
Multi-operand Floating-point Addition

Alexandre F. Tenca
Synopsys, Inc.

tenca@synopsys.com

Abstract

The design of a component to perform parallel addition
of multiple floating-point (FP) operands is explored in this
work. In particular, a 3-input FP adder is discussed in more
detail, but the main concepts and ideas presented in this
work are valid for FP adders with more inputs. The pro-
posed design is more accurate than conventional FP addi-
tion using a network of 2-operand FP adders and it may
have competitive area and delay depending on the number
of input operands. Implementation results of a 3-operand
FP adder are presented to compare its performance to a
network of 2-input FP adders.

1 Introduction

Floating-point (FP) addition of two operands is exten-
sively discussed in the literature [2, 6, 3, 7]. The limited
precision in the FP representation requires rounding and ba-
sically makes the FP addition sensitive to the operand order
[5]. When adding multiple FP operands using a network of
2-input FP adders (FPADD2) the error in the final result can
be significant (loss of accuracy). Besides, the use of several
FPADD2s on a circuit may result in long delays that could
be avoided with an integrated solution.

Most of the operations in algorithms that use FP consist
in FP addition and accumulation (around 80%). Fused mul-
tiplication and addition operations were investigated in the
past (MAC) and are usually used in graphics and digital sig-
nal processing [1]. Several processors include this type of
operation. Based on this observation, since 3 operands are
available to FP units (FPU) that include MACs, it would be
feasible to include 3-operand FP adders as part of the FPU.
The use of multi-operand adders would be most beneficial
to reduce the round-off error that happens during accumula-
tion of FP values with conventional 2-input FP adders, how-
ever, the performance of these adders must be comparable
to the solution using 2-input FP adders in order to be advan-
tageous.

This work presents the issues involved in the design

of multi-operand floating-point adders, and without loss
of generality, it focus on the simultaneous addition of 3
operands. We analyze the issues related to multi-operand
addition and evaluate the proposed solutions in compari-
son to the usual approach using 2-operand FP adders. The
author is not aware of any previous publication dedicated
to the discussion of this topic, although there are machines
with inner-products and dot-products.

A floating-point number fi is formed by a triple
(si, ei, mi), where si ∈ {0, 1} represents the sign (0 for
positive and 1 for negative), ei ∈ [0, 2ne − 1] represents
an ne-bit exponent that carries a signed integer in a bi-
ased representation (with bias B = 2ne−1 − 1), and mi ∈
[0, 2nm−1] representing the nm-bit fractional portion of the
significand. The value of fi is (−1)si × 1.mi × 2ei−B . For
special values (zero, NaN and infinity) the exponent field
and significand field assume specific values. The n-operand
FP adder (FPADDn) is a component defined for values of
n ≥ 2 as:

fr = FPADDn(f1, f2, ..., fn) = f1 + f2 + ... + fn

The requirements for the design of FPADDn operators
with n > 2 include: (1) the output accuracy of the oper-
ator must be better than the accuracy of an equivalent net-
work of FPADD2s, (2) the operator should support a com-
mutative n-input FP addition, and (3) the delay for the solu-
tion should be better to or competitive with the network of
FPADD2s without excessive extra hardware.

The general concepts involved in the addition of multi-
ple FP operands are presented in Section 2. Section 3 pro-
vides a high-level algorithm for the operation and identifies
major building blocks required in the implementation of a
component to perform the operation. Other sections pro-
vide some detail on significant design issues and alternative
solutions. A more detailed block diagram of a 3-input FP
adder is shown in Section 4. Results obtained with experi-
ments and conclusions are provided in Sections 5 and 6.

2009 19th IEEE International Symposium on Computer Arithmetic

1063-6889/09 $25.00 © 2009 IEEE

DOI 10.1109/ARITH.2009.27

161

2 General issues in multi-operand addition

Let us initially discuss the difficulties related to the im-
plementation of FPADDn and the alternatives to make it
more accurate than using a network of FPADD2s. The
term ”precision” is a reference to the number of bits used
in the computation of the proposed function. Accuracy is
used to make reference to how close the result generated by
the component is to the actual result (as if infinite precision
were used).

First, similarly to multiply-and-add operators [1] the
internal precision used to execute multi-operand addition
must be larger than the internal precision used in each
FPADD2 in a network. Such a requirement is expected be-
cause the alignment, normalization and rounding steps per-
formed by each FPADD2 in a network keep the intermediate
FP values in a representation with a small number of bits.
When the series of steps performed by multiple FPADD2
modules are concentrated into a single component the in-
ternal structures will require more precision to handle the
wider range of relative positions between mantissas and the
interference between them. So, it is not straightforward to
say that there is area or delay gain in this type of solution.

It is also well known that the result of addition of FP
values using 2-input FP adders depend on the sequence of
operations (non-associative operation). Consider the addi-
tion of 3 FP operands: a, b, and c, with a = −b and c << a.
The following results will occur when we execute different
FP addition sequences on these operands:

• (a +FP (−b)) +FP c = 0 +FP c = c

• (a +FP c) +FP (−b) = a′ +FP (−b) = ε

where +FP represents FP addition, a′ is a value close to a,
or more specifically a′ ∈ {a, a + 1ulp, a − 1ulp}, and ε
is a value that can be as large as 1ulp of a. The accurate
output is c, and since a is much larger than c, the error in
the second result (|ε − c|) can be large. An operator de-
signed to satisfy the commutativity property on its inputs
will always provide the most accurate result. Notice that
an operator that handles this type of special cases must take
catastrophic cancellations into account. Such operator will
be more accurate than a network of FPADD2s.

It was initially considered as a design alternative to take
advantage of the input sequence to generate a solution for
the FPADDn that would be smaller and as accurate as the
network of FPADD2s, but it turned out that enforcing the
sequence of operations in the network and keeping the com-
ponent with better or equal accuracy is complicated, and
the design to cover all the special cases was not competitive
with the network of FPADD2s in terms of area and delay.

Two-input FP adders swap the input operands to avoid
the absolute value calculation after the addition of signifi-
cands. The same is not possible in the addition of multiple

operands because the sum of the smaller operands can be
larger than the largest operand, and the addition of signif-
icands may be negative. There is no simple way to avoid
the absolute value computation after the internal addition of
aligned significands.

Another issue is related to the support of internal values
larger than infinity. An initial experiment was done to detect
internal overflows and set internal flags for infinities. How-
ever, exponents in FP adders overflow by only 1 unit, and in-
ternally keeping this slightly larger exponent value is bene-
ficial in two ways: there is no need to perform overflow tests
and it provides a wider range for internal values. Consider
the following example: c = −∞, a = b = maxNorm,
where maxNorm corresponds to the maximum normalized
value in the FP system. The network of FPADD2 modules
outputs NaN while the more accurate result is −∞.

Finally, sticky bit calculation is more complex in the
FPADDn than in FPADD2s. The determination of the cor-
rect value of the sticky bit used in the internal addition is
critical to reach the desired level of accuracy. We discuss
more about it in one of the following sections.

2.1 Special inputs

Extending the guidelines presented in IEEE-Std754 [4]
for 2-operand addition, the addition of multiple FP operands
should behave as follows for special values:

• when one of the inputs is NaN, the output is NaN;

• when inputs have one or more infinity values with the
same sign, the output is infinity (matching the sign);

• when input have infinities with different signs, the out-
put is NaN;

• when all the inputs are zeros the output is zero. How-
ever, care must be taken to keep the sign consistent
with a network of FPADD2s that obey the standard.
When all the zeros have the same sign, the output
has this sign, independently of rounding mode. When
signs are different, the output is -0 when rounding
to negative infinity and +0 for all the other rounding
modes. We considered (round to nearest, round to pos-
itive infinity, round to zero, round away from zero).

3 Adding multiple FP operands

A high level algorithm to perform multi-operand addi-
tion (without considering special input values) is given as
follows:

1. unpack each of the FP input values fi to obtain si, ei,
and mi;

162

2. determine the maximum exponent emax =
max(e1, ..., en) and compute the exponent differences
δi = emax − ei;

3. align the values of 1.mi based on δi, and determine the
values of stki (sticky bits). The number of output bits
in the alignment unit depends on the internal precision
of the adder (p bits). Thus, alignedi[p − 1 : 0] =
(1.mi) >> δi, where ”>>” represents the bit shift
operation.

4. determine the value stk to be used during addition of
aligned significands based on stki and fi;

5. perform addition of aligned mantissas with stk;

6. detect catastrophic cancellation of the largest fi’s, ad-
just the addition result and emax value accordingly
(discussed in Section 3.4);

7. perform normalization and rounding;

8. detect special cases, fix the FP result if necessary and
pack the final FP value.

A general block diagram of an adder for multiple FP
operands is shown in Figure 1. In the following sections
we provide details for each block in the diagram and dis-
cuss the design decisions made for each of them. The ap-
proach looks rather straightforward but the multi-path ap-
proach used in 2-input adders is not attractive for FPADDns
given the number of combinations to be considered.

3.1 Alignment of significands

The alignment of significands involves also the compu-
tation of the sticky bit used for addition. The alignment of
operands requires the detection of the maximum exponent
and the computation of the relative difference between ex-
ponents. Once the differences between exponents is com-
puted, the alignment is done using variable shifters. We
discuss the use of two alternatives to perform this task.

3.1.1 Alignment with detection of maximum exponent

The maximum exponent may be detected with a network of
comparators and multiplexers. Let us define a component
(MAX) that is formed by a comparator and a multiplexer
as shown in Figure 2.

A tree structure formed with this component provides a
solution to identify the maximum value among several in-
puts. The tree is based on the associative and commutative
properties of the MAX(A, B) function.

Once the maximum exponent of n FP numbers being
added is obtained, the shifting distance for proper alignment
is computed by several small subtractors (exponents usually

Figure 1. General block diagram

Figure 2. MAX(A, B) block for detection of maxi-
mum exponent

use a small number of bits). The output of each subtractor
is the shifting distance control applied to a variable right
shifter that aligns the corresponding significand.

The alignment unit using this method for a 3-operand FP
adder is shown in Figure 3. For this example, the alignment
unit requires 2 MAX blocks (3 comparators and 3 muxes)
to compute the maximum exponent, 3 subtractors to obtain
the shifting distances and 3 right shifters. The critical path
passes by two MAX blocks, one subtractor, and one shifter.

An important parameter for this block is the bit width of
the variable shifter outputs (k). They depend on the width
of the internal adder for aligned significands, which is dis-
cussed in section 3.3.

163

Figure 3. Alignment unit for a 3-input FP
adder

Inputs Mux control sign/zero ctr
c12 c23 c31 emax M1 M2 M3 α β γ
0 0 0 N/A - - - - - -
0 0 1 e3 1 0 - 0 1 2
0 1 0 e2 0 - 1 1 2 0
0 1 1 e2 0 - 1 1 2 0
1 0 0 e1 - 1 0 2 0 1
1 0 1 e3 1 0 - 0 1 2
1 1 0 e1 - 1 0 2 0 1
1 1 1 d.c. - - - - - -

Table 1. Comparison logic behavior

3.1.2 Alignment using results of relative differences

The previous circuit takes a significant portion of the
FPADDn. An alternative approach comes from the realiza-
tion that comparators basically use subtraction to find out
which operand is the largest or smaller than the other, so,
the result of the subtractions between exponents used for
comparison could be also used for the computation of dif-
ferences (used in the alignment shifters). Conversely, the
computation of the relative differences between exponents
can be used to determine which one is the largest. This
alternative is attractive for FPADDns with small number of
inputs. A diagram that illustrates this alternative is shown in
Figure 4. The comparison logic uses the carry-out bits from
the subtractions between exponents to come to a conclusion
about the largest exponent, as shown in Table 1. In the ta-
ble we have exy = ex − ey , for x, y ∈ {1, 2, 3}, and thus
exy = −eyx. Muxx feeds a change-of-sign unit that is also
able to zero its output. The control signals for the change of
sign units are α, β, and γ, which can have the values 0 (do
not change sign), 1 (change the sign), or 2 (zero output).

The carry-out bit cij generated by the operation ei − ej

is 1 when the operands have the same value or the minu-
end is larger than the subtrahend. The absolute value of the

Figure 4. Another alternative for compari-
son/difference computation block

differences requires the change of sign for some of the sub-
tractor’s results. The N/A case for emax indicates a case that
does not happen. The output ”d.c.” means that any of the ex-
ponents can be used. Once emax is obtained, change of sign
blocks and muxes are used to pick up the correct absolute
difference between exponents. For example, when e1 is the
largest exponent, the change of sign/zero logic connected
to δ1 is commanded to send a zero to the output, while e12

is selected in Mux2 with the change of sign logic passing
the input straight through (making δ2 = e12), and e31 is se-
lected in Mux3 with change of sign to become δ3 = e13.
The alternatives are shown in the Table.

The critical path includes a subtractor, a change of sign
block, a multiplexer and an alignment shifter. The result of
the performance comparison between this alternative and
the one presented in the previous subsection is given in sec-
tion 5.

3.2 Sign of aligned significands

Once each significand is aligned, the sign of the FP num-
ber associated to it must be incorporated. This operation
is required for the cases when the FP inputs have differ-
ent signs. To avoid having change of sign logic for ev-
ery aligned significand, it is better to anchor one of them
and change the sign of the others relative to it. If the an-
chored significand is in fact negative, the result of the addi-
tion has the opposite sign. For an n-operand addition, we
have the sign of the final FP number (sr) computed from
the sign of the adder output (sadd) and the sign of the in-
put operand to be anchored (sa) as sr = sadd ⊕ sa. Each
aligned significand is changed to a negative value based on

164

the difference between its sign (si) and the anchor, or sim-
ply change sign = si ⊕ sa.

3.2.1 Detection and processing of sticky bits

Consider that each aligned significand may have a sticky bit
stki, and we need to define the bit stk to be used in the
addition of significands.

When performing multi-operand addition there is a pos-
sibility of having more than one aligned significand out of
range (completely shifted out of range during alignment) or
partially out of range. In any case, the sticky bit set for each
significand after alignment phase must be used to define the
sticky bit to be incorporated to the addition process. The
decision about which sticky bit should be kept is decisive
to generate an accurate result. The solution is trivial when
the operands getting out of range (completely or partially)
have the same sign, we just pick any one of them. The criti-
cal situation happens when the sticky bits area associated to
operands with different signs.

There are a couple of cases that must be considered when
multiple stk bits have non-zero value and the significands
have different signs:

• there is at least one partially out-of-range (POR) sig-
nificand: one simple approach would consist in dis-
carding all the stk bits. It would work like a truncation
of the significands. When there is enough precision in
the internal adder (as discussed later), the error intro-
duced by truncation does not substantially affect the
result.

• all the aligned significands are completely out-of-
range (COR): in this case, we make stk = 1 and the
sign to be used for this bit is given by the following
function:

signstk = sign(
n∑

i=1

stki ∗ fi)

which means that for a large number of operands, an
addition of aligned significands coming out of range is
required for accurate computation of the stk bit. This
requirement is a big burden for multi-operand addition
when n > 4.

When n = 3 the solution to the problem is to always
take the stk bit of the largest FP value fi that has stki = 1.
Full comparison of the FP values applied to the component
is required to make a decision.

For n > 3 something more elaborate must be used since
we may have the case when 3 COR significands occur, and
addition of two of the smaller FP values that correspond to
two of these COR significands may result in a larger value

than the FP value of the third COR significand, and has op-
posite sign. We could still adopt the same approach applied
to n = 3, but we would have issues with rounding in some
cases. This simple approach would be however, equivalent
to some results obtained with a network of FPADD2s, but
the FPADD3 wouldn’t be more accurate than the network
in these cases.

Other alternatives would involve sorting of operands and
comparisons in order to properly identify the value of the
sticky bit to be used.

3.3 Internal adder precision

Most of the time, the bits of one aligned significand may
have a weight that is completely different than the weight of
bits in another aligned significand. It is practically impos-
sible (for usual FP formats) to have enough internal preci-
sion to keep all the aligned significand bits of all operands.
Therefore, a decision must be made regarding the precision
of the internal adder for significands, and the degree of trun-
cation that must happen as a consequence of this decision.

A regular two-operand adder uses only 3 extra LS bits
(besides the bits in the width of a significand) to account
for all cases in the FP addition/subtraction. In the multi-
operand sum, the number of extra bits used to bound the
error in the computation will depend on the number of
operands.

Consider the addition of the following FP values: x,
−(x − ε1), −(ε1 − ε2), −(ε2 − ε3). Each value is such
that ε1 is close to 1 ulp of x, ε2 is close to 1 ulp of ε1, and ε3
is close to 1 ulp of ε2. When these operands are added in the
FPADDn the result must be equal to ε3. Notice that when
the operands are added in a network of FPADD2s, depend-
ing on the order of operations, the result can be zero or close
to zero, which may be significantly different from ε3. Based
on this scenario, the internal adder should have a precision
of approximately n− 1 times the precision of a significand.
This situation illustrates the partial cancellation of signifi-
cant bits.

In another scenario, the truncation that happens when
significands are partially placed out of range introduces an
error that can affect the round bit position. Therefore, the
adder must be large enough to keep carry chains that in a
long-precision calculation would modify the round bit.

Instead of trying to solve the general problem we look
at these two situations when applied to 3-operand addition.
Let us consider that the significand has f bits. The two cases
described above are considered as follows:

1. partial cancellation of operands: as shown in Figure 5,
the cancellation of MS bits between the largest aligned
significands result in a value near the LS bit position
of 1.m2 × 2δ2 , which when combined with the small-
est aligned significand should keep enough significant

165

bits in the adder to generate the output. The total num-
ber of bits in this case is 1 bit for the sign, 2 bits for
overflow (for the case of effective additions of 3 sig-
nificands), f + 1 bits for the overlapped area between
the two largest significands, f bits for the second sig-
nificand and 1 bit position for the sticky bit, coming to
a total of p = 2f + 5 bits.

2. propagation of truncation errors: Figure 6 shows the
minimum adder precision required to maintain the
longest carry chain among the aligned significands.
The Figure shows three aligned significands x1 =
1.m1 × 2δ1 , x2 = 1.m2 × 2δ2 and x3 = 1.m3 × 2δ3 .
Clearly, δ1 = 0. The value x3 indicates an aligned
significand that was partially shifted out of range and
has a bit that causes a carry propagation with x2. Be-
tween x1 and x2 there is a 1-bit gap that corresponds
to the round bit (R). In the shown configuration, the
adder operates without a problem, but if the adder pre-
cision is one bit shorter, x3 would be completely out
of range, and the LS bits of x2 would be in the sticky
bit position. Based on the previous discussion about
sticky bits, only one of them is preserved, and there-
fore, the propagation of carries will no longer happen,
affecting the value of the round bit (R). Based on this
observation, the internal adder precision needs to cover
1 bit for the sign, 2 bits for overflow, f + 1 bits for the
largest significand including round bit, f bits for the
second significand and 1 bit position for the sticky bit,
also coming to a total of p = 2f + 5 bits.

Figure 5. Minimum adder size when par-
tial cancellation of largest operands occurs
(1.m1 × 2δ1 − 1.m2 × 2δ2 �= 0)

As a result of this discussion, an internal adder with 2f +
5 bits is required to implement a FPADD3 component.

A formal verification tool provided by Synopsys (For-
mality) was used to confirm the lower bound on the internal
adder size for the 3-operand FP adder. Two models were

Figure 6. Worse case for carry-chain forma-
tion in a 3-input FP adder

used. A reference model A with large precision and a test
module B with adjustable internal precision. The procedure
consisted of decreasing the precision of model B until it
reached a point where formal verification failed. The verifi-
cation started with an internal adder precision in B that was
slightly larger than the value 2f + 5. Test vectors obtained
when the verification failed indicate the situations that lead
to inaccurate results, and they always include the cases de-
scribed in this section.

For more operands, a larger precision is required for the
internal adders, which must in this case handle more possi-
bilities for the alignment of significands and cancellations.

3.4 Catastrophic cancellation

Another special situation that must be handled by the
FPADDn is caused by catastrophic cancellation of the
largest aligned significands, resulting in a complete loss of
significant bits if the exponent difference between the two
largest FP numbers and the next FP number is greater than
the precision of the internal adder. This problem cannot be
solved with a reasonable adder size. The best alternative is
to use detectors of catastrophic cancellations and a correc-
tion step that takes the next group of aligned significands.
The number of combinations for more than 4 FP inputs be-
come very large, which makes the solution of this problem
extremely difficult, and forbids the use of FPADDn for large
n > 4.

Full comparison of FP values is required for both sticky
bit computation and detection of catastrophic cancellation,
allowing some sharing of hardware resources in this case.

4 A 3-operand FP adder

After we have covered the major building blocks re-
quired for multi-operand FP addition, we can provide a little
bit more detail on the 3-input FP adder (FPADD3) design.
The block diagram for a 3-operand adder is shown in Fig-
ure 7. The alignment unit was described earlier. The change

166

of sign block adjusts the sign of significands based on the
floating-point input f3 (anchor), as described in Section 3.2.
The sign of f3, called s3 is passed to the sign adjustment
logic to compute the final result sign.

Figure 7. Block diagram for the 3-input FP
Adder

The sticky bit logic process the stki values coming from
the alignment unit and let only one of them be used during
addition. The blocks that follow the internal addition of
aligned significands are similar to the blocks in a two-input
FP adder.

In order to have exact rounding, the internal adder used
in the FPADD3 must have 2f + 5 bits of precision, as dis-
cussed earlier.

The catastrophic cancellation detection is done in the
special inputs block. This block is also responsible for the
detection of other input conditions, such as multiple zeros
and infinities, the presence of NaNs, and combinations of
special values. Comparators are used to identify the catas-
trophic cancellation cases during addition and control a by-
pass circuit in the pack block to forward the smallest FP
input to the output.

By following the rules discussed earlier, the FPADD3
generates a perfectly rounded result. This means that its
output is computed as it would be done with infinite preci-
sion, and then rounded to the finite FP format. The design
enforces commutativity in the operation by treating all the
inputs the same way. This characteristic cannot be obtained
with a network of FPADD2s.

One potential optimization to reduce area in the imple-

mentation of the FPADD3 would be to use only two align-
ment shifters instead of three since only 2-out-of-3 signif-
icands are aligned. However, in order to do this type of
processing, the inputs should be sorted before they were
applied to the alignment shifters, which would increase the
critical path.

5 Implementation results and analysis

The design of the 3-operand FP adder (FPADD3) was
described in Verilog and Synopsys tools were used to im-
plement and test it. A few target CMOS cell libraries were
used for synthesis with Design Compiler. Functional simu-
lation was performed using VCS-MX.

First, the experimentation with the two options for align-
ment of the significand shows that the first option (Sec-
tion 3.1.1) is larger and slower than the second option (Sec-
tion 3.1.2) for tight time constraint. When the time is very
relaxed the first option becomes smaller. The best solution
for delay was used.

A comparison of the area and delay results for the
FPADD3 after synthesis using a TSMC 90nm CMOS stan-
dard cell library is shown in Figure 8. The curves show the
various design points for which the component can be used.
As we relax the time constraint (delay) required for the de-
sign, the area is reduced. This particular plot was obtained
for an FPADD3 that handles single precision operands (8
bits of exponent and 23 bits in the significand). In the fig-
ure, the quality of results of the 3-input FP adder is com-
pared against the network of 2 FPADD2s. The FPADD2
implementation used in this experiment came from the Syn-
opsys DesignWare Library (DW fp add). The 3-input FP
adder is superior in terms of speed, but it is not as small as
the network of 2 DW fp add components for more relaxed
time constraint. However, the 3-input FP adder is much
more accurate than the network of small adders. Designers
are always looking for the best possible performance with
the smallest area impact, and the use of a FPADD3 deliv-
ers extra performance and better numerical behavior, with a
modest area penalty in this case (the area increase with the
reduction in the critical path delay follows the same trend
shown by the network of FP adders).

In order to have another design for comparison we syn-
thesized the adder published in [7]. It is a very special-
ized adder for low-latency and double-precision FP format.
The synthesis of this adder was done for the same condi-
tions and technology as the previous experiment. It has
an area of 29,323 and delay of 2.7ns when synthesized for
very tight time constraint (without pipeline stages). Two of
those adders in a network would add up to an area of almost
51,200 (considering an overall area reduction of 17% when
two FP adders are combined) with a delay of 5.4ns. The
synthesis of the double-precision FPADD3 with the same

167

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 0 5 10 15 20 25 30

A
re

a

Delay

Graph generation from database (2009-2-13)
 Tech 90nm

DW_fp_2adders_23,8,0,0
DW_fp_sum3_inst_23,8,0,0

Figure 8. Performance comparison between
3-input FP adder and network of FPADD2s for
a 90nm standard cell library synthesis - sin-
gle precision FP format

constraints result in the fastest circuit at 5.6ns and area of
47,600. Therefore, the FPADD3 has again comparable crit-
ical path to the network of 2-input FP adders with superior
accuracy and less area (7%).

Other area/delay experiments were performed for other
technologies and the results reforced the same trend ob-
served for the 90nm technology. However, the network of
FPADD2s is always smaller for loose time constraint. Thus
if the application requires a small solution, the accuracy is
not a concern, and the time may be relaxed, the addition
of multiple FP values should be done with the network of
2-input adders.

Verification of the FPADD3 component operation was
done using Matlab and extensive simulation runs. Small
FP sizes were used to enable an almost exhaustive test of
the input range. For larger FP formats, a guided random
test was applied, for which the inputs are generated on the
neighborhood of special values, or inputs are such that force
special conditions (total cancellation, partial cancellation,
multiple stk bits, etc). The first step in the verification pro-
cess consisted in applying tests vectors to the multi-operand
adder and the corresponding network of FPADD2s, gener-
ating this way two sets of results. The two sets were com-
pared, and the mismatching test vectors were submitted as
inputs to a Matlab program that was written to calculate the
addition of multiple FP operands using very large precision
arithmetic. This way, the program was able to compute the
result as it would be done by an infinitely precise opera-
tor and calculate the roundoff error in each case. Using
this methodology it was possible to verify that the multi-
operand adder was always more accurate than the network
of FPADD2s. Any results violating this premise were used

to identify corner cases where the design was not working
properly and eliminate bugs.

6 Conclusion

In this paper we demonstrated the feasibility of imple-
menting multi-operand floating-point adders to get more ac-
curate operations than equivalent networks of FPADD2s.
The work was concentrated on 3-input FP adders but the
discussion about design issues and alternative solutions is
also applicable to adders for more operands. The experi-
mental results show that the 3-input FP adder design can
be synthesized to reach shorter or similar delays than the
network of 2-input FP adders, with comparable or better
area, and more accuracy. The capability of this compo-
nent to generate outputs honoring the commutative prop-
erty for its inputs is very advantageous to eliminate the or-
dering problem (non-associative behavior) imposed at the
algorithm level on networks of FPADD2s.

References

[1] J. Bruguera and T. Lang. Floating-point fused multiply-add:
reduced latency for floating-point addition. In 17th IEEE Sym-
posium on Computer Arithmetic, pages 42–51, 2005.

[2] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan
Kaufmann, 2003.

[3] D. Goldberg. What Every Computer Scientist Should Know
About Floating-Point Arithmetic. ACM Computing Surveys,
March 1991.

[4] IEEE Std 754-1985. IEEE Standard for Binary Floating-Point
Arithmetic. IEEE, 1985.

[5] N. Kapre and A. DeHon. Optimistic Parallelization of
Floating-Point Accumulation. In 18th IEEE Symposium on
Computer Arithmetic, pages 205 – 216, 2007.

[6] B. Parhami. Computer Arithmetic: Algorithms and Hardware
Designs. Oxford, 2000.

[7] P.-M. Seidel and G. Even. Delay-optimized implementation
of IEEE floating-point addition. IEEE Transactions on Com-
puters, 49(7):638 – 650, July 2000.

168

