
intervals ð0; x1�; ðx1; x2�; . . . ; ðxp�1; xp� and the number of failures in
each subinterval is recorded. Let ylðl ¼ 1;2; . . . ; pÞ be the number
of failures in ð0; xl�. So,

ĥ ¼ 1
yp

ln bUxp þ 1
� �

ð3Þ

and

k̂0 ¼
bU
ĥ

ð4Þ

Three assumptions are made in the Logarithmic Poisson model
[21]. We observe that they correspond well to the situation of
search based path testing with GA. The first assumption is that
there is no failure at time s ¼ 0; this corresponds to no paths being
covered when the test data generation is yet to start. The second
assumption is that the failure intensity will decrease exponentially
with the expected number of failures experienced; this corre-
sponds to the probability of covering a new path in each generation
of searching decreasing exponentially as the search progresses. The
third assumption is that for a time interval Ds the probability of
more than one failure during ðs; sþ Ds� tends to zero as the time
interval tends to zero; this underpins the model being a Poisson-
type model.
3. Related work

The following describes related work on metaheuristic based
test data generation, input domain reduction, length of test cases,
and automated testing tools. McMinn et al. [3] conducted a survey
on search based software test data generation in 2004. The survey
covers the use of metaheuristic search techniques for generating
test data and presents the direction of research in the area.

In 1994, Pei et al. [9] were inspired by the lack of efficacy and effi-
ciency in the search methods used for generating test data using ac-
tual program execution. They developed a path-coverage test data
generator that employs a genetic algorithm, using two proposed fit-
ness functions, i.e. considering number of matching branches vs.
summing of all the branch functions. A minimum–maximum pro-
gram was used for the test program, whose output is the minimum
and maximum numbers in an array of integer numbers. They found
that 8 out of 21 selected target paths were infeasible, and showed
that their approach could find all feasible target paths.

In 2000, Lin and Yeh [10] extended Jones et al.’s work in 1996
[22]. Jones et al. had worked on branch testing using weighted
Hamming distance. Lin and Yeh increased the level of coverage
from branch testing to path testing, and extended the ordinary
(weighted) Hamming distance so that it can handle different order-
ing of the target paths that have the same branch nodes. They used
the triangle classifier as the test program and reported that the
quality of generated test data is higher than the ones produced
by random testing.

In the same year, Bueno and Jino [4] proposed an approach that
used control and data flow dynamic information to fulfill path cov-
erage testing. The number of coincidence nodes between a target
path and the actual (or executed) path was used as a similarity
metric, that is summed up with normalized branch distance pred-
icate in nodes where the actual path deviated from the target, to
make up the fitness function. In addition, they also tackled the
identification of potentially infeasible paths by monitoring the pro-
gress of the search for required test data. Six test programs were
used. They continuing the work on evolutionary path testing in
2001 [23] and 2002 [20], with similar fitness function.

In 2003, Hermadi and Ahmed [12] presented evolutionary path
testing using multiple paths, i.e. attacking all target paths at once
instead of seeking to cover a single path in each search. They pro-
posed and investigated different fitness functions, that are com-
posed of combinations of approximation level and branch
distance (similar to Bueno and Jino’s work [4]). Things considered
in forming the fitness functions were path traversal technique,
neighborhood influence, weighting, and normalization. Three test
problems were used. The work suggested promising results, and a
particular fitness function was identified that outperformed the
others (that function is used in this research; see Section 5.3 below).

One year later, Mansour and Salame [2] compared two algo-
rithms to generate data for path testing, i.e. Simulated Annealing
(SA) and Genetic Algorithm (GA). Their fitness function was made
of weighted Hamming distance between the operands of each
predicate of corresponding nodes from the target path and the ac-
tual (or executed) path. Eight test problems were exercised to val-
idate the approach, with cyclomatic complexity numbers ranging
between 2 and 14. The empirical results showed that SA tended
to outperform GA slightly.

In 2008, Ahmed and Hermadi [15] extended Hermadi and Ah-
med’s work in 2003 [12]. A rewarding scheme was introduced
and more efficient multiple path evolutionary path testing was
developed.

In the same year, Chen and Zhong [16] proposed multi-popula-
tion GA (MPGA) for path testing. The fitness function was the sum-
mation of all branch predicate distances between a target path and
the actual path. Triangle classifier was the only test program used
to validate the approach. The work confirmed empirically that
MPGA is more effective and efficient than the ordinary single pop-
ulation one.

In 2006, McMinn et al. [24] proposed Species per Path approach
to factor out target paths in path coverage testing, such that
searching for infeasible paths could be avoided. This means each



398 I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407
path has its own evolutionary process that can be executed in par-
allel. The experimental results show the approach is effective and
efficient.

In 2007, Harman et al. [25] proposed an approach to dynami-
cally reduce the input domain size using symbolic execution. The
input is fed into the program and executed symbolically, and then
the constraints in the branches are traced back to the input domain
so that its size can be reduced. The approach is effective in reduc-
ing the input domain size, although it is time consuming work.

In 2010, Lakhotia et al. [26] developed a test data generator
AUSTIN to satisfy branch coverage for C programs. The generator
uses an evolutionary test framework. They validated the proposed
approach on deployed automotive systems. The test results show
that the approach is effective and efficient in generating test data.

In 2011, Arcuri [27] worked on the length of test cases to
achieve branch coverage in object-oriented programs. A test case
is a sequence of method calls. In his study, the length of test cases
can grow easily and, intuitively, longer test cases can cover more
branches, i.e. achieve higher branch coverage. Arcuri proposed sev-
eral techniques that can control its growth. The experimental re-
sults, which made use of the EVOSUITE tool [28], show that the
methods can significantly improve the test case generator perfor-
mance. Further, Arcuri added that longer test cases made difficult
test programs easier to test [27].
Fig. 1. Plot of kðsÞ.
4. Proposed approach

In general, GA has several stopping criteria that can be used to
end its evolutionary process.

In path testing, it is quite likely that some target paths are infea-
sible, and no test data can lead to execution of these paths. Having
one or more of these paths in the set of target paths will mean that
GA can never stop as a result of having covered all target paths;
other stopping criteria must be used to stop the search.

We propose that the Logarithmic Poisson execution time model
can be used to predict the probability of finding new path(s) within
a generation of GA based path testing. This is analogous to predict-
ing failure intensity in a given time interval in modeling software
reliability growth: searching for one more generation is analogous
to testing for one more time interval.

This probability can be employed as a new stopping criteria for
GA. The search can be terminated when the probability of finding
test cases to cover new paths falls below a threshold; at that point,
it is assumed that further searching is unlikely to cover more paths,
and that any paths that remain uncovered are infeasible. By setting
the threshold high or low, one can trade off searching time against
the confidence that all feasible paths have been covered.

To apply this idea, at a given generation number s we need to
calculate the failure intensity kðsÞ from Eq. 2. This means we must
know the values for k0 and h. For k0 we use the number of paths
found in the first generation of searching; h is found by fitting a
curve of the form of Eq. (2), based on the history of how many
new paths were covered in each generation so far. As the search
progresses and finds new paths, h estimation will be refined.

For example, suppose that in 25 generations of searching, we
record that 13 paths were covered in the first generation; no
new paths were covered in the second, third or fourth generations;
two further paths were covered in the fifth generation; no more
until the sixteenth generation when one further path was covered;
no more until the twenty-second generation when one further
path was covered; and no more after that. This history can be rep-
resented as a series of tuples (x; y), where x represents the genera-
tion number and y represents the number of paths newly covered
in that generation. A new tuple is added to the history with each
generation of searching.
After two generations this history can be represented as {(1,13),
(2,0)}; after five generations it would be represented as {(1,13),
(2,0), (3,0), (4,0), (5,2)}; and so on.

After the second generation, the first two points can be used to
fit a curve of the form of Eq. (2); this gives the top line in Fig. 1.
An initial value is needed for h: based on experimentation, we use
0.3.

After each generation, the curve can be re-fitted. Fig. 1 shows
the fitted curves, using this example data, obtained after each gen-
eration from the second to the twenty-fifth. The top curve is the
roughest one based on the fewest pairs of data. The bottom curve
is the finest one based on all 25 tuples.

As more data becomes available, the curves tend to converge. In
this example, the curve becomes quite stable in fewer than 10
generations.

After each generation, the fitted equation can be used to esti-
mate the probability of covering a new path at each number of
generations in the future. This can be re-cast as estimating the
probability of covering a new path in the next generation of search-
ing, allowing a decision to be made about when to stop searching.
4.1. Decision rules

One of the main research questions is how to make use of the
model to identify when to stop the evolutionary path testing be-
cause it is not useful to continue the search anymore.

There are two elements to this: the probability of covering new
paths falling below a threshold (‘‘reliability rule’’) and the stability
of the equation that predicts that probability (‘‘stability rule’’).

The reliability rule can be used to decide to stop the search
when the probability of finding new paths kðsÞ in generation s,
as given by Eq. (2), is small enough. This rule is based on the value
of kðsÞ at generation s.

Stability of the reliability equation is also important. If the
equation used to predict when to stop searching is still uncertain
enough (i.e. the estimate of h has not yet converged), it could be
premature to decide to stop searching based on the current esti-
mate of kðsÞ. This rule is based on Dh, the change in the estimate
of h at generation s.

In the experiments that follow we investigate each rule sepa-
rately, and in combination.



I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407 399
4.2. Evaluating decision rules

The performance of a rule is assessed based on how many fea-
sible paths are missed if the search stops at the number of gener-
ations suggested by the rule, and on searching time.

The number of missed paths is considered in both absolute and
relative terms: absolute meaning how many were missed; relative
meaning how many were missed when using the rule, compared to
how many were missed if the rule was not used and instead the
search stopped after a fixed number of generations.

Searching time is evaluated in terms of the number of genera-
tions of search when the rule was used, compared to the number
of generations of search when the rule was not used and instead
the search stopped after a fixed number of generations.
5. Experiments

The purpose of the experiments is to study the feasibility of
applying a reliability growth model as a stopping criterion in evo-
lutionary path testing. We compare it against the common ap-
proach of searching for a fixed number of generations. The aim is
to ascertain how much is gained or lost, in execution time and path
coverage. The considerations are overhead due to the proposed
method (computation time to apply it), searching time (how much
time is saved or lost, compared to searching for a standard number
of generations?) and searching effectiveness (how many feasible
paths remain uncovered using this stopping condition, compared
to searching for a standard number of generations?).

Other questions that have been driving forces for this work are:
What kind of information that is helpful can be extracted from the
model? What confidence level can be achieved should the ap-
proach be applied? Can the model reliability be maintained across
different runs for same test program? Or across different test
programs?

This section describes our experimental setup: selection of test
programs; choosing which test programs to use for tuning (to iden-
tify suitable values for thresholds in the decision rules) and testing;
use of GA (fitness function, parameters setup, number of runs); and
the decision rules that we investigated.
5.1. Test programs

Twenty-one programs (written in C language) were used in the
experiments. They were gathered from the literature, and have all
been used as test problems for research in test data generation in
search based software engineering (SBSE) [29]. All but three are
complete programs. The others (bG2011, fG2011, sG2011) are por-
tions of larger programs; we used the same portion as others have
used in past research in this field [30].

Between them these programs cover many elements of com-
puter programs, e.g. no loop, single loop, many loops, loops in se-
quence, nested loops, simple selection statements, and complex
selection statements with combinations of arithmetic and/or rela-
tional operators.

Table 1 presents characteristics of the test programs: number of
lines of code LOC, extended CC [31,32], number of loops L, number
of branches B (this can be either selection or loop statements, e.g.
IF, IF-ELSE, WHILE, FOR, DO), branching structure Structure, total
number of target paths P including both feasible and infeasible
paths, number of feasible paths F, and its reference(s) Refs. Struc-
ture is represented as prefix statement with the following conven-
tions: serial - and nested/inside (). For example, Fig. 2 (which
represents the Triangle test program) has 3 branches, all of which
are IF statements; it is represented as IF-(IF-ELSE-(IF-ELSE))-ELSE
in Table 1. The explanation is that the inner most IF-ELSE
statement is inside the ELSE part of the second inner IF-ELSE state-
ment and this second inner IF-ELSE is inside the IF part of the outer
most IF-ELSE statement.

The following are brief descriptions for each test program:

� mmA2008 finds the minimum and maximum values from an
array of integers.
� iA2008 sorts an array of numbers in non-decreasing order using

insertion sort method.
� bisA2008 finds the root(s) of non-linear equation using bisec-

tion method.
� mtA2008 consists of Minimaxi and Triangle in sequence.
� tA2008 determines whether three given numbers that repre-

sent three lengths on a plane form a scalene, isosceles, equilat-
eral, or not a triangle.
� binA2008 searches a key item in an array of numbers using bin-

ary method by returning its index number if the key is found
and null otherwise.
� bubA2008 sorts an array of numbers increasingly using bubble

sort method.
� gA2008 finds the greatest common divisor between any given

two integers.
� rA2008 finds the remainder in integer division.
� tM2004 (Triangle) classifies three numbers representing trian-

gle side lengths into five type triangles: scalene, isosceles, right,
iso-right, or equilateral.
� erR1985 (Expint) raises one integer to the power of the other.
� qG1997 (Quotient) calculates the quotient and the remainder of

the division of two positive integers.
� ttB2002 (Tritype) accepts three integers representing sides of a

triangle, classifies its type, and computes its area.
� eiB2002 (Expint) accepts an integer and a float variable for

exponentiation.
� qB2002 (Quotient) is similar to QG1997 with a slightly different

process.
� scB2002 (Strcomp) compares three characters and a string with

five positions.
� fcB2002 (Floatcomp) compares three floating point numbers

and has some selections.
� fB2002 (Find) seeks for a certain key in an array.
� bG2011 (Bubble) sorts an array of numbers using bubble sort.
� fG2011 (Flex) is a unix utility program that is reconstructed

from [30].
� sG2011 (Space) is a program that reads a file that contains sev-

eral ADL statements and check the contents of the file for adher-
ence to the ADL grammar and to specific consistency rules is
provided in [30].

5.2. Tuning and testing programs

We divided the test programs into two groups, for tuning and
testing. We used the tuning group to determine suitable values
for thresholds for kðsÞ and h in the decision rules. We used the test-
ing group to evaluate the resulting rules. Each group was selected
based on program’s characteristics, complexity and target paths
feasibility.

Four programs were selected for tuning. These are the first four
programs in Table 1: mmA2008, iA2008, bisA2008, and mtA2008.
These four programs cover a range of different program character-
istics, e.g. two include infeasible paths, there is a wide range of CC,
and all include loops.

5.3. Fitness function

A path representation needs to be described first in order to
understand the fitness function. A target path is represented as a



Table 1
Test programs (in C language).

Program LOC CC L B Structure P F Refs.

mmA2008 12 [4: 4] 1 3 WHILE–(IF–IF) 13 13 [9,12,15]
iA2008 15 [3: 4] 2 2 FOR–(WHILE) 6 5 [15,33]
bisA2008 27 [5: 7] 1 4 IF–WHILE–(IF–ELSE–(IF–ELSE)) 9 6 [15,34–36]
mtA2008 31 [7:16] 1 6 WHILE–(IF–IF)–IF–(IF–ELSE–(IF–ELSE))–ELSE 52 20 [12,15]

tA2008 14 [4:12] 0 3 IF–(IF–ELSE–(IF–ELSE))–ELSE 4 4 [10,12,15,16,22,33,35,37–41]
binA2008 22 [3: 3] 1 2 WHILE–(IF–ELSE) 7 7 [15,22]
bubA2008 18 [4: 5] 2 3 WHILE–(FOR–(IF)) 15 4 [15,35]
gA2008 16 [4: 4] 1 3 IF–ELSE–(WHILE–(IF–ELSE)) 8 5 [15,33]
rA2008 16 [4: 4] 1 3 IF–ELSE–(IF–ELSE–(WHILE)) 5 4 [15,22,36,41]
tM2004 20 [5: 5] 0 4 IF–(IF–ELSE)–ELSE–(IF)–IF 8 7 [20]
eR1985 18 [4: 4] 1 3 IF–ELSE–WHILE–IF 12 5 [42]
qG1997 16 [4: 4] 2 3 WHILE–WHILE–(IF) 21 4 [43]
ttB2002 38 [8:11] 0 7 IF–ELSE–(IF–ELSE–(IF–(IF–ELSE–(IF–ELSE)))–ELSE–(IF–ELSE–(IF–ELSE)) 8 8 [20]
eiB2002 90 [11: 15] 3 11 IF–ELSE–(IF–ELSE–(IF–ELSE–(IF–(FOR–(IF))–ELSE–(IF–FOR–(IF–(IF)–ELSE–(IF)))))) 31 5 [4,20,23,44]
qB2002 23 [6: 7] 2 5 IF–(IF–((WHILE–WHILE–(IF)))) 27 10 [4,20,23]
scB2002 17 [6: 7] 1 5 WHILE–IF–(IF–(IF–(IF))) 16 4 [4,20,23]
fcB2002 21 [5: 8] 0 4 IF–(IF–(IF–(IF)–ELSE)) 5 5 [4,20,23]
fB2002 70 [9: 10] 3 8 WHILE–(–IF–IF–(IF–(IF))–ELSE–(WHILE–WHILE–IF)) 32 8 [4,23,20]
bG2011 37 [4: 4] 2 3 FOR–(FOR–(IF–ELSE)) 20 11 [30]
fG2011 95 [7: 7] 0 6 IF–(IF–IF)–IF–(IF)–IF 30 30 [30,45]
sG2011 72 [6: 6] 0 5 IF–IF–IF–IF–IF–IF 32 32 [30,45]

Fig. 2. Triangle’s CFG.

400 I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407
sequence of pairs, of predicate (or branch) number, e.g. B1 for first
branch, and its decision (1 or 0 for TRUE or FALSE respectively). If
there are repetitions of sub path(s) in a path then they indicate
presence of loops.

For example, one of the paths in Triangle (see Fig. 2) can be
written as the sequence (112031), which means the TRUE branch
is taken at B1, the FALSE branch at B2, and the TRUE branch at B3.
This is the path taken with data that represents an isosceles trian-
gle. In Fig. 2, each type of triangle corresponds to a different path,
giving 4 paths in total. These paths are Not Triangle (10), Scalene
(1121), Isosceles (112031), and Equilateral (112030).

The fitness function used in the experiments consists of approx-
imation level (AL) and branch distance (BD) [15]. AL measures
similarity (or dissimilarity) between the path taken by an input
data and the target path; it is counted as the number of matched
(or unmatched) branches. The count continues as far as the first
unmatched branch encountered. BD is calculated as Korel’s dis-
tance function [46], if the path taken differs from the target path
of interest.

For example, see Fig. 2, given a target path (1121), test data (8,
3, 8) corresponding to (Input1, Input2, Input3), and the predicate at
B2 (Input1 6 Input2). The path taken is (112031), so AL is 1, be-
cause they only traverse the same branch at B1. In this case, branch
distance is calculated at B2 with Korel’s distance function [46], i.e.
(Input1 � Input2) + 1, which equals 6.

AL and BD can be combined in different ways, each combination
representing a different fitness function. 32 different fitness
functions were studied in [47], with one found to be the best:
considering all current target paths (or multiple target paths),
path-wise traversal, normalization (distance, violation, and fitness
value), and no weighting for AL and BD. That fitness function is
used here, as described in Eq. (5).

Fj ¼
PjTGj

i¼1

PlCij

i¼1ðBDij þ ALijÞ
j TG j ð5Þ

where i is the (target) path number, j is the input number, j TG j is
the number of (target) paths, lCij is the minimum length between
the target path i and the traversed path j;BDij is the normalized
branch distance between the target path i and the traversed path
j over the maximum branch distance in the current generation,
and ALij is the normalized approximation level between the target
path i and the traversed path j over the length of path i.

5.4. Setup

The following GA common parameters are used: random
seeded initial population generation, roulette wheel selection,
90% single point crossover, and 90% generation gap.

Two different approaches were used to set the values for other
parameters. One was to set the parameters separately for each test
program, using the best values for each program as found in [19],
as shown in Table 2. The other, to assess generality, was to use
common values (population size 100, mutation rate 0.1, number
of generations 100) that represent a balance between the
program-specific best values.



Table 2
Best parameter settings.

Program Pop Gens Allele Mut

mmA2008 200 100 �10 10 0.15
iA2008 70 50 �10 10 0.15
bisA2008 100 100 1.72 1.75 0.30
mtA2008 250 50 0 20 0.10

tA2008 150 250 0 10 0.30
binA2008 30 50 �10 10 0.15
bubA2008 50 50 �10 10 0.30
gA2008 250 50 0 20 0.10
rA2008 250 500 0 20 0.10
tM2004 150 250 0 10 0.30
eiR1985 50 50 0 10 0.30
qG1997 50 50 1 10 0.30
ttB2002 250 500 0 20 0.15
eiB2002 250 500 �10 10 0.15
qB2002 250 500 0 20 0.15
scB2002 250 500 1 128 0.15
fcB2002 250 500 �10 10 0.15
fB2002 100 100 1 200 0.15
bG2011 100 50 �10 10 0.15
fG2011 250 500 �10 10 0.15
sG2011 250 50 �10 10 0.15

I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407 401
Allele range depends on the nature of the test program, so can-
not be set to standard values.

The purpose of the experiments is to compare the searching
performance with the proposed stopping condition against the cri-
terion of stopping after a fixed number of generations. That num-
ber was set at 100 generations across all test programs.

30 runs were made with each program and each parameter
setup.
5.5. Rules

There are two main tasks in designing the experiments. The first
task is finding optimal thresholds for each rule, in terms of effec-
tiveness and efficiency.

� With the reliability rule, the search stops as soon as kðsÞ reaches
a threshold. We investigated thresholds of 0.5 (at which point
the probability of covering a new path in the next generation
is 0.5), 0.25, and 0.1.
� In the stability rule, the controlling parameter h of reliability

curve is investigated. In order to monitor the changes of curve
shapes, Dh (the difference between the current and the previous
value) is used. When Dh reaches a threshold, the search stops.
We investigated threshold values of 0.001, 0.0005, 0.00033,
0.00025, 0.0002, and 0.0001.

The second task is investigating the strength and weakness of
each rule, and finding the best combination of both.
5.6. Computation time

An important point of implementing the proposed stopping
condition is its computational time. In other words, rule execution
should not cause computation overhead. If it did, the benefit of sav-
ing time from stopping the search much earlier is not significant.

In the experiments, we measured the execution time required
to fit the curve of Eq. (2), to calculate kðsÞ and Dh and to apply
the decision rule, at each generation. We also measured the com-
putation time required for each generation of searching.
6. Results

This section presents experimental results to evaluate the effi-
cacy and efficiency of the proposed approach. Efficiency relates
to how much execution time is saved or lost from applying the pro-
posed approach, compared to the common approach of searching
for a fixed number of generations. Efficacy relates to how many
feasible paths are found or missed, compared to searching for a
fixed number of generations.

We use Gens = 100 for the fixed number of generations. Table 2
shows that the best numbers of generations for the programs stud-
ied here range from 50 to 500; we chose 100 generations as a com-
promise. Clearly the value chosen for Gens would affect the
results; this is discussed in Section 7.4.

Other abbreviations in the tables and discussion that follow
have the following meanings:

� k: the threshold value for kðsÞ at which a rule suggests to stop
searching;
� Dh: the threshold value for Dh at which a rule suggests to stop

searching;
� GR: the number of generations at which a rule suggests to stop

searching;
� PF: the average number of paths found over 30 runs if searching

continues for Gens generations;
� PFM: the maximum number of paths found in any run if search-

ing continues for Gens generations;
� PFR: the number of paths found over 30 runs if searching con-

tinues until the rule suggests to stop;
� PFRM: the maximum number of paths found in any run if

searching continues until the rule suggests to stop;
� MP: the average extra number of paths missed if the search ter-

minates after GR generations instead of after Gens generations
(MP): MP ¼ PF� PFR;
� Eff: the efficiency achieved, i.e. the percent of search time

avoided, compared to searching for Gens generations:
Eff = (1 � (GR/Gens)) � 100.

6.1. Execution overhead to apply the proposed approach

The first result is that the execution time required by the meth-
od is negligible. In our environment, the time required to fit the
curve and use it to estimate kðsÞ and Dh was 0.05 s, with 100 data
points. The average execution time for one generation of searching
was about 60 s. Thus the effort to apply the method is ignored in
the rest of the paper.
6.2. Tuning programs

6.2.1. Reliability Rule (RR)
Table 3 summarizes the performance of the reliability rule (stop

searching as soon as kðsÞ falls to a given threshold) for the four tun-
ing programs. At k = 0.5, the chance of finding an uncovered path in
the next generation of searching is 50%; not surprisingly, stopping
at this threshold value avoids the most computation (Eff averages
88% cross the four tuning programs), but has the greatest chance of
missing some feasible paths compared to searching for 100 gener-
ations. At k ¼ 0:1, there is very little chance that a path is missed,
but the efficiency is lower (the average is 40% across the four tun-
ing programs).

From Table 3, k � 0:25 appears a reasonable trade off between
efficiency (Eff is above 60% for all four programs) and effectiveness
(MP is low in all four programs). Based on this, we chose k 6 0:25
and k 6 0:10 for more thorough testing.



Table 3
Tuning programs, reliability rule.

Program k GR PFR MP Eff. %

mmA2008 0.50 16.00 12.93 0.07 84.00
0.25 32.23 13.00 0.00 67.77
0.10 80.94 13.00 0.00 19.06

iA2008 0.50 6.29 5.00 0.00 93.71
0.25 13.20 5.00 0.00 86.80
0.10 33.10 5.00 0.00 66.90

bisA2008 0.50 6.51 5.43 0.30 93.49
0.25 13.39 5.57 0.16 86.61
0.10 34.04 5.67 0.06 65.96

mtA2008 0.50 18.02 16.62 0.58 81.98
0.25 36.31 17.13 0.07 63.69
0.10 91.09 17.20 0.00 8.91

402 I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407
6.2.2. Stability Rule (SR)
Table 4 summarizes the performance of the stability rule (stop

searching when the equation has stabilized) for the four tuning
programs. While this is not linked directly to the probability of
covering new paths, it gives some indication of how much confi-
dence to give to the estimate of GR.

Dh 6 0:00025 has good efficiency across the four tuning pro-
grams, and is the point at which MP falls to zero for three of the
four tuning programs. Dh 6 0:0001 is the first point at which MP
is zero for all tuning projects, but its efficiency is lowest. Based
on this, we chose Dh 6 0:00025 and Dh 6 0:0001 for more thor-
ough testing.

6.2.3. Reliability and Stability Rule (RSR)
Based on the results above, we chose two decision rules to eval-

uate with the testing programs. These rules combine both the reli-
ability rule and the stability rule. One (RSR1) uses the higher (less
stringent) values for k and Dh (i.e. k 6 0:25 and Dh 6 0:00025), and
the other uses the lower (more stringent) values (i.e. k 6 0:1 and
Dh 6 0:0001).

6.3. Testing programs

Each of the RSRs was executed using the best parameter setup
for each test program, and using the common parameter setup.
Table 4
Tuning programs, stability rule.

Program Dh GR

mmA2008 0.001 13.74
0.0005 21.07
0.00033 26.03
0.00025 30.03
0.0002 33.33
0.0001 43.17

iA2008 0.001 22.41
0.0005 31.55
0.00033 39.41
0.00025 44.69
0.0002 49.69
0.0001 70.82

bisA2008 0.001 23.47
0.0005 34.93
0.00033 42.07
0.00025 47.10
0.0002 53.63
0.0001 72.50

mtA2008 0.001 12.17
0.0005 20.58
0.00033 24.04
0.00025 27.32
0.0002 31.76
0.0001 64.15
This leads to a total of four combinations: RSR1 with best param-
eters (RSR1-B), RSR1 with common parameters (RSR1-C), RSR2
with best parameters (RSR2-B), and RSR2 with common parame-
ters (RSR2-C).

6.3.1. Best parameter settings
Table 5 presents the results for RSR1-B for all 21 programs.
For programs with no infeasible paths, the search can stop as

soon as all target paths are covered. For most such programs, this
occurs before both Gens and GR generations, so efficiency is not
relevant. For some programs with no infeasible paths, however,
some paths remain uncovered after Gens and/or GR generations.
These are difficult paths to cover. In six test programs (rA2008,
mtA2008, tM2004, ttB2002, fB2002, and fG2011), some feasible
paths were missed in some runs.

These difficult paths might be found if searching went on for
longer, by setting Gens to a large value, or by reducing the param-
eters influencing GR, causing the search to continue for longer; or
by incorporating knowledge into the search. This is discussed in
Section 7.5.

The mean number of missed paths is 0.48; this is almost all due
to one test program. The median number of missed paths is zero.
Two test programs have negative efficiencies, i.e. mtA2008 and
sG2011. A negative efficiency means that the suggested number
of generations by the rule is higher than the default 100 genera-
tions. On average, the efficiency is 59%.

6.3.2. Common parameter settings
Table 6 shows the results for RSR1-C. As expected, in compari-

son with RSR1 with best parameters, the number of missed paths
is not as good: it increases to 0.84 on average, compared to search-
ing for Gens generations. The number of test programs that miss
some feasible paths has doubled, from six to ten test programs.
They are gA2008, rA2008, mmA2008, tM2004, eiR1985, qB2002,
scB2002, fB2002, fG2011, and sG2011. On average, the efficiency
is 74%. Efficiency is better than RSR1-B, but effectiveness is worse.

Table 7 displays the results for RSR2-B. As it uses both the best
parameter settings and the most stringent threshold values, this
combination would be expected to miss the fewest paths. This is
what we see, with the number of missing paths 0.18 on average.
PFR MP Eff. %

12.93 0.07 86.26
12.93 0.07 78.93
12.93 0.07 73.97
13.00 0.00 69.97
13.00 0.00 66.67
13.00 0.00 56.83

5.00 0.00 77.59
5.00 0.00 68.45
5.00 0.00 60.59
5.00 0.00 55.31
5.00 0.00 50.31
5.00 0.00 29.18

5.70 0.03 76.53
5.70 0.03 65.07
5.82 0.00 57.93
5.79 0.00 52.90
5.80 0.00 46.37
5.73 0.00 27.50

15.67 1.53 87.83
16.70 0.50 79.42
16.88 0.32 75.96
16.82 0.38 72.68
17.04 0.16 68.24
17.22 0.00 35.85



Table 5
Testing programs RSR1-B.

Program PFM PF PFMR PFR GR MP Eff. %

mmA2008 13 13.00 13 13.00 30.00 0.00 70.00
iA2008 5 5.00 5 5.00 23.00 0.00 54.00
bisA2008 6 6.00 6 6.00 20.93 0.00 79.07
mtA2008 20 19.00 20 18.88 78.79 0.12 �57.58

tA2008 4 4.00 4 4.00 25.83 0.00 89.67
binA2008 7 7.00 7 7.00 19.10 0.00 61.80
bubA2008 4 4.00 4 4.00 29.00 0.00 42.00
gA2008 5 5.00 5 5.00 22.10 0.00 55.80
rA2008 4 4.00 4 3.97 26.27 0.03 94.75
tM2004 7 6.23 7 6.21 21.34 0.02 57.32
eiR1985 3 2.97 3 2.97 29.37 0.00 41.26
qG1997 4 4.00 4 4.00 25.00 0.00 50.00
ttB2002 8 8.00 8 7.53 19.11 0.47 96.18
eiB2002 5 5.00 5 5.00 22.00 0.00 95.60
qB2002 10 10.00 10 10.00 27.07 0.00 94.59
scB2002 4 4.00 4 4.00 27.67 0.00 94.47
fcB2002 5 5.00 5 5.00 22.40 0.00 95.52
fB2002 8 7.87 8 7.67 20.61 0.20 79.39
bG2011 11 11.00 11 11.00 27.33 0.00 45.34
fG2011 30 25.13 18 15.83 31.33 9.30 87.47
sG2011 32 32.00 32 32.00 95.40 0.00 �90.80

Table 6
Testing programs RSR1-C.

Program PFM PF PFMR PFR GR MP Eff. %

mmA2008 13 11.63 11 11.41 32.5 0.22 67.50
iA2008 5 5.00 5 5.00 22.50 0.00 77.50
bisA2008 6 6.00 6 6.00 20.90 0.00 79.10
mtA2008 18 17.53 18 17.53 67.16 0.00 32.84

tA2008 4 3.83 4 3.83 29.53 0.00 70.47
binA2008 7 7.00 7 7.00 19.00 0.00 81.00
bubA2008 4 4.00 4 4.00 25.23 0.00 74.77
gA2008 5 3.57 1 1.00 6.57 2.57 93.43
rA2008 4 3.97 4 3.80 56.80 0.17 43.20
tM2004 6 4.20 6 3.90 37.83 0.30 62.17
eiR1985 3 2.97 1 1.00 6.19 1.97 93.81
qG1997 4 4.00 4 4.00 25.00 0.00 75.00
ttB2002 8 7.03 8 7.03 19.13 0.00 80.87
eiB2002 5 4.90 5 4.90 23.83 0.00 76.17
qB2002 10 8.63 8 8.00 20.00 0.63 80.00
scB2002 4 3.83 1 1.00 7.00 2.83 93.00
fcB2002 5 4.90 5 4.90 25.16 0.00 74.84
fB2002 8 7.87 8 7.67 20.61 0.20 79.39
bG2011 11 11.00 11 11.00 27.62 0.00 72.38
fG2011 13 9.30 12 7.69 26.31 1.61 73.69
sG2011 32 17.77 18 10.69 27.30 7.08 72.70

Table 7
Testing programs RSR2-B.

Program PFM PF PFMR PFR GR MP Eff. %

mmA2008 13 13.00 13 13.00 76.27 0.00 23.73
iA2008 5 5.00 5 5.00 72.13 0.00 �44.26
bisA2008 6 6.00 6 6.00 64.90 0.00 35.10
mtA2008 20 19.00 20 18.87 112.70 0.13 �125.40

tA2008 4 4.00 4 4.00 51.37 0.00 79.45
binA2008 7 7.00 7 7.00 58.10 0.00 �16.20
bubA2008 4 4.00 4 4.00 88.00 0.00 �76.00
gA2008 5 5.00 5 5.00 70.20 0.00 �40.40
rA2008 4 4.00 4 4.00 55.17 0.00 88.97
tM2004 7 6.23 7 6.23 66.57 0.00 �33.14
eiR1985 3 2.97 3 2.97 89.53 0.00 �79.06
qG1997 4 4.00 4 4.00 32.67 0.00 34.66
ttB2002 8 8.00 8 7.87 58.60 0.13 88.28
eiB2002 5 5.00 5 5.00 70.00 0.00 86.00
qB2002 10 10.00 10 10.00 61.93 0.00 87.61
scB2002 4 4.00 4 4.00 48.52 0.00 90.30
fcB2002 5 5.00 5 5.00 70.83 0.00 85.83
fB2002 8 7.87 8 7.86 61.38 0.01 38.62
bG2011 11 11.00 11 11.00 66.80 0.00 �33.60
fG2011 30 25.13 30 21.61 90.60 3.46 63.76
sG2011 32 32.00 32 32.00 135.37 0.00 �170.74

Table 8
Testing programs RSR2-C.

Program PFM PF PFMR PFR GR MP Eff. %

mmA2008 13 11.63 13 11.57 63.50 0.07 36.50
iA2008 5 5.00 5 5.00 71.00 0.00 29.00
bisA2008 6 6.00 6 6.00 65.03 0.00 34.97
mtA2008 18 17.53 18 17.53 91.97 0.00 8.03

tA2008 4 3.83 4 3.83 29.53 0.00 70.47
binA2008 7 7.00 7 7.00 59.00 0.00 41.00
bubA2008 4 4.00 4 4.00 41.37 0.00 58.63
gA2008 5 3.57 5 3.18 106.00 0.32 �6.00
rA2008 4 3.97 4 3.97 72.30 0.00 27.70
tM2004 6 4.20 6 4.10 112.83 0.10 �12.83
eiR1985 3 2.97 3 2.40 91.60 0.57 8.40
qG1997 4 4.00 4 4.00 32.67 0.00 67.33
ttB2002 8 7.03 8 7.03 59.53 0.00 40.47
eiB2002 5 4.90 5 4.90 62.57 0.00 37.43
qB2002 10 8.63 10 8.63 56.60 0.00 43.40
scB2002 4 3.83 4 3.82 60.82 0.00 39.18
fcB2002 5 4.90 5 4.90 68.63 0.00 31.37
fB2002 8 7.87 8 7.86 61.38 0.00 38.62
bG2011 11 11.00 11 11.00 66.73 0.00 33.27
fG2011 13 9.30 13 8.76 89.31 0.45 10.69
sG2011 32 17.77 32 15.96 99.23 0.30 0.77

I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407 403
It only has four test programs that miss any feasible paths, i.e.
ttB2002, mtA2008, fB2002, and fG2011. In term of efficiency, more
test programs were less efficient compared to searching for 100
generations, i.e. 9 test programs. On average, efficiency is 9%.

Table 8 exhibits the results for RSR2-C. This rule uses the same
stringent parameter settings for the decision rule as RSR2-B, but
uses common settings rather than program-specific settings for
the GA parameters. Eight programs have an MP value above zero,
but on average this combination misses the fewest paths compared
to searching for 100 generations (0.1 paths). On average, efficiency
is 32%.

Table 9 shows which test programs have missed feasible paths
with which rules and parameter settings. Only one test program
(fG2011) missed feasible paths with every combination.

Table 10 shows statistics of rules in terms of MP. MTP is the
number of test programs that have negative efficiency when the
stopping rule is applied, i.e. the rule says it is still worthwhile to
keep searching beyond Gens generations. MTP increases as the rule
becomes more stringent, e.g. MTP increases from 2 to 9 for RSR1-B
and RSR2-B.

Table 11 presents statistics of rules in term of Eff. RSR1-C is the
most efficient rule with no test program showing any
inefficiencies.

Table 12 summarizes PF and PFR for all test programs across all
applicable rules. At the bottom row, the average of each column is
shown. Differences between the averages are statistically signifi-
cant: using paired t-Test for means, PFRs for RSR1-C and RSR2-C
are significantly different with PðT 6 tÞ ¼ 0:03.

7. Analysis and discussion

7.1. Test program classification

Analytically, a test problem can fall into the following classes.
Knowing how many are in each class can help to understand the
value of the proposed approach.



Table 9
Test programs with missed paths.

Program RSR1-B RSR1-C RSR2-B RSR2-C

mmA2008 x x
iA2008
bisA2008
mtA2008

tA2008
binA2008
bubA2008
gA2008 x x
rA2008 x x
tM2004 x x
eiR1985 x x
qG1997
ttB2002 x x
eiB2002
qB2002 x
scB2002 x x
fcB2002
fB2002 x x x
bG2011
fG2011 x x x x
sG2011 x x

Table 10
Statistics of rules on MP.

Rule MTP MP STD Min Max

RSR1-B 2 0.48 2.02 0.00 9.30
RSR1-C 0 0.84 1.69 0.00 7.08
RSR2-B 9 0.18 0.77 0.00 3.52
RSR2-C 2 0.17 0.42 0.00 1.81

Table 11
Statistics of rules on efficiency.

Rule MTP Eff. % STD Min Max

RSR1-B 2 58.85 48.73 �90.80 96.18
RSR1-C 0 73.99 14.46 32.84 93.81
RSR2-B 9 8.74 78.28 �170.74 90.30
RSR2-C 2 31.96 23.03 �12.83 70.47

Table 12
Summary of PF and PFR.

Program Paths PF

All Feas Best Comm

mmA2008 13 13 13.00 11.63
iA2008 6 5 5.00 5.00
bisA2008 9 9 6.00 6.00
mtA2008 52 20 19.00 17.53

tA2008 4 4 4.00 3.83
binA2008 7 7 7.00 7.00
bubA2008 15 4 4.00 4.00
gA2008 8 5 5.00 3.57
rA2008 5 4 4.00 3.97
tM2004 8 7 6.23 4.20
eiR1985 12 3 2.97 2.97
qG1997 21 4 4.00 4.00
ttB2002 8 8 8.00 7.03
eiB2002 31 5 5.00 4.90
qB2002 27 10 10.00 8.63
scB2002 15 4 4.00 3.83
fcB2002 5 5 5.00 4.90
fB2002 32 8 7.87 7.87
bG2011 20 11 11.00 11.00
fG2011 30 30 25.13 9.30
sG2011 32 32 32.00 17.77

Average 17.14 9.43 8.96 7.09

404 I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407
F1 All paths are feasible, and all are found before GR says to
stop. For these programs, searching stops early anyway, so
the proposed approach is just overhead. We have seen that
the overhead is trivial, so this is not a problem.

F2 All paths are feasible, but GR would suggest stopping before
some feasible paths are found. For these, the GR approach
means there is a loss of performance, i.e. the assumption is
wrong that all paths not found yet when GR says to stop
are infeasible. Execution time is shorter, but something is
lost, so this is a trade off.

I1 Some paths are infeasible, but all that are feasible are found
by the time GR says to stop. The assumption that missed
paths are infeasible is correct. GR saves time, and there is
no loss of accuracy, so the proposed approach is beneficial.

I2 Some paths are infeasible, and some that are actually feasi-
ble get missed if searching stops at the time suggested by
GR. The assumption that all remaining uncovered paths are
infeasible is wrong. Like Class F2, it is a trade off of execution
time for path coverage.

Table 13 presents the classification of test programs.
Two programs are in F1 with all combinations of parameters;

the proposed approach neither helps nor hurts. Seven programs
are in I1 with all combinations of parameters; the proposed ap-
proach is beneficial. One program (fG2011) is in F2 with all combi-
nations of parameters; although all its paths are feasible, there are
many of them and its search space is large. This is a hard problem,
and feasible paths are also missed if the decision to stop is based on
searching until Gens generations. There is no program that is in I2
with all combinations of parameters.

There are four programs that are in F1 with some parameter
settings but in F2 with others; that is, with some parameter set-
tings, the proposed approach causes some paths to be missed that
could be found if searching continued for longer. For each of these
programs, stopping after Gens generations also missed some feasi-
ble paths with some parameter settings.

In two programs with infeasible paths, using the weaker deci-
sion rule (RSR-1 instead of RSR-2) meant that some feasible paths
were missed that were found when the stronger decision rule
meant that searching continued for longer.
PFR

RSR1-B RSR1-C RSR2-B RSR2-C

13.00 10.50 13.00 11.57
5.00 5.00 5.00 5.00
6.00 6.00 6.00 6.00

18.88 17.54 18.87 17.53

4.00 3.83 4.00 3.83
7.00 7.00 7.00 7.00
4.00 4.00 4.00 4.00
5.00 1.00 5.00 3.18
3.97 3.73 4.00 3.97
6.21 3.90 6.23 4.10
2.97 1.00 2.97 2.40
4.00 4.00 4.00 4.00
7.53 7.03 7.87 7.03
5.00 4.90 5.00 4.90

10.00 8.00 10.00 8.63
4.00 1.00 4.00 3.82
5.00 4.90 5.00 4.90
7.67 7.67 7.86 7.86

11.00 11.00 11.00 11.00
15.83 7.69 21.61 8.76
32.00 10.69 32.00 15.96

8.48 6.22 8.78 6.91



Table 13
Test programs classification.

Program RSR-1B RSR1-C RSR2-B RSR2-C

mmA2008 F1 F2 F1 F2
iA2008 I1 I1 I1 I1
bisA2008 I1 I1 I1 I1
mtA2008 I1 I1 I1 I1

tA2008 F1 F1 F1 F1
binA2008 F1 F1 F1 F1
bubA2008 I1 I1 I1 I1
gA2008 I1 I2 I1 I2
rA2008 I2 I2 I1 I1
tM2004 I1 I2 I1 I2
eiR1985 I1 I2 I1 I2
qG1997 I1 I1 I1 I1
ttB2002 F2 F1 F2 F1
eiB2002 I1 I1 I1 I1
qB2002 I1 I2 I1 I1
scB2002 I1 I2 I1 I2
fcB2002 I1 I1 I1 I2
fB2002 F2 F2 F1 F2
bG2011 I1 I1 I1 I1
fG2011 F2 F2 F2 F2
sG2011 F1 F2 F1 F2

I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407 405
In the remaining five programs, using common parameter set-
tings meant that some paths were missed that would have been
found if the best setting for each separate program had been used.
For each of these programs, stopping after Gens generations also
missed some feasible paths. That some paths were missed is not
due to the proposed approach, but with the use of a general param-
eter setting. However, a common parameter setup makes most
sense in practice. Finding the optimal parameter settings for a
given problem makes little sense: by the time experimentation
has found the best settings, the target paths that can be covered
probably already have been covered, and the overall effort to
search for the best parameter settings and then to search for test
data with those settings may approach the effort of manual test
data generation.

In summary, the proposed approach is irrelevant for two test
programs, and beneficial for nine test programs (if the stronger
decision rule is used). For nine test programs, whether or not fea-
sible paths were missed depends on parameter settings, and the
same is true of searching for a fixed number of generations. For
one test program, feasible paths were missed regardless of param-
eter settings, and the same is true of searching for a fixed number
of generations.

Detailed inspection of the results from each of the 30 runs with
a given test program and parameter setup showed that if paths
were missed, it was always the same ones. So, the difficulty of find-
ing test data to cover a path does not change regardless of the
treatments.
7.2. Decision rules

The combined rule RSR considers both the likelihood of cover-
ing further paths, and the stability of the predicted number of gen-
erations at which that likelihood reaches a desired level.

As k! 0 it is still possible that further paths might be found,
but of course with very low probability. As long as Dh is high, the
predicted k values over generations may be low but they are not
stable. In other words, SR affects the rate of change of k over
generations.

As for the thresholds, smaller values mean less chance of miss-
ing feasible paths, but they also mean searching continues for long-
er, costing more computation time. On average over all test
programs, the lower the value of k the longer time required.
Selecting the threshold should be based on the user’s preference.
So, it depends on how much the user wants to spend resources
and is able to tolerate the chance of missing feasible paths.

RSR2-C appears to be the best decision rule in practice. The use
of common parameters is more practical than finding the best
parameters for each separate test program, and the low thresholds
in the decision rule mean that few feasible paths are missed.

7.3. Efficacy and efficiency

Compared to searching for 100 generations, the average number
of paths missed by RSR2-C is at most 0.6, and averages 0.1 (see
Table 10). Computation time is reduced by an average of 30%
(see Table 11). The proposed approach seems to be beneficial.

7.4. The effect of varying Gens

This analysis has compared performance with the proposed
stopping condition against stopping at Gens generations, where
Gens is set at 100. We have seen that in most cases, the stopping
condition suggests stopping before 100 generations, and that few
paths are missed.

Consider RSR2-C (common parameter setting, most stringent
rule: the most straightforward to use in practice). Increasing Gens
from 100 to 500 multiplies the total searching effort across the 21
test programs by 4.4 (less than 5, because some searches can stop
early with all target paths found). Using the proposed stopping rule
instead would now mean that 91% of the total searching time
would be avoided, compared to searching for 500 generations. In
8 of the 21 test programs for which target paths are sometimes
missed when Gens is 100, two still miss some paths sometimes
when Gens is 500. The mean number of missed feasible paths,
compared to searching for Gens generations, falls slightly from
0.1 to 0.07.

In general, as Gens increases, the efficiency of using the pro-
posed stopping condition instead also increases, but it may be
off-set by the possibility that more paths will be covered during
the extra searching time. The example of increasing Gens from
100 to 500 shows that a substantial increase in average search time
brings an increase in the average number of paths covered, but a
small one. Increasing Gens further will continue to increase both
the cost (execution time) and return (average number of paths cov-
ered), but we expect the returns to diminish.

7.5. Practical application

The evaluation reported above is based on expected perfor-
mance over a representative number of runs, in order to under-
stand the strengths and weaknesses of the approach compared to
searching for Gens generations.

In practice, a tester is interested in obtaining a complete set of
test cases. Average performance over 30 searches is not relevant, if
at any point during those searches the full set of target paths has
been covered during the aggregation of all runs so far. This cannot
occur if any paths are infeasible, as in 14 of the 21 programs stud-
ied here.

The question then is how to recognize when to stop searching,
judging with some level of confidence that as-yet-uncovered paths
are infeasible rather than just hard to find.

One approach is to adjust the parameters that govern the
search. The tester can decide how much searching time they are
willing to expend in the search to cover target paths. If searching
is to continue for a fixed number of generations, Gens can be set
to as large a value as the tester can afford. If using our proposed
stopping condition, Dh and k can be set to small values.



406 I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407
With either approach, it would be helpful to apply knowledge
about what makes some target paths hard to cover [19] – for exam-
ple, test cases in which all input values are the same – to create
some specific test cases in the initial population (the rest of the ini-
tial population would still be generated randomly). This could
make it more likely that paths that are otherwise hard to cover will
be covered quickly, thus making it more likely that paths which re-
main uncovered after several generations are infeasible.

In practice, to use this proposed approach one would do exactly
the same as if searching was based on Gens, in terms of defining
target paths; setting GA parameters such as population size and
mutation rate; stopping the search immediately if all target paths
are covered; and deciding how many searching runs to do if some
target paths remain uncovered. Instead of searching for a fixed
number of generations, with Gens set to a large value, the proposed
approach can be used with Dh and k set to small values. The advan-
tage of our approach is that it provides a specific probability that
searching for another generation will cover a new path.
8. Threats to validity

The following are considered to be challenges to make the ap-
proach widely applicable. Firstly, fine tuning the rule thresholds
could be better with more tuning programs, because the results
could be more generic and representative. However, the tuning
programs used here represent a range of relevant program charac-
teristics. So, we believe the thresholds used here are reasonable.

Secondly, testing with further programs that have different
characteristics is needed. This is in order to gain more confidence
that the approach will be successful for a range of programs. Again,
the test programs used here display a range of characteristics;
however, broader testing is a matter for further work.

The programs that have been studied here are all quite small
(mean size is 33 LOC, maximum is 95 LOC; mean cyclomatic com-
plexity is 7, maximum is 16). However, path testing applies at the
level of logical paths through a single code module (method, func-
tion, or procedure), and that is what we study here. Code modules
are usually smaller than 95 LOC, and usually have cyclomatic com-
plexity smaller than 10, so we believe that the test programs stud-
ied here are representative in those respects.

We have only used test programs written in C. The language it-
self should not directly affect the applicability of the approach,
since target paths are based on the control flow graph, which is
independent of the language. There could be an indirect effect: if
the type of problem being solved (which may depend on the appli-
cation domain) makes a certain language particularly suitable, and
the type of problem also affects the difficulty of finding suitable
test data, the suitability of the method may vary between lan-
guages. Studying programs written in other languages is a matter
for further work.

Many of the test programs studied in this paper are standard
test programs for research in this area. Some test problems are ta-
ken from parts of real world problems, i.e. fG2011 and sG2011, but
not many. The set of test problems should be broadened to include
more real world programs, from various domains.
9. Conclusions

The proposed approach, inspired by software reliability growth
models, is a promising approach to be used as a stopping criterion
in evolutionary path testing. The justification and the experimental
results have shown its feasibility.

In deciding the threshold values for rules, the user’s preferences
and the resources available should be considered. The over-riding
objective is path coverage. As long as this is achieved, efficiency
can be a consideration. The reliability model parameter values
identified in this work, i.e. k 6 0:1 and Dh 6 0:0001 (RSR2-C), are
effective, with 32% less computation required on average over 21
test programs, at the average cost of missing 0.1 feasible paths,
compared to searching for 100 generations.

With the computation power of modern computers, the saving
in computation time may not seem much of an issue. The issue re-
mains of how to decide that the value of further searching is too
low (most likely because remaining uncovered paths are infeasi-
ble), even though the time to search for another generation may
be low.

The main benefit of the proposed approach is that an arbitrary
parameter (how many generations to search for) is replaced by a
method that is based on the history of the search itself, and the tes-
ter’s decision about when to stop testing can be based instead on
the probability that further testing will cover no further paths,
and the stability of that probability. There are still parameters to
set (threshold values for k and Dh in the decision rules), but they
are based on things that are directly meaningful to the tester.

Future work has several directions. The first is to broaden the
generality of the results, by investigating programs with a wider
range of internal characteristics in terms of logical structure and
selection statement complexity. Others are to investigate the effect
of using different forms of software reliability growth models, and
to investigate the effect of varying other search parameters, partic-
ularly population size. Further, we intend to study programs writ-
ten in other languages, and programs taken from industry.

Acknowledgments

Acknowledgments are due to the Indonesia General Directorate
of Higher Education (IGDHE) of the Ministry of National Education
of the Republic of Indonesia for providing a Ph.D. Scholarship, the
University of New South Wales Canberra (UNSW Canberra) for pro-
viding a Completion Scholarship, and the Research Student Unit of
the UNSW Canberra for supporting a Research Publication
Fellowship.

References

[1] J.A. Whittaker, What is software testing? and why is it so hard?, IEEE Softw 17
(2000) 70–79. doi:http://doi.ieeecomputersociety.org/10.1109/52.819971.

[2] N. Mansour, M. Salame, Data generation for path testing, Softw. Qual. Control
12 (2) (2004) 121–136. doi:http://dx.doi.org/10.1023/B:SQJO.0000024059.
72478.4e.

[3] P. McMinn, Search-based software test data generation: a survey, Softw. Test.,
Verif. Reliab. 14 (2004) 105–156.

[4] P.M.S. Bueno, M. Jino, Identification of potentially infeasible program paths by
monitoring the search for test data, in: Proceedings of the 15th IEEE
International Conference on Automated Software Engineering 2000 (ASE
2000), IEEE Computer Society, Grenoble, France, 2000, pp. 209–218.
doi:http://dx.doi.org/10.1109/ASE.2000.873665.

[5] G.J. Myers, The Art of Software Testing, World Association Inc., 2004.
[6] M. Harman, S.A. Mansouri, Y. Zhang, Search Based Software Engineering: A

Comprehensive Analysis and Review of Trends Techniques and Applications,
Technical Report TR-09-03, April 2009.

[7] M. Harman, P. McMinn, A theoretical and empirical study of search-based
testing: local, global, and hybrid search, IEEE Trans. Softw. Eng. 36 (2) (2010)
226–247, http://dx.doi.org/10.1109/TSE.2009.71.

[8] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, first ed., Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1989.

[9] M. Pei, E.D. Goodman, Z. Gao, K. Zhong, Automated Software Test Data
Generation Using a Genetic Algorithm, Tech. rep., Michigan State University,
June 1994.

[10] J.-C. Lin, P.-L. Yeh, Using genetic algorithms for test case generation in path
testing, in: Proceedings of the 9th Asian Test Symposium 2000 (ATS ’00), 2000,
pp. 241–246, doi:http://dx.doi.org/10.1109/ATS.2000.893632.

[11] J.-C. Lin, P.-L. Yeh, Automatic test data generation for path testing using gas,
Inform. Sci. 131 (1–4) (2001) 47–64. doi:http://dx.doi.org/10.1016/S0020-
0255(00)00093-1.

[12] I. Hermadi, M.A. Ahmed, Genetic Algorithm based test data generator, in:
Proceedings of the 2003 Congress on Evolutionary Computation (CEC), vol. 1,
2003, pp. 85–91.

http://doi.ieeecomputersociety.org/10.1109/52.819971
http://dx.doi.org/10.1023/B:SQJO.0000024059.72478.4e
http://dx.doi.org/10.1023/B:SQJO.0000024059.72478.4e
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0090
http://dx.doi.org/10.1109/ASE.2000.873665
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0100
http://dx.doi.org/10.1109/TSE.2009.71
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0110
http://dx.doi.org/10.1109/ATS.2000.893632
http://dx.doi.org/10.1016/S0020-0255(00)00093-1
http://dx.doi.org/10.1016/S0020-0255(00)00093-1


I. Hermadi et al. / Information and Software Technology 56 (2014) 395–407 407
[13] M.R. Girgis, Automatic test data generation for data flow testing using a
genetic algorithm, J. Univ. Comput. Sci. 11 (6) (2005) 898–915.

[14] J. Miller, M. Reformat, H. Zhang, Automatic test data generation using genetic
algorithm and program dependence graphs, Inform. Softw. Technol. 48 (7)
(2006) 586–605. doi:http://dx.doi.org/10.1016/j.infsof.2005.06.006.

[15] M.A. Ahmed, I. Hermadi, GA-based multiple paths test data generator, Comput.
Oper. Res. 35 (2008) 3107–3124.

[16] Y. Chen, Y. Zhong, Automatic path-oriented test data generation using a multi-
population genetic algorithm, in: Proceedings of the 4th International
Conference on Natural Computation, 2008 (ICNC ’08), vol. 1, 2008, pp. 566–
570, doi:http://dx.doi.org/10.1109/ICNC.2008.388.

[17] Y. Chen, Y. Zhong, T. Shi, J. Liu, Comparison of two fitness functions for ga-
based path-oriented test data generation, in: Fifth International Conference on
Natural Computation, 2009, ICNC ’09, vol. 4, 2009, pp. 177–181, doi:http://
dx.doi.org/10.1109/ICNC.2009.235.

[18] Y. Chen, Y. Zhong, Experimental study on ga-based path-oriented test data
generation using branch distance function, in: Third International Symposium
on Intelligent Information Technology Application, 2009, IITA 2009, vol. 1,
2009, pp. 216–219, doi:http://dx.doi.org/10.1109/IITA.2009.232.

[19] I. Hermadi, C. Lokan, R. Sarker, Genetic algorithm based path testing:
Challenges and key parameters, World Cong. Softw. Eng. 2 (2010) 241–244.
doi:http://doi.ieeecomputersociety.org/10.1109/WCSE.2010.82.

[20] P.M.S. Bueno, M. Jino, Automatic test data generation for program paths using
genetic algorithms, Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 12 (6) (2002) 691–
709.

[21] J.D. Musa, K. Okumoto, A logarithmic poisson execution time model for
software reliability measurement, in: Proceedings of the 7th International
Conference on Software Engineering, ICSE ’84, IEEE Press, Piscataway, NJ, USA,
1984, pp. 230–238. <http://portal.acm.org/citation.cfm?id=800054.801975>.

[22] B.F. Jones, H.-H. Sthamer, D. Eyres, Automatic structural testing using genetic
algorithms, Softw. Eng. 11 (5) (1996) 299–306.

[23] P.M.S. Bueno, M. Jino, Automatic test data generation for program paths using
genetic algorithms, in: Proceedings of the 13th International Conference on
Software Engineering & Knowledge Engineering (SEKE ’01), Buenos Aires,
Argentina, 2001, pp. 2–9.

[24] P. McMinn, M. Harman, D. Binkley, P. Tonella, The species per path approach to
search-based software test data generation, in: International Symposium on
Software Testing and Analysis (ISSTA 2006), ACM, 2006, pp. 13–24, http://
dx.doi.org/10.1145/1146238.1146241.

[25] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, J. Wegener, The impact of
input domain reduction on search-based test data generation, in: ESEC-FSE
’07: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ACM, New York, NY, USA, 2007, pp.
155–164.

[26] K. Lakhotia, M. Harman, H. Gross, Austin: a tool for search based software
testing for the c language and its evaluation on deployed automotive systems,
2nd International Symposium on Search Based Software Engineering 0 (2010)
101–110. doi:http://doi.ieeecomputersociety.org/10.1109/SSBSE.2010.21.

[27] A. Arcuri, A theoretical and empirical analysis of the role of test sequence
length in software testing for structural coverage, IEEE Trans. Softw. Eng. 38
(3) (2010) 497–519.

[28] G. Fraser, A. Arcuri, EvoSuite at the SBST 2013 tool competition, in: SBST
Workshop, 2013.
[29] I. Hermadi, Path Testing Using Genetic Algorithm, Ph.D. Thesis, University of
New South Wales, Canberra, Australia, August 2012 (submitted for
examination).

[30] D. Gong, W. Zhang, X. Yao, Evolutionary generation of test data for many paths
coverage based on grouping, Syst. Softw. 84 (12) (2011) 2222–2233, http://
dx.doi.org/10.1016/j.jss.2011.06.028. http://dx.doi.org/10.1016/j.jss.2011.06.
028.

[31] T. McCabe, A complexity measure, IEEE Trans. Softw. Eng. SE-2 (4) (1976) 308–
320.

[32] G.J. Myers, An extension to the cyclomatic measure of program complexity,
SIGPLAN Not. 12 (10) (1977) 61–64. doi:http://doi.acm.org/10.1145/954627.
954633.

[33] E. Alba, F. Chicano, Observations in using parallel and sequential evolutionary
algorithms for automatic software testing, Comput. Operat. Res. 35 (2007)
3161–3183.

[34] A.J. Offutt, J. Pan, T. Zhang, K. Tewary, Experiments with Data Flow and
Mutation Testing, Technical Report ISSE-TR-94-105, ISSE, 1994.

[35] R.P. Pargas, M.J. Harrold, R.R. Peck, Test-data generation using genetic
algorithms, Softw. Test., Verif. Reliab. 9 (4) (1999) 263–282.

[36] R. Blanco, J. Tuya, B. Adenso-Diaz, Automated test data generation using a
scatter search approach, Inform. Softw. Technol. 51 (4) (2009) 708–720.

[37] C. Ramamoorthy, S.-B.F. Ho, W. Chen, On the automated generation of program
test data, IEEE Trans. Softw. Eng. SE-2 (4) (1976) 293–300.

[38] C.C. Michael, G.E. McGraw, M.A. Schatz, Generating software test data by
evolution, IEEE Trans. Softw. Eng. 27 (12) (2001) 1085–1110. doi:http://
dx.doi.org/10.1109/32.988709.

[39] J. Wegener, A. Baresel, H. Sthamer, Suitability of evolutionary algorithms for
evolutionary testing, in: Proceedings of the 26th Annual International
Computer Software and Applications Conference 2002 (COMPSAC 2002),
2002, pp. 287–289, doi:http://dx.doi.org/10.1109/CMPSAC.2002.1044566.

[40] J. Wegener, K. Buhr, H. Pohlheim, Automatic test data generation for structural
testing of embedded software systems by evolutionary testing, in: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’02, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002, pp. 1233–1240.
<http://dl.acm.org/citation.cfm?id=646205.682781>.

[41] R. Sagarna, X. Yao, Handling constraints for search based software test data
generation, in: ICSTW ’08: Proceedings of the IEEE International Conference on
Software Testing Verification and Validation 2008, 2008, pp. 232–240.

[42] S. Rapps, E.J. Weyuker, Selecting software test data using data flow
information, IEEE Trans. Softw. Eng. 11 (1985) 367–375.

[43] M.J. Gallagher, V. Narasimhan, Adtest: a test data generation suite for ada
software systems, IEEE Trans. Softw. Eng. 23 (1997) 473–484. http://
doi.ieeecomputersociety.org/10.1109/32.624304.

[44] N. Gupta, A.P. Mathur, M.L. Soffa, Automated test data generation using an
iterative relaxation method, SIGSOFT Softw. Eng. Notes 23 (6) (1998) 231–244.
http://doi.acm.org/10.1145/291252.288321.

[45] S. Artifact Infrastructure Repository (SIR), A Repository of Software-Related
Artifacts Meant to Support Rigorous Controlled Experimentation, 2011
<http://sir.unl.edu/portal/index.html>.

[46] B. Korel, Automated software test data generation, IEEE Trans. Softw. Eng. 16
(8) (1990) 870–879.

[47] I. Hermadi, Genetic Algorithm based Test Data Generator, Master’s thesis, King
Fahd University of Petroleum & Minerals (KFUPM), June 2004.

http://refhub.elsevier.com/S0950-5849(14)00012-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0120
http://dx.doi.org/10.1016/j.infsof.2005.06.006
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0130
http://dx.doi.org/10.1109/ICNC.2008.388
http://dx.doi.org/10.1109/ICNC.2009.235
http://dx.doi.org/10.1109/ICNC.2009.235
http://dx.doi.org/10.1109/IITA.2009.232
http://doi.ieeecomputersociety.org/10.1109/WCSE.2010.82
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0140
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0140
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0140
http://portal.acm.org/citation.cfm?id=800054.801975
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0150
http://dx.doi.org/10.1145/1146238.1146241
http://dx.doi.org/10.1145/1146238.1146241
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0160
http://doi.ieeecomputersociety.org/10.1109/SSBSE.2010.21
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0170
http://dx.doi.org/10.1016/j.jss.2011.06.028
http://dx.doi.org/10.1016/j.jss.2011.06.028
http://dx.doi.org/10.1016/j.jss.2011.06.028
http://dx.doi.org/10.1016/j.jss.2011.06.028
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0180
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0180
http://doi.acm.org/10.1145/954627.954633
http://doi.acm.org/10.1145/954627.954633
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0195
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0195
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0205
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0205
http://dx.doi.org/10.1109/32.988709
http://dx.doi.org/10.1109/32.988709
http://dx.doi.org/10.1109/CMPSAC.2002.1044566
http://dl.acm.org/citation.cfm?id=646205.682781
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0220
http://doi.ieeecomputersociety.org/10.1109/32.624304
http://doi.ieeecomputersociety.org/10.1109/32.624304
http://doi.acm.org/10.1145/291252.288321
http://sir.unl.edu/portal/index.html
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0235
http://refhub.elsevier.com/S0950-5849(14)00012-3/h0235

	Dynamic stopping criteria for search-based test data generation for path testing
	1 Introduction
	2 Background
	2.1 Path testing
	2.1.1 Target paths generation
	2.1.2 Test data generation

	2.2 Evolutionary path testing
	2.3 Software reliability modeling

	3 Related work
	4 Proposed approach
	4.1 Decision rules
	4.2 Evaluating decision rules

	5 Experiments
	5.1 Test programs
	5.2 Tuning and testing programs
	5.3 Fitness function
	5.4 Setup
	5.5 Rules
	5.6 Computation time

	6 Results
	6.1 Execution overhead to apply the proposed approach
	6.2 Tuning programs
	6.2.1 Reliability Rule (RR)
	6.2.2 Stability Rule (SR)
	6.2.3 Reliability and Stability Rule (RSR)

	6.3 Testing programs
	6.3.1 Best parameter settings
	6.3.2 Common parameter settings


	7 Analysis and discussion
	7.1 Test program classification
	7.2 Decision rules
	7.3 Efficacy and efficiency
	7.4 The effect of varying Gens
	7.5 Practical application

	8 Threats to validity
	9 Conclusions
	Acknowledgments
	References


