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We formulate and solve a new hub location and pricing problem, describing a situation in which an exist-
ing transportation company operates a hub and spoke network, and a new company wants to enter into
the same market, using an incomplete hub and spoke network. The entrant maximizes its profit by choos-
ing the best hub locations and network topology and applying optimal pricing, considering that the exist-
ing company applies mill pricing. Customers’ behavior is modeled using a logit discrete choice model. We
solve instances derived from the CAB dataset using a genetic algorithm and a closed expression for the
optimal pricing. Our model confirms that, in competitive settings, seeking the largest market share is
dominated by profit maximization. We also describe some conditions under which it is not convenient
for the entrant to enter the market.
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1. Introduction development of tighter and smaller formulations (Marín, Cánovas,
Most air passenger transportation and package delivery compa-
nies have chosen the hub and spoke topology for their networks
(Gelareh & Nickel, 2011). This topology makes use of transship-
ment and flow consolidation facilities called hubs, and significantly
reduces the number of routes required to connect all origins and
destinations in a region. It also allows taking advantage of any
existing economies of scale, by consolidating traffic in inter-hub
transportation and on the spokes (arcs that connect hub nodes to
non-hub nodes), as compared to a point to point network. Bigger
and more efficient vehicles are used on high traffic route segments,
and there is a higher asset utilization throughout the network.

The first model for the optimal design of hub networks (the Hub
Location Problem) was introduced by O’Kelly (1986) and first for-
mulated as an optimization problem by O’Kelly (1987). The litera-
ture about hub problems is now extensive. Hub location problems
are classified the same way as facility location problems are
(Campbell, 1994): median, covering, center and fixed costs prob-
lems. Complete reviews of hub location problems can be found
in Campbell, Ernst, and Krishnamoorthy (2004), Alumur and Kara
(2008), Kara and Taner (2011), Campbell and O’Kelly (2012), Faha-
rani, Hetmakfar, Arabani, and Nikbakhsh (2013).

Current trends in hub location include the development of new
formulations that allow obtaining good or even optimal solutions
in less time for larger instances of the problems. The work along this
line has explored the use of polyhedral properties of the formula-
tions, as in Hamacher, Labbé, Nickel, and Sonneborn (2004) or the
& Landete, 2006; García, Landete, & Marín, 2012). From a different
viewpoint, Contreras and Fernández (2012) have proposed a unified
view, formulations and algorithmic insights of location and network
design problems, including the hub location problems as a spe-
cial case. Also, solution methods like Benders Decomposition
(de Camargo, de Miranda, & Luna, 2008), and Branch and Price
(Contreras, Diaz, & Fernandez, 2010a), have been proposed.

Several extensions of the original problems have been used suc-
cessfully. Congestion has been considered by constraining queue
length at hubs (Marianov & Serra, 2003; Mohammadi, Jolai, &
Rostami, 2011); as well as by adding a non-linear term in the objec-
tive and solving the problem either using Lagrangian methods
(Elhedhli & Wu, 2010), or evolutionary algorithms, as in Koksalan
and Soylu (2010).

In regard to economies of scale, particularly interesting and rel-
evant to all the research in hub location is the observation by
Campbell (2012). Through the analysis of a very extensive set of
cases, he found that the fundamental hub location models share
the following problem: depending on the origin–destination flows,
it could happen that the traffic between some hubs is too small for
making use of economies of scale, and conversely, the traffic on
spokes could be large enough to apply a discounted cost. This
shortcoming was also pointed out by Bryan (1998), O’Kelly and
Bryan (1998), de Camargo, de Miranda, and Luna (2009). The
fundamental hub location models apply a fixed, flow independent
discount factor to all inter-hub arcs, and they do not apply any
discount on high-traffic spokes. Further, the fundamental hub
location models have a fully connected network of discounted arcs
between all hubs.

Addressing this issue should become a hot research topic, and
some better representations of economies of scale have already been
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proposed by approximating the non-linear inter-hub discount func-
tion with a piece-wise linear function (Bryan, 1998; O’Kelly & Bryan,
1998; Kimms, 2006); by using incomplete inter-hub networks
(Alumur, Kara, & Karasan, 2009; Calik, Alumur, Kara, & Karasan,
2009; Contreras, Fernández, & Marín, 2010b); using hub-arc models
(Campbell, Ernst, & Krishnamoorthy, 2005a, 2005b; Campbell,
2009); and by forcing a minimum flow on inter-hub links (Podnar,
Skorin-Kapov, & Skorin-Kapov, 2002; Campbell et al., 2005a, Camp-
bell, Ernst, & Krishnamoorthy, 2005b). Currently, however, most of
the researchers use the fundamental approach of discounting the
flow between hubs, independent of its magnitude, (Faharani et al.,
2013; Campbell & O’Kelly, 2012), mainly because of the computa-
tional atractiveness of such approach, and the fact that the search
for a completely successful model is still open. Among these, we
use a model in which a constant (flow-independent) discount be-
tween hubs and no discount on spokes are considered, and an
incomplete inter-hub network is allowed. Although all these models
tend to improve the application of economies of scale, they still do
not completely solve the problem. We do not use hub-arc models,
because they do not apply economies of scale on spokes with large
flows, and they tend to locate a number of hubs that is very large,
in times disproportionate for the airline industry (Campbell, 2009).
Furthermore, deriving a closed form expression for both piecewise
linearization models and models that require a minimum flow on
inter-hub arcs would require an additional level of iteration of the
procedure in this paper, because the cost and existence of different
routes depends on the amount of the predicted flow, making the
problem close to intractable. Also, piecewise linearization models are
more complicated in terms of number of variables and constraints.

Competition between firms that use hub networks has been
studied mainly from a sequential location approach, in which an
existing firm, called the incumbent or leader, serves the demand
in a region, and a new firm, the entrant or follower, wants to enter
the market. In the first article on competitive hub location,
Marianov, Serra, and ReVelle (1999) model a situation in which
the entrant captures a flow if its costs are lower than those of
the incumbent’s. This approach was extended to gradual capture
by Eiselt and Marianov (2009). A related line of research was
followed by Gelareh, Nickel, and Pisinger (2010), where the new-
coming company is a liner service provider that maximizes its
market share, depending both on service time and transportation
cost. The formulation is very hard to solve ‘as is’, and a specialized
Lagrangian method is used. Using a game theoretical approach,
Sasaki and Fukushima (2001) state the Stackelberg hub location
problem, in which the incumbent competes with several entrants
to maximize its profit. Only one hub is considered in every ori-
gin–destination route. Later, Adler and Smilowitz (2007) introduce
a framework to decide the convenience of merging airlines or cre-
ating alliances, using a game theory based approach. More recently
Sasaki, Campbell, Ernst, and Krishnamoorthy (2009) propose a
problem in which two agents locate arcs in order to maximize their
respective revenues under the Stackelberg framework, allowing
more than one hub in a route.

Dobson and Lederer (1993) propose the problem of maximizing
profit of an airline for a network with only one hub, given a dis-
crete consumer density as a function of departure time, duration
and price of the route to be travelled. This is an operational prob-
lem, not including location decisions. Simultaneous location and
pricing problems have been proposed and solved by Serra and ReV-
elle (1999). To the best of our knowledge, there is no literature on
hub location problems explicitly including pricing and location
decisions. We study a competitive problem, including discrete
choice between routes, using a hub location model with incom-
plete hub-connectivity.

We propose a novel hub location problem, called the Competitive
Hub Location and Pricing Problem (CHLPP). An existing company (or
group of companies), called the incumbent, utilizes a transportation
network with a hub and spoke topology, and charges its costs plus
a fixed additional percentage to their customers (mill pricing). A
new company, the entrant, wants to offer its services in the same
market, using its own hub and spoke network and setting prices so
to maximize its profit, rather than its market share – a cherry-picking
strategy. The profit comes from the revenues because of captured
flows, subtracting the fixed and variable costs. Both the incumbent
and the newcomer offer several routes. Customers choose which
company and route to patronize by price, and their decision process
is modeled using a logit model. The question to be answered is: Can a
newcomer obtain profit under these conditions, even with higher
operating costs than the incumbent? In order to answer this question,
our procedure finds how many hubs to locate, where should they be
located, what is the best route network, and the optimal price of the
services.

The contributions of this paper are as follows. In the first place,
we formulate a hub problem including aspects that were never ta-
ken into consideration together, as the optimal pricing decision
and a discrete choice by customers. Secondly, we derive a closed
form expression for the optimal pricing. Third, we solve the non-
linear problem using a genetic algorithm. Finally, we make an
extensive analysis of the scenarios that a newcoming company
would face, and the best actions it could take, when the objective
is profit maximization – as opposed to cost minimization or max-
imization of market share.

Note that hub location decisions are strategic, while pricing
decisions are tactical or even operational. Linking these two levels
may seem unusual at first sight. However, location or route open-
ing decisions – or even entrance into a market – can be very depen-
dent on the revenues that a company can obtain by operating these
locations and routes. Revenues, in turn, depend on the pricing
structure and on the competitive context. In other words, without
consideration of the feasible range of prices that the entrant can
charge, it is difficult to make good location decisions, and we ex-
plore here the relationship between both. Once the firm is estab-
lished, revenue management techniques can be applied to decide
on the day to day prices.

The proposed model is applied to the air passenger industry.
However, with slight changes in the discrete choice model, it can
be applied to mail and freight transportation industries, or any other
industry that benefits from a hub and spoke network structure.

The remainder of this paper is organized as follows. Section 2
describes the problem and the mathematical model. Section 3 de-
scribes the genetic algorithm. Section 4 presents the computational
results using the CAB dataset. Finally, in Section 5 we provide gen-
eral conclusions.
2. A competitive hub location and pricing problem

Air passenger traffic in a region is served by an existing company
(or a set of companies already established in the market, collec-
tively), called the incumbent, that utilizes a transportation network
with a hub and spoke topology. We make the assumption, custom-
ary in fundamental hub location models, that there are reduced
transportation costs (due to economies of scale) in the traffic be-
tween hubs, and not on spokes, and the discount factors are con-
stant. We assume that all the incumbent’s hubs are connected,
although full interconnection is not required for the entrant’s in-
ter-hub network. The incumbent uses mill pricing, i.e., charges its
costs plus a fixed profit percentage. The incumbent’s hubs are lo-
cated optimally for cost minimization when serving all the demand,
though the incumbent may end up serving less than that after the
entrant arrives. A new company, the entrant, intends to enter the
same market, using its own hub and spoke network and setting
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prices so to maximize its profit, rather than its market share, i.e., a
cherry-picking strategy. The entrant does not share hubs with the
incumbent, but could use the same locations (cities) for sitting them.
The profit is equal to the revenues from captured flows, once fixed
and variable costs are subtracted. Both the incumbent and the new-
comer may offer several routes between origins and destinations in
the region, i.e. an origin–destination pair may be served by more
than one route belonging to the same company. Customers choose
which company and route to patronize by price, although the model
could trivially accommodate other attributes as travel time or num-
ber of legs. Customers’ decision process is modeled using a logit
model. The logit model is well validated in the transportation liter-
ature (see Ortúzar & Willumsen, 2011). Logit models are currently
the most popular models for representing discrete choice, because
they provide a closed form expression and because they can accom-
modate several different attributes of the alternatives as cost, wait-
ing time, travel time, and so on. Logit models serve well in the case of
passengers and multiple routes. If mail or package service is to be
represented, then, rather than choosing among multiple routes, cus-
tomers choose among several providers. Again, a situation that can
be represented using logit models.

The problem is defined over a graph G = G(N,A), where N is the
set of nodes and A is the set of arcs. Each arc has a fixed cost, Kij,
and a variable cost cij per unit of flow. For the formulation we as-
sume that both the incumbent and the entrant have the same arc
costs, but this assumption can be trivially relaxed. To model in-
ter-hub discounts, let v, a and d be the discount factors due to flow
consolidation in collection (origin to hub), transfer (between hubs)
and distribution (hub to destination), respectively. Let Fk be the
cost of locating a hub at node k 2 N, and Wij is the given inelastic
demand, in terms of the flow to be transported from origin node
i 2 N to destination node j 2 N. All demand is served by either the
incumbent or the entrant. The percentage over the cost charged
by the incumbent is D. This percentage could be easily made differ-
ent for different arcs or competitors. The logit model has a known
sensitivity parameter H. Higher values of H mean that customers
are very sensitive to price and they will mostly choose less expen-
sive routes. Smaller values of H mean that the customers are less
sensitive to price (or price differences), and there will be a higher
customers’ spread among the different routes. For further details
on logit models, see Ortúzar and Willumsen (2011). Finally, P is
the set of nodes where the incumbent’s hubs are located. The pro-
posed model is the following:

Z ¼max
X

i;j;k;m2N

ðpijkm � cijkmÞWijXijkm �
X
ði;jÞ2A

KijHij �
X
k2N

FkYk ð1Þ

X
k;m2N

Xijkm þ
X

k;m2P

Zijkm ¼ 1; 8i; j 2 N ð2Þ

Xijkm¼
YkYmHikHkmHmj expð�HpijkmÞP

s;t2NYsYtHisHstHtj expð�HpijstÞ
� �

þgij

; 8i; j; k; m2N ð3Þ

Zijkm¼
expð�HPijkmÞP

s;t2NYsYtHisHstHtj expð�HpijstÞ
� �

þgij

; 8i; j; k; m2N ð4Þ

Pijst ¼ ð1þ DÞcijst; 8i; j; s; t 2 N ð5Þ
cijkm ¼ v � cik þ a � ckm þ d � cmj; 8i; j; k; m 2 N ð6Þ
gij ¼

X
s;t2P

expð�H � PijstÞ; 8i; j 2 N ð7Þ

Yk 2 f0;1g; 8k 2 N ð8Þ
Hij 2 f0;1g; 8ði; jÞ 2 A ð9Þ
pijkm P 0; 8i; j; k; m 2 N ð10Þ
where

� Xijkm is the fraction of the flow going from i 2 N to j 2 N
through entrants’s hubs located at k, m 2 N.

� Zijkm is the fraction of the flow going from i 2 N toj 2 N
through incumbent’s hubs located at k, m 2 P.

� Yk = 1, if the entrant locates a hub at node k 2 N; 0
otherwise.

� Hij = 1, if the entrant establishes a direct connection
between nodes i, j 2 N : (i, j) 2 A; 0 otherwise.

� cijkm is the variable cost of the flow between nodes i and
j 2 N, using hubs k, m 2 N.

� pijkm is the price charged by the entrant to flows between
nodes i and j 2 N, using intermediate hubs k, m 2 N.

� Pijkm is the price charged by the incumbent to flows between
nodes i and j 2 N, using intermediate hubs k, m 2 N.

The objective function (1) maximizes the entrant’s profit, i.e. the
net revenue minus the fixed and variable costs. Constraints (2) en-
sure that the flow between nodes i, j 2 N is routed through en-
trant’s or incumbent’s hubs. Constraints (3) and (4) assign the
flows according to a logit model whose argument are the prices
charged by the entrant or the incumbent, respectively. Constraints
(5) define incumbent’s mill pricing strategy, while (6) is the defini-
tion of the transportation costs over a route i ? k ? m ? j. Eq. (7)
define the parameters gij. Finally, (8)–(10) state the domain of the
decision variables.
3. Solution approach

The resulting model is a non-linear mixed integer programming
problem. Unfortunately, although the objective might be concave
with respect to price, we cannot assure the convexity or concavity
of the objective or the constraints with respect to all the variables.
For this reason, we cannot guarantee that current commercial soft-
ware packages for integer programming would find the optimal
solution. Furthermore, the size of real instances of the problem is
too large for any exact procedure, because of the 4-index formula-
tion required to make the pricing of every route offered by any
agent.

Consequently, we propose using an ad hoc metaheuristic that,
at each step, finds feasible solutions for the location-network de-
sign problem and, for each such solution, solves a pricing problem.
Given that the location-network design search space includes only
binary variables, any metaheuristic able to solve combinatorial
problems could be used. However, in this case, any regular meta-
heuristic would require evaluating the objective at each step and
for every solution in the neighborhood of the current solution,
which would make the problem computationally intensive and
the progress towards finding a solution extremely slow. We chose
a genetic algorithm because of several reasons: it does not require
local search procedures, as the genetic operators help the algo-
rithm to explore the solution space; solutions can be represented
easily; and genetic algorithms have had good success in previous
applications involving hub location problems (Topcuoglu, Corut,
Ermis, & Yilmaz, 2005; Cunha & Silva, 2007; Kratica, Stanimirović,
Tošić, & Filipović, 2007). Genetic algorithms have been proven to
show an optimizing behavior. See, for example, Rudolph (1994).
The proposed approach can be stated as follows: the genetic algo-
rithm explores the space of hub locations and connecting arcs, and
finds feasible solutions. From every solution, a valid hub and spoke
network configuration is derived. Once a valid configuration is
found, the pricing problem is solved for this configuration, and
the optimal flows and prices are found, for that network configura-
tion. The flows captured and priced by the entrant are used to com-
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pute the value of the objective function, after discounting the
network costs.

3.1. Genetic algorithm

First, a population of npop random feasible solutions, i.e. valid
hub and spoke networks, is created and saved in a solution set
S. Then, on every iteration, two solutions, called parents, are
selected randomly from S. A crossover operator is applied to
parents, generating two solutions called offsprings. With probabil-
ity pm the algorithm mutates an offspring, favoring population
diversity. The objective function is computed and, finally, an
offspring is accepted into the set S only if it is better, in terms of
the objective function, than the worst solution in S. The algorithm
iterates until a stopping condition is met.

The remainder of this section describes the components of the
genetic algorithm.

3.1.1. Solution representation
The solution representation is a key issue in the performance of

a genetic algorithm. A solution to the location and network design
problem can be defined using two elements: a binary vector Y of
size jNj, called the hub location vector, in which Yk = 1 means that
a hub is located at node k; and a binary matrix H, called the arc
utilization matrix, of size jNj2, in which Hij = 1 means that the arc
(i, j) 2 A is used by the entrant’s network, for collection, transmis-
sion or distribution.

We chose a representation using arcs, as opposed to edges,
because it enables the use of classical crossover operators, and it
does not bias the search toward edges connecting the low-index
nodes. Note that this representation does not preclude infeasible
solutions, because it can contain arcs between non-hub nodes. This
situation is allowed to keep the diversity of the population;
otherwise, there could be a premature convergence. However,
these arcs are not considered in the computation of the objective
function.

3.1.2. Crossover operator
The crossover operator combines two or more solutions from

the population, and results in one or more offsprings. We use the
1-point crossover operator, which starts from two parent solutions
and returns two offsprings. An integer number b 2 [1, jNj �1] is se-
lected randomly, called the cutting point. The location vectors and
arcs utilization matrices of the parents are cut after the bth posi-
tion in the former, and after the bth column (or row) in the latter.
The row and column crossover are applied with equal probability.
Then, the resulting pairs of pieces of the hub location vectors and
arc utilization matrices of the two parents are exchanged. Fig. 1a
shows two solutions of this location and network design problem,
for a 4-node network. Fig. 1b and c show the new solutions ob-
tained after applying the crossover operator to the solutions shown
in Fig. 1a, using b = 3 and making column and row exchanges in the
arc utilization matrices, respectively.

3.1.3. Mutation operator
The mutation operator creates a new solution from an old one

as follows. A random integer v 2 [1, jNj] is selected. In the hub loca-
tion vector, the value of Yv is flipped. In the arc utilization matrix,
all the elements of either the vth column or the vth row are flipped,
choosing at random which it is going to be, with the same
probability.

3.1.4. Insertion operator
The insertion operator evaluates every solution generated by

crossover and mutation, and includes it in the population if its
objective value is better than the worst solution currently in the
solution set. If that is the case, the worst solution is replaced by
the new one.

3.2. Pricing problem

Hub problems have never included the pricing into consider-
ation together with discrete choice models, since deriving a closed
expression for optimal pricing is not straightforward in this case.
However, in other research fields, e.g. the field of product bundle
pricing (Bitran & Ferrer, 2007), pricing has been studied. We adapt
a formula from that field to our case, considering that hubs on a
route are bundles, as follows. Once a new solution is found by
the genetic algorithm, i.e. the values fbY kgk2N and fbHijgði;jÞ2A are
known, we define Sij as the set of feasible pairs of hubs (k,m) that
can connect the origin–destination (OD) pair (i, j), that is:

Sij¼ ðk;mÞ2N2; bY k¼ bY m¼ bHik¼ bHkm¼ bHmj¼1
n o

; 8i; j2N ð11Þ

Replacing (3) in (1), and using (11), the objective function of the
pricing problem is:

bZ ¼max
X
i;j2N

Wij
P
ðk;mÞ2Sij

ðpijkm � cijkmÞ expð�H � pijkmÞP
ðk;mÞ2Sij

expð�H � pijkmÞ þ gij
� s ð12Þ

with:

s ¼
X
ði;jÞ2A

Kij
bHij þ

X
k2N

Fk
bY k ð13Þ

Optimal prices are derived from the first order conditions, in the
next Theorem.

Theorem 1. The optimal price for every route i ? k ? m ? j is given
by the following closed expression.

p�ijkm ¼ cijkm þ
1
H

1þW
1
gij

X
ðs;tÞ2Sij

expð�H � cijst � 1Þ

24 358<:
9=; ð14Þ

where W(�) is the W Lambert function, defined as the inverse function
of f(W) = WeW.
Proof. Bitran and Ferrer (2007) derive a formula for optimal pric-
ing in the case of a single product bundle. Our formula and proof
are a generalization for the case of multiple bundles (multiple
hub pairs). It is easy to see that the objective function (12) can
be decomposed in separate expressions for every OD pair (i, j).
Using the first order conditions @bZ

@pijkm
¼ 0; 8i; j; k; m 2 N, we

obtain the following expression for a particular route i ? s ? t ? j:

X
ðk;mÞ2Sij

expð�HpijkmÞ þ gij

24 35½1�Hðpijst � cijstÞ�

þH
X
ðk;mÞ2Sij

ðpijkm � cijkmÞ expð�HpijkmÞ

24 35 ¼ 0 ð15Þ

Consider now the equivalent expression for a route
i ? u ? v ? j of the same OD pair. Divide both this expression
and (15) by H, and then subtract them, to obtain the following
equation:

ðpijst � cijst � pijuv þ cijuvÞ gij þ
X
ðk;mÞ2Sij

expð�HpijkmÞ

24 35 ¼ 0 ð16Þ

Since the terms in brackets in Eq. (16) are nonnegative, the expres-
sion in parenthesis must be zero. In other words, if there are multi-
ple optimal routes for the OD pair (i, j), the margins pij�� � cij�� will
be equal. Let rij = pijkm � cijkm. Replacing in (15), we obtain:



Fig. 1. (a) Two partial solutions with jNj = 4, to be used with the proposed genetic algorithm. After applying 1-point: (b) row crossover, and (c) column crossover.
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ð1�HrijÞ gij þ
X
ðk;mÞ2Sij

exp½�Hðrij þ cijkmÞ�

8<:
9=;

þH
X
ðk;mÞ2Sij

rij exp½�Hðrij þ cijkmÞ� ¼ 0 ð17Þ

Let Qij ¼
P
ðk;mÞ2Sij

expð�HcijkmÞ. A reordering of the terms leads to:

ð�1þHrijÞ expð�1þHrijÞ ¼
Q ij expð�1Þ

gij
ð18Þ

The W(z) Lambert function is defined so that z = W(z) exp[W(z)]

holds. Let zij ¼
Qij expð�1Þ

gij
and W(zij) = �1 + Hrij. Then, WðzijÞ ¼

�1þHrij ¼W Qij expð�1Þ
gij

� �
, and

rij ¼
1
H

1þW
Q ij expð�1Þ

gij

 !" #
ð19Þ

Replacing back rij, the closed expression for the optimal prices is:

p�ijkm ¼ cijkm þ
1
H

1þW
1
gij

X
ðs;tÞ2Sij

expð�H � cijst � 1Þ

24 358<:
9=; ð20Þ

The second order conditions can be used to show that bZ is concave
on every pijkm h

Note that in this expression, the price is always greater than the
operating cost, because H > 0 and WðzÞ 2 Rþ if z 2 Rþ. Secondly, a
lower factor H (users’ sensitivity to price differences) leads to
higher optimal prices. This is intuitively correct, since a lower sen-
sitivity means that there are more customers willing to pay higher
prices for the service. These customers can be captured by the
entrant.
4. Computational experiments and discussion

We tested our model on the CAB data set (O’Kelly, 1987). The
fixed cost of opening a hub at node k was set to Fk = 100, "k 2 N.
The fixed cost of establishing a link between the pair of nodes i
and j was computed using the following expression (Calik et al.,
2009).

Kij ¼ 100
cij=Wij

maxðk;lÞ2Ackl=Wkl
; 8ði; jÞ 2 A ð21Þ

For the experiments, we used the following setting: the flows in
thousands, d = v = 1, a = {0.2,0.4,0.6,0.8,1.0}, q = jPj = {1, . . . ,5},
D = {0.05,0.1,0.2,0.3,0.4,0.5}, and H = {3.85,5.78,7.70,9.63,11.55,
15.39}. These values of H correspond to 3r taking the values
{1,0.66,0.5,0.4,0.33,0.25}, where r is the standard deviation of
the users’ perception of the price. The 900 resulting instances were
run 10 times each, using different random seeds.

We used a PC with a 2.80 GHz Core i7 processor and 6 GB of
RAM, and operating system Ubuntu 11.10. The genetic algorithm
was programmed in C++ and compiled using GCC 4.6 with the vec-
torization and code optimization options activated.

As the calcultation of the objective function value is separable
by origin–destination pairs, we parallelize it using the library
GOMP (GNU-OpenMP).

The genetic algorithm was run up to a maximum of 10,000
iterations, with 100 solutions in the set S, and a mutation proba-
bility of 1%. However, the preliminary tests shown that after 5000
iterations there was no improvement in the quality of the solu-
tions, and we used this last value in the reported numerical
experiments.As we mention before, optimality is not necessarily
achieved.
4.1. The role of inter-hub economies of scale on the entrant’s profit

We first study the case in which inter-hub transportation is
cheaper, and analyze the effects of these discounted costs or econ-
omies of scale on the entrant’s profit.

From the entrant’s point of view, there are three basic
situations.

1. The incumbent has only one hub located. In this case, the
larger the inter-hub discount, the higher the benefit of the
entrant.

2. Both the incumbent and the entrant have two or more hubs.
Inter-hub economies of scale are less relevant to the entrant,
because both competitors can take advantage of them.

3. The incumbent operates a large hub and spoke network. The
entrant will obtain benefit only if there are low economies
of scale or none at all. In this case, the only advantage of
the entrant is the a priori knowledge of the incumbent’s
network.

Fig. 2 shows the results for these three scenarios. The profit
earned by the entrant is shown on the left vertical axis of each
graph, the income perceived by the incumbent on the right vertical
axis, and the inter-hub discount factor (a) on the horizontal axis.

We display the incumbent’s income (and not the profit) because
the incumbent is supposed to have been in the market for a while,
so its investment costs are sunk. Fig. 2a shows the case in which
the incumbent has only one hub located (q = 1) and charges a
low margin (D = 0.05) over his costs, with customers having an
intermediate sensitivity factor (H = 5.78). In this case, for lower
inter-hub costs (lower values of a), the entrant can increase its
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customer capture and profit by opening more than one hub, taking
advantage of the reduced inter-hub costs, which the incumbent,
with only one hub, cannot.

Fig. 2b and c show what happens when q = 2 and q = 3 (the
incumbent has two and three open hubs, respectively). Please note
the different scale for the entrant profit on these Figures, since now
the entrant’s profit is significantly smaller than when q = 1, be-
cause the incumbent can take advantage of the inter-hub dis-
counts, achieving a better competitive position and reducing the
entrant’s capability of obtaining a higher profit. Fig. 2c shows
how, if the incumbent has a more extensive network, with more
than two hubs, it is not convenient for the entrant to start opera-
tions in the same market, unless there are no inter-hub economies
of scale at all. Our tests show that this situation does not change for
different values of H.

If the leader’s margin D increases, the entrant’s profit poten-
tially grows and becomes less dependent on a, even if the incum-
bent has a larger network with several hubs. Naturally, the
incumbent can easily change its margins, making the entrant’s
option of competing in this market very risky. The effect of the
margin charged by the incumbent on the entrant’s profit is shown
in Fig. 3, for a = 0.6 and H = 15.39. The entrant’s profit Z is shown
on the vertical axis, while the margin D is shown on the horizon-
tal axis. Each series is associated with a different number of
incumbent’s hubs, q. Note that the entrant’s profit increases al-
most linearly on D, especially for low values; but not on q. As be-
fore, there are situations in which it is not possible for a new
competitor to enter the market (q = 5 and small margins, for
example).
(a) q = 1

(c) q

Fig. 2. Entrant’s objective function value as a
4.2. The effect of sensitivity to price differences on the entrant’s profit

Fig. 4 shows how the entrant’s profit varies as a function of the
users’ sensitivity to price differences, H.

We focus on the case in which the incumbent charges a small
margin over its costs (D = 0.05), for different values of a. When
q = 1 (Fig. 4a), for high values of H, most of the customers choose
the least expensive routes. In other words, there is little spread of
customers among the different routes. Since the entrant can locate
two or more hubs –taking advantage of inter-hub economies of
scale– it can offer routes that are cheaper than those offered by
the incumbent, obtaining a reasonable profit. As the value of H de-
creases, more customers are willing to pay higher prices, and the
entrant’s advantage due to inter-hub economies of scale, as well
as its profit, decreases. However, when customers’ sensitivity to
price further decreases, the entrant can increase its prices, obtain-
ing a higher profit.

If q = 2, the market is more competitive, because the incumbent
is already taking advantage of the inter-hub economies of scale.
This is shown in Fig. 4b. High and intermediate values of H put
the entrant in a disadvantageous situation, particularly if the
incumbent has optimized its hub locations and network. As H con-
tinues decreasing, customers are less sensitive and the entrant can
increase its prices and profit.

As intuitively expected, the larger the margin charged by the
incumbent, the greater the entrant’s potential profit.

Finally, note that curves are not monotonic, and in occasions
they intersect each other. This is due to the fact that the genetic
algorithm does not guarantee optimality of the solutions.
(b) q = 2

 = 3

function of a, with D = 0.05 and H = 5.78.



Fig. 3. Entrant’s objective function value as a function of D, with a = 0.6 and
H = 15.39, for different values of q.

Fig. 5. Incumbent’s and entrant’s market share and profit, for different values of
entrant’s margin over cost. Entrant has lower costs than the incumbent. Entrant’s
hubs on nodes 10 and 25; incumbent’s hubs on nodes 2 and 5; it is the (8,3) OD pair,
with a = 0.2, D = 0.05, and H = 15.39.
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4.3. Optimal pricing decisions

The pricing problem is decomposable by OD pairs, each pair
being an individual market. Every feasible route is a separate prod-
uct in this market. In this subsection we will not consider the fixed
costs of using arcs of the network, to do a fair comparison between
both agents. From the entrant’s point of view, there are two possi-
ble scenarios: with and without (variable) cost advantage over the
incumbent.

4.3.1. The entrant has a cost advantage over the incumbent
If the location and network design decisions allow the entrant

to open a route with lower operating costs than the incumbent
(a) q = 1

Fig. 4. Entrant’s objective function value as a functi

Table 1
Optimal pricing by the entrant, with cost advantage, H = 15.39, D = 0.05, a = 0.2, for the (8,3

Route Cost

Entrant’s routes 8 ? 10 ? 3 2.478
8 ? 10 ? 25 ? 3 1.521
8 ? 25 ? 10 ? 3 3.320
8 ? 25 ? 3 1.881

Incumbents’s routes 8 ? 2 ? 3 1.872
8 ? 2 ? 5 ? 3 2.338
8 ? 5 ? 2 ? 3 1.536
8 ? 5 ? 3 1.830
for a specific OD pair, then it has a competitive advantage in this
particular market. An intuitive decision would be to price that par-
ticular route just below the incumbent’s cheapest price. However,
this is not always the optimal decision. Consider, for example, the
situation depicted in Table 1, that shows a solution in which the
incumbent has two hubs located at nodes 2 and 5, and the entrant
has also two hubs, at nodes 10 and 25, with a = 0.2 (strong inter-
hub discount), D = 0.05(low incumbent margin), and H = 15.39
(customers are very sensitive to price differences). The
Table shows all routes and optimal costs for the (8,3) OD pair.
The entrant has lower costs than the incumbent, leading to a com-
petitive advantage. The first column shows the possible routes for
both the entrant and the incumbent. The remaining columns are
the cost, price, likelihood of usage, market share and profit of each
(b) q = 2

on of r, with D = 0.05, for different values of a.

) OD pair. Entrant’s hubs on nodes 10 and 25, and incumbent’s hubs on nodes 2 and 5.

Price exp (�H � Price) MS (%) Profit

2.590 4.927E�18 0.00 0.000
1.633 1.213E�11 41.71 0.269
3.432 1.159E�23 0.00 0.000
1.993 4.773E�14 0.16 0.001

1.966 7.322E�14 0.25 0.001
2.454 3.936E�17 0.00 0.000
1.613 1.668E�11 57.38 0.254
1.921 1.436E�13 0.49 0.003

Sum 2.908E�11 100.00 0.528



Table 2
Optimal pricing by the entrant, without cost advantage, H = 3.85, D = 0.05, a = 0.2, for the (4,6) OD pair. Entrant’s hubs on nodes 10 and 25, and incumbent’s hubs on nodes 2 and
5.

Route Cost Price exp (�H � Price) MS. (%) Profit

Entrant’s routes 4 ? 10 ? 6 2.037 2.102 3.060E�04 0.11 0.002
4 ? 10 ? 25 ? 6 1.472 1.537 2.689E�03 0.93 0.021
4 ? 25 ? 10 ? 6 1.938 2.003 4.480E�04 0.15 0.004
4 ? 25 ? 6 0.891 0.956 2.522E�02 8.68 0.198

Incumbents’s routes 4 ? 2 ? 6 0.926 0.972 2.368E�02 8.15 0.133
4 ? 2 ? 5 ? 6 0.925 0.971 2.379E�02 8.19 0.133
4 ? 5 ? 2 ? 6 0.654 0.686 7.117E�02 24.51 0.281
4 ? 15 ? 6 0.481 0.505 1.431E�01 49.28 0.416

Sum 2.904E�01 100.00 1.188
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route, respectively. The least expensive routes of both the entrant
and the incumbent are highlighted.

Note that although the entrant has the cheapest cost for this
(O,D) pair (through route 8, 10, 25, 3), and in spite of the high price
sensitivity of the customers, the optimal price of this entrant’s
route (which implies charging a margin of about 0.112 units) is
higher than the incumbent’s lowest price (route 8, 5, 2, 3). As coun-
terintuitive as it seems, this is the optimal decision when the
objective of the entrant is profit maximization. Note that this pric-
ing policy does not lead to a maximum market share. Decreasing
this price would most likely increase the entrant’s market share
to over 50%, but it would decrease its profit. By making this deci-
(a) q = 1

(c) q 

Fig. 6. Solutions for a = 0.6, H = 15.39, and D = 0.3, and different values of q. White circle
incumbent’s hubs. Gray stars indicate colocation of both incumbent’s and entrant’s hub
sion, the entrant captures less customers, but the customers that
it captures are those willing to pay higher prices (cherry-picking).
This behavior is similar to the what Sasaki et al. (2009) found for
heterogeneous customers.

Using the same parameter values as in Table 1, Fig. 5 shows
both competitors’ market share and profit for different values of
the margin over cost charged by the entrant. The incumbent’s prof-
it and market share increase as the entrant increases its margin.
However, although the entrant’s market share decreases as its
margin increases, its profit is not monotonic, achieving a maximum
at the point predicted by expression (14), charging a margin of
about 0.112 units over its costs.
(b) q = 2

= 3

s are cities; black circles are locations of entrant’s hubs; white stars are locations of
s.
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4.3.2. The entrant does not have a cost advantage over the incumbent
Consider now the situation in which it is the incumbent who

has the least cost for an OD pair, on one of its routes, as shown
in Table 2. Still the entrant has some room for capturing the cus-
tomers that are willing to pay a higher price, provided it charges
a low margin over its costs.

We focus on the (4,6) OD pair, with a = 0.2, and D = 0.05, as be-
fore. For this example, however, we use H = 3.85 i.e., customers are
less sensitive to price differences. We use this value to illustrate
more explicitly the rationale behind the pricing decisions that
our model suggests.

As Table 2 shows, in this situation, the entrant, taking advan-
tage of the low sensitivity to price differences (H), charges a mar-
gin of about 0.065 units, that enables the capture of the customers
willing to pay more for the service, achieving some profit, as the
rightmost column shows. For higher values of H, the margin
charged and the total profit are smaller.

4.4. Entrant’s network structure

We studied three scenarios to understand the resulting en-
trant’s network structure: (1) intermediate inter-hub discount,
high sensitivity to price differences, and a moderate margin
charged by the incumbent; (2) intermediate inter-hub discount,
intermediate sensitivity to price differences, and a moderate mar-
gin charged by the incumbent; and (3) no inter-hub discount,
intermediate sensitivity to price differences, and low incumbent
margin. Figs. 6 and 7 show the entrant’s network structure for sce-
(a) q = 1

(c) q =

Fig. 7. Solutions for a = 1, H = 7.7, and D = 0.2, and different values of q. White circles
incumbent’s hubs.
narios 1 and 3. The narrower arcs connect hubs and non-hub
nodes. The thicker arcs connect entrant’s hubs, shown as black cir-
cles. The incumbent’s hubs are shown as stars, but for the sake of
clarity, the network is not drawn. A gray star shows co-location
of entrant’s and incumbent’s hubs.
4.4.1. Scenario 1
In this case, a = 0.6, H = 15.39, and D = 0.3, i.e. there are moder-

ate inter-hub economies of scale; the users are very sensitive to
price differences; and the incumbent charges a moderate margin
over his costs. Fig. 6 shows the networks for differents values of q.

If q = 1 (Fig. 6a), the incumbent cannot use the inter-hub econ-
omies of scale, so the entrant has the incentive to locate several
hubs, separated from each other by long arcs.

When q = 2 (Fig. 6b), both agents can use the inter-hub econo-
mies of scale, and the scenario is more competitive. The entrant’s
hub interconnection network is less extended; i.e., the number
and distance between hubs decreases.

Finally, then q = 3 (Fig. 6c), the incumbent is even stronger,
allowing the entrant to locate only three hubs and an even smaller
network.
4.4.2. Scenario 2
Now, we consider the case in which the users are less sensitive

to price differences. Let H = 7.7, with all the other parameters as in
the previous scenario. The results for this scenario are very similar
to Scenario 1, but with a higher income for the incumbent.
(b) q = 2

 3

are cities; black circles are locations of entrant’s hubs; white stars are locations of



Table 3
Number of open hubs (# hubs) and arcs (# arcs), running time (Time), Entrant’s Profit and Incumbent’s Income, for all scenarios and values of q.

Scenario Parameters q # Hubs # Arcs Time (s) Entrant’s Profit Incumbent’s Income

1 a = 0.6 1 9 102 7.67 5180.01 442.28
H = 15.39 2 7 84 7.61 1704.10 736.34
D = 0.3 3 3 36 7.24 399.20 1520.16

2 a = 0.6 1 12 152 15.23 4823.74 587.47
H = 7.7 2 7 93 6.89 1799.74 964.43
D = 0.3 3 3 31 6.30 315.23 1771.64

3 a = 1 1 9 107 6.32 3071.23 663.83
H = 7.7 2 4 64 4.47 714.09 1132.56
D = 0.2 3 2 29 6.43 445.55 1467.26
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4.4.3. Scenario 3
If there are no inter-hub economies of scale (a = 1), the incum-

bent charges a lower margin (D = 0.2) and there is intermediate
sensitivity to price differences, the resulting networks for different
values of q, are shown in Fig. 7.

Without inter-hub economies of scale, and if the incumbent’s
margin is low, it is harder for the entrant to capture customers in
any scenario. If q = 1, the resulting entrant’s network is smaller
(Fig. 7a). When q = 2 (Fig. 7b), the entrant creates a more sparse
network, and locates four hubs. Finally, when q = 3 (Fig. 7c), the
incumbent is even stronger, and the entrant’s network is even
smaller. We remark that even though there are no economies of
scale, some passengers will choose using routes including inter-
hub arcs. This is due to the fact that, as opposed to hub location
models with no user choice, there is dispersion in the preferences
of the customers.

Note that the networks in Fig. 7 have most (or all) the hubs very
close together. This is due to the following possible reasons: Each
origin–destination pair uses all possible routes going through one
or two hubs (there is multiple-assignment of demands to hubs).
Also, the model requires every flow to go through at least one
hub. These two conditions, together with the fact that the largest
flows and the highest density of cities are on the east coast (on
Fig. 7b, half of the flows are either originating or having as a desti-
nation the hub nodes), and the low opening cost of hubs, make the
east side of the country a good location for several hubs. It is also
important to note that the cost structure influences the resulting
entrant’s network. For example, with larger fixed hub costs, there
would likely be fewer hubs; and using the fixed costs structure
in Calik et al., 2009 for arcs could give an incentive to use short
links between cities with large flows. Similarly, Table 3 summa-
rizes the results of all scenarios. In general, the stronger the incum-
bent’s position is, i.e. lower margin and larger network, the harder
it is for the entrant to obtain any profit. Stronger incumbent’s posi-
tions result in a decrease in both profit and the number of hubs
open by the entrant. Also, when the incumbent is strong, in terms
of the number of located hubs, the entrant’s best option tend to be
to concentrate in a small area (if possible) and obtain the highest
profit there. Finally, we remark that the objectives of both firms
are different: while the incumbent minimizes cost to serve the en-
tire demand, which resembles the profit maximization of a monop-
olist, the entrant’s objective is profit maximization given the
incumbent’s network and prices.
5. Conclusions

We present a new approach to analyze a situation in which two
firms compete in a transportation market. An existing firm oper-
ates a hub and spoke network, and applies mill pricing. A new firm
wants to enter the same market, maximizing its profit by building
a possibly incomplete hub network, and by making optimal pricing
decisions. Customers’ choice of provider and route depends solely
on price, as would predict a simple logit model, although including
other factors would be very easy.

We formulate a non-linear mixed integer programming model.
We derive a closed form expression for the optimal pricing policy,
and solve the problem as a location-network design problem (com-
binatorial) with an embedded pricing problem. We use a genetic
algorithm for the location and network design problem. We thor-
oughly analyze the results of the model using the CAB dataset.

The computational experience shows that considering optimal
pricing decisions when solving the hub location-network design
problem leads to a better estimation of the maximum profit that
the entrant will be able to obtain. Without solving the pricing
problem, it is not possible to estimate the demand captured, its
behavior and the final profit.

As opposed to Eiselt and Marianov (2009), who studied the hub
location problem considering that users choose according to a
gravity model, we use a logit model, which enables introducing
customers’ sensitivity to prices. The consideration of sensitivity
provides new insights about the competitive hub location problem.
We show how this sensitivity plays either in favor of the entrant or
the incumbent, depending on the incumbent’s margin and network
configuration. We show that, if sensitivity to price differences is
considered, the optimal pricing policy for the entrant does not nec-
essarily always consist in charging a price that is below the incum-
bent’s cheapest price for a given OD pair. In fact, for low
sensitivities to price, customers will spread among the routes more
evenly, so all routes will capture some traffic. This is a conceptual
difference with the work by Marianov et al. (1999), who consider
that the firm with the cheapest route captures all customers.

Also, we show that, under competition, inter-hub discounted
costs strongly influence the decision of entering a market. Inter-
hub economies of scale, together with low prices, can be used by
a strong operator to block a new agent from entering the market.
On the other hand, inter-hub discounted costs can be the key to
success for a new agent, who can take advantage of his knowledge
of the incumbent’s network and prices, whenever incumbent’s
location and network design are not the best, or its prices are high.
We remark, though, that the modeling of the economies of scale is
still an open question in the hub location literature, as Campbell
(2012) pointed out recently, and using inter-hub discount factors
of the incurred costs is just an approximation of the actual dynam-
ics in a hub and spoke network.

A scenario analysis like the one presented here can be a valu-
able tool for a firm that is evaluating its entrance to a market. Fur-
thermore, using this analysis, some situations can be foreseen in
which entering the market is not convenient even if customer sen-
sitivity is low.

We also show that, for competitive situations, a formulation
that maximizes profit provides different results and insights than
a model that seeks market share maximization, while more
adapted to situations in which a competitor aims at a higher profit.
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Naturally, there are some factors that we did not take into ac-
count, which could be relevant in a competitive situation. One of
these is the fact that the incumbent could react to the newcomer’s
entry to the market, using for example smaller planes in some
spokes to increase the service frequency; or decreasing the prices
charged on certain routes; improving the benefits offered within
frequent-flyer programs, and so on. However, taking all these fac-
tors into account is left as a future challenge.

Further analysis could be performed to explore situations in
which profit is required to exceed a certain bound and the number
of routes opened by the competing firms is limited. Extensions to
this work include the analysis of the same scenarios using multino-
mial logit models, since in the airline hub problem customers
choose based on prices, flight time, the number of stops (hubs),
and other factors.

Also of interest is the effect of sharing hubs by different compa-
nies, as it reduces fixed location costs, but potentially increases
congestion. Finally, we leave for future research the analysis of
von Stackelberg-type games, in which the incumbent designs the
network assuming that a competitor will attempt to enter the
market.
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