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Abstract

An inventory model for a deteriorating item (seasonal product) with linearly displayed stock dependent demand is
developed in imprecise environment (involving both fuzzy and random parameters) under inflation and time value of
money. It is assumed that time horizon, i.e., period of business is random and follows exponential distribution with a
known mean. The resultant effect of inflation and time value of money is assumed as fuzzy in nature. The particular case,
when resultant effect of inflation and time value is crisp in nature, is also analyzed. A genetic algorithm (GA) is developed
with roulette wheel selection, arithmetic crossover, random mutation. For crisp inflation effect, the total expected profit for
the planning horizon is maximized using the above GA to derive optimal inventory decision. On the other hand when infla-
tionary effect is fuzzy then the above expected profit is fuzzy in nature too. Since optimization of fuzzy objective is not well
defined, the optimistic/pessimistic return of the expected profit is obtained using possibility/necessity measure of fuzzy
event. Fuzzy simulation process is proposed to determine this optimistic/pessimistic return. Finally a fuzzy simulation
based GA is developed and is used to maximize the above optimistic/pessimistic return to get optimal decision. The models
are illustrated with some numerical examples and some sensitivity analyses have been presented.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the present competitive market, the inventory/stock is decoratively displayed through electronic media
to attract the customers and to push the sale. Levin et al. [1], Schary and Becker [2] and Wolfe [3] established
the impact of product availability for stimulating demand. Mandal and Phaujder [4,5], Datta and Pal [6] and
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others considered linear form of stock dependent demand, i.e., D ¼ cþ dq, where D, q represent demand and
stock level respectively, c, d are two constants, so chosen to fit the demand function best, where as Giri et al.
[7], Mandal and Maiti [8], Maiti and Maiti [9] and others took the demand of the form D ¼ dqb, where d; b are
suitable constants.

Effect of inflation and time value of money in inventory problems is well established. The initial attempt in
this direction was made by Buzacott [10]. He dealt with an EOQ model under inflation subject to different
types of pricing policies. In the subsequent year, Bierman et al. [11] showed that the inflation rate does not
affect the optimal order quantity perse; rather, the difference between the inflation rate and the discount rate
affects on it. Due to increasing complexities of the world economy, it is very difficult to estimate this difference
precisely. So, for real life inventory problems it is better to estimate this difference as a fuzzy quantity. Though
a considerable number of research work has been done in this area (cf. Misra [12], Padmanabhan and Vrat
[13], Hariga and Ben-Daya [14], Chen [15], Dey et al. [16], Moon and Lee [17], etc.), only few of them have
considered these as fuzzy quantities.

Classical inventory models are usually developed over infinite planning horizon. According to Gurnani [18],
Chung and Kim [19], the assumption of an infinite planning horizon is not realistic due to several reasons such
as variation of inventory costs, changes in product specifications and designs, technological changes, etc.
Moreover, for seasonal products like fruits, vegetables, warm garments, etc., business period is not infinite.
There are some models (cf. Datta and Pal (1992), Bhunia and Maiti [20], Mahapatra and Maiti [21], etc.)
in which time horizon has been considered as finite. For seasonal products, the planning horizon varies over
years and may be considered as random with a distribution. Moon and Yun [22] developed an EOQ model
with a random planning horizon. Recently Moon and Lee [17] presented an EOQ model under inflation
and discounting with a random product life cycle. Till now, none has developed inventory models incorporat-
ing random planning horizon, stock dependent demand, imprecise effect due to inflation and discounting.

When some inventory parameters are fuzzy in nature the resultant objective function also becomes fuzzy.
After the introduction of fuzzy set theory in 1965 by Zadeh, extensive research work has been done on defuzz-
ification of fuzzy numbers. Among these techniques centroid method [23], weighted average method [24],
graded mean value method [25], nearest interval approximation method [26], graded mean integration value
[27], etc., have drawn more attention. All these techniques replace the fuzzy parameters by their nearest crisp
number/interval and the reduced crisp objective function is optimized. To deal with fuzzy objective function,
Liu and Iwamura [28] proposed a method where an optimistic return of the objective function is optimized.
They used possibility measure of fuzzy event to transform the fuzzy objective function to an equivalent crisp
objective and also proposes a fuzzy simulation method to determine the value of this crisp equivalent for com-
plicated situations. Maiti and Maiti [9] extended this work where pessimistic return of the objective function is
optimized using necessity measure of fuzzy event and they used it to solve a two-warehouse fuzzy inventory
model.

In this paper, an inventory model for a deteriorating item is formulated with displayed stock dependent
demand over a planning horizon. It is assumed that the planning horizon is uncertain, random in nature
and follows exponential distribution with a known mean. Here the inflation and time value of money are con-
sidered and the resultant effect of these two is taken into account. The problem has been solved with both crisp
and imprecise resultant effect. For crisp model expected profit is maximized using a GA with roulette wheel
selection, arithmetic crossover and random mutation. In the case of fuzzy model, the problem with fuzzy
objective function is converted to a chance constrained programming using possibility/necessity measure of
fuzzy event, where optimistic/pessimistic return of the objective function with some degree of optimism/pes-
simism is optimized. Following Liu and Iwamura [28], a fuzzy simulation process is proposed to maximize the
optimistic/pessimistic return and a fuzzy simulation based genetic algorithm with above mentioned GA oper-
ators is developed to solve the model. The models are illustrated with some numerical data. Some sensitivity
analyses on expected profit are presented.
2. Assumptions and notations

The mathematical model in this paper is developed on the basis of following assumptions and notations:
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Assumptions:

1. Demand rate is assumed here to vary with the displayed inventory level. But this psychological influence
must have an upper limit, i.e., above some level, demand will remain unchanged.

2. The time horizon (a random variable) is finite.
3. The time horizon fully accommodates first N cycles and end during ðN þ 1Þth cycle.
4. Lead time is negligible.
5. Replenishment rate is infinite but replenishment size is finite.
6. Shortages are not allowed.
Notations:
1. T = Duration of a complete cycle.
2. q(t) = On hand inventory of a cycle in time t, ðj� 1ÞT 6 t 6 jT ðj ¼ 1; 2; . . . ;NÞ.
3. q0 = Inventory level above which demand becomes constant.
4. t1 = Time in the first cycle when inventory level reaches q0, i.e. qðt1Þ ¼ q0 for 0 < t1 < T .
5. D(q) = The demand rate, where
DðqÞ ¼
aþ bq0; a; b P 0; ðqðtÞP q0Þ during ð0 6 t 6 t1Þ;
aþ bqðtÞ; a; b P 0; ð0 6 qðtÞ 6 q0Þ during ðt1 6 t 6 T Þ:

�

6. h = Constant deterioration rate on the on hand inventory at time t.
7. C1 = Holding cost per unit item per unit time.
8. C3 = Ordering cost per replenishment cycle.
9. s = Selling price of one unit.

10. c = Purchasing cost of one unit.
11. H = Total time horizon(a random variable) and h is real time horizon.
12. N = Number of fully accommodated cycles to be made during the real time horizon h and time horizon

ends during N þ 1th cycle.
13. Q = Total ordered quantity in a cycle.
14. i = Inflation rate.
15. r = Discount rate.
16. R = r � i, may be crisp or fuzzy.
17. P(N,T) = Total profit after completing N fully accommodated cycles.
18. HCL = Holding cost in last cycle.
19. SRL = Sales revenue in last cycle.
20. s1 = Reduced selling price in last cycle.
21. E{TPL(T)} = Expected total profit from last cycle.
22. E(TP) = Expected total profit from the planning horizon.

3. Mathematical formulation

In the development of the model, we assume that there are N full cycles during the real time horizon h and
the planning horizon ends during ðN þ 1Þth cycle, i.e., within t ¼ NT and t ¼ ðN þ 1ÞT . At the beginning of
every jth ðj ¼ 1; 2; . . . ;N þ 1Þ cycle, company purchases an amount Q units of the item and when inventory
level reaches zero, then again order for the next cycle is placed (cf. Figs. 1a, 1b). For the last cycle some
amount may be left after the end of planning horizon. This amount is sold at a reduced price in a lot.
3.1. Formulation for jth (1 6 j 6 N) cycle

The differential equations describing the inventory level qðtÞ in the interval ðj� 1ÞT 6 t 6 jT ð1 6 j 6 NÞ
are given by



Fig. 1a. Inventory levels at different situations for NT < h 6 NT þ t1.

Fig. 1b. Inventory levels at different situations for NT þ t1 < h 6 ðN þ 1ÞT .
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dqðtÞ
dt
¼ �a� bq0 � hqðtÞ; ðj� 1ÞT 6 t 6 ðj� 1ÞT þ t1; ð1Þ

dqðtÞ
dt
¼ �a� bqðtÞ � hqðtÞ; ðj� 1ÞT þ t1 6 t 6 jT ; ð2Þ
where a; b; h > 0 and 0 < t1 < T , subject to the conditions that,
qðtÞ ¼ Q at t ¼ ðj� 1ÞT ; qðtÞ ¼ q0 at t ¼ ðj� 1ÞT þ t1 and qðtÞ ¼ 0 at t ¼ jT :
The solutions of the differential Eqs. (1) and (2) are given by
qðtÞ ¼
� ðaþbq0Þ

h þ q0 þ
aþbq0

h

� �
ehfðj�1ÞTþt1�tg; ðj� 1ÞT 6 t 6 ðj� 1ÞT þ t1

a
ðbþhÞ feðbþhÞðjT�tÞ � 1g; ðj� 1ÞT þ t1 6 t 6 jT

(
ð3Þ
So,
qfðj� 1ÞT þ t1g ¼ q0 gives; t1 ¼ T � 1

bþ h
log 1þ q0ðbþ hÞ

a

���� ����: ð4Þ
So, order quantity in a cycle is given by
Q ¼ �ðaþ bq0Þ
h

þ q0 þ
ðaþ bq0Þ

h

� �
eht1 :
Present value of holding cost of the inventory for the jth (1 6 j 6 N ) cycle is given by
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HCj ¼ C1

Z ðj�1ÞTþt1

ðj�1ÞT
qðtÞe�Rtdt þ C1

Z jT

ðj�1ÞTþt1

qðtÞe�Rtdt

¼ C1ðaþ bq0Þ
Rh

ðe�Rt1 � 1Þe�Rðj�1ÞT � C1

ðRþ hÞ q0 þ
ðaþ bq0Þ

h

� �
ðe�Rt1 � eht1Þe�Rðj�1ÞT

þ C1ae�RjT

ðbþ hÞðRþ bþ hÞ fe
ðRþbþhÞðT�t1Þ � 1g þ C1a

Rðbþ hÞ fe
�RjT � e�Rt1 � e�Rðj�1ÞTg: ð5Þ
Present value of purchasing cost for the jth (1 6 j 6 N ) cycle is given by
PCj ¼ c �ðaþ bq0Þ
h

þ q0 þ
ðaþ bq0Þ

h

� �
eht1

� �
e�Rðj�1ÞT : ð6Þ
Present value of ordering cost for the jth (1 6 j 6 N ) cycle is given by
Cj
3 ¼ C3e�Rðj�1ÞT : ð7Þ
Present value of sales revenue for the jth (1 6 j 6 N ) cycle is given by
SRj ¼ s
Z ðj�1ÞTþt1

ðj�1ÞT
faþ bq0ge�Rt dt þ s

Z jT

ðj�1ÞTþt1

faþ bqðtÞge�Rt dt

¼ s
aþ bq0

R
fe�RjT � e�Rðj�1ÞTþt1g þ a

R
fe�Rðj�1ÞTþt1 � e�RjTg

� �
� s

ab
ðbþ hÞðRþ bþ hÞ fe

�RjT � eðbþhÞT�ðRþbþhÞt1 � e�Rðj�1ÞTg
�

� ab
Rðbþ hÞ fe

�RjT � e�Rt1 � e�Rðj�1ÞTg
�
: ð8Þ
So,
P ðN ; T Þ ¼
XN

j¼1

SRj �
XN

j¼1

ðCj
3 þHCj þ PCjÞ: ð9Þ
Now,
XN

j¼1

e�Rðj�1ÞT ¼ 1� e�NRT

1� e�RT

	 

: ð10Þ
So,
P ðN ; T Þ ¼
"

s
ðaþ bq0Þ

R
ð1� e�Rt1Þ þ sa

R
� sab

Rðbþ hÞ

� �
ðe�Rt1 � e�RT Þ� sab

ðbþ hÞðRþ bþ hÞ

�fe�RT � eðbþhÞT�ðRþbþhÞt1g
#

1� e�NRT

1� e�RT

	 

� C1

"
ðaþ bq0Þ

Rh
ðe�Rt1 � 1Þ � 1

ðRþ hÞ q0 þ
ðaþ bq0Þ

h

� �
�fe�Rt1 � eht1g� a

ðbþ hÞðRþ bþ hÞ fe
�RT � eðbþhÞT�ðRþbþhÞt1g þ a

Rðbþ hÞ

�fe�RT � e�Rt1g
#

1� e�NRT

1� e�RT

	 

� ðc � Qþ C3Þ

1� e�NRT

1� e�RT

	 

: ð11Þ
Here, we consider that the planning horizon H is a random variable and follows exponential distribution with
p.d.f. as
f ðhÞ ¼ ke�kh; h P 0;

0; otherwise;

�
ð12Þ
where h is real planning horizon.
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Since the planning horizon H has a p.d.f. f(h), the present value of expected total profit from N complete
cycles is given by
EfP ðN ; T Þg ¼
X1
N¼0

Z ðNþ1ÞT

NT
P ðN ; T Þ � f ðhÞdh ¼ sðaþ bq0Þ

R
ð1� e�Rt1Þ þ sa

R
� sab

Rðbþ hÞ

� �
ðe�Rt1 � e�RT Þ

�
þ sab
ðbþ hÞðRþ bþ hÞ fe

ðbþhÞT�ðRþbþhÞt1 � e�RTg
�

e�kT � e�ðRþkÞT

ð1� e�RT Þð1� e�ðRþkÞT Þ

� �
� C1

ðaþ bq0Þ
Rh

ðe�Rt1 � 1Þ � q0 þ
ðaþ bq0Þ

h

� �
fe�Rt1 � eht1g
ðRþ hÞ � afe�RT � eðbþhÞT�ðRþbþhÞt1g

ðbþ hÞðRþ bþ hÞ

�
þ a

Rðbþ hÞ fe
�RT � e�Rt1g

�
� e�kT � e�ðRþkÞT

ð1� e�RT Þð1� e�ðRþkÞT Þ

� �
� ðc � Qþ C3Þ

e�kT � e�ðRþkÞT

ð1� e�RT Þð1� e�ðRþkÞT Þ

� �
: ð13Þ
3.2. Formulation for last cycle

The differential equations describing the inventory level qðtÞ in the interval NT < t are given by
dqðtÞ
dt
¼ �a� bq0 � hqðtÞ; NT 6 t 6 NT þ t1; ð14Þ

dqðtÞ
dt
¼ �a� bqðtÞ � hqðtÞ; NT þ t1 6 t; ð15Þ
where a; b; h > 0, subject to the conditions that,
qðNT Þ ¼ Q and qðtÞ ¼ q0 at t ¼ NT þ t1:
The solutions of the differential Eqs. (14) and (15) are given by
qðtÞ ¼
� ðaþbq0Þ

h þ Qþ ðaþbq0Þ
h

n o
ehðNT�tÞ; NT 6 t 6 NT þ t1;

� a
ðbþhÞ þ fq0 þ a

bþhgeðbþhÞðNTþt1�tÞ; NT þ t1 6 t:

8<: ð16Þ
In the last cycle, we consider two cases depending upon the cycle length. Let h be the real value corresponding
to the random variable H.

3.2.1. Case-I ðNT < h 6 NT þ t1Þ
Present value of holding cost of the inventory for the last cycle is given by
HCL1 ¼ C1

Z h

NT
qðtÞe�Rtdt

¼ C1ðaþ bq0Þ
ðRhÞ fe�Rh � e�RNTg � C1

ðRþ hÞ Qþ ðaþ bq0Þ
h

� �
ehNT � fe�ðRþhÞh � e�ðRþhÞNTg ð17Þ
Present value of purchasing cost = cQ � e�RNT.
Present value of ordering cost = C3e�NRT.
Present value of sales revenue is given by
SRL1 ¼ s
Z h

NT
faþ bq0ge�Rt dt ¼ sðaþ bq0Þ

R
fe�RNT � e�Rhg: ð18Þ
3.2.2. Case-II ðNT þ t1 < h 6 ðN þ 1ÞT Þ
Present value of holding cost of the inventory for the last cycle is given by
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HCL2 ¼ C1

Z NTþt1

NT
qðtÞe�Rt dt þ C1

Z h

NTþt1

qðtÞe�Rt dt

¼ C1ðaþ bq0Þ
Rh

fe�RðNTþt1Þ � e�RNTg � C1

ðRþ hÞ Qþ ðaþ bq0Þ
h

� �
fe�ðRþhÞt1�RNT � e�RNT g

þ C1a
Rðbþ hÞ fe

�Rh � e�RðNTþt1Þg þ C1

ðRþ bþ hÞ q0 þ
a

ðbþ hÞ

� �
fe�RðNTþt1Þ � eðbþhÞðNTþt1Þ�ðRþbþhÞhg:

ð19Þ
Present value of purchasing cost = cQ � e�RNT.
Present value of ordering cost = C3e�NRT.
Present value of sales revenue is given by
SRL2 ¼ s
Z NTþt1

NT
faþ bq0ge�Rt dt þ s

Z h

NTþt1

faþ bqðtÞge�Rt dt

¼ sðaþ bq0Þ
R

fe�RNT � e�RðNTþt1Þg þ sa
R
fe�RðNTþt1Þ � e�Rhg þ sab

Rðbþ hÞ fe
Rh � e�RðNTþt1Þg

þ sb
ðRþ bþ hÞ q0 þ

a
ðbþ hÞ

� �
fe�RðNTþt1Þ � eðbþhÞðNTþt1Þ�ðRþbþhÞhg: ð20Þ
So, expected holding cost for the last cycle is given by
X1
N¼0

Z ðNþ1ÞT

NT
HCL � f ðhÞdh ¼

X1
N¼0

Z NTþt1

NT
HCL1 � f ðhÞdhþ

X1
N¼0

Z ðNþ1ÞT

NTþt1

HCL2 � f ðhÞdh: ð21Þ
Expected sales revenue from the last cycle is given by
X1
N¼0

Z ðNþ1ÞT

NT
SRL � f ðhÞdh ¼

X1
N¼0

Z NTþt1

NT
SRL1 � f ðhÞdhþ

X1
N¼0

Z ðNþ1ÞT

NTþt1

SRL2 � f ðhÞdh: ð22Þ
Expected sales revenue due to the sale at a reduced price of the leftover, if any, during the last cycle is given by
s1

X1
N¼0

Z ðNþ1ÞT

NT
e�RhqðhÞ � f ðhÞdh ¼ s1

X1
N¼0

Z NTþt1

NT
e�RhqðhÞ � f ðhÞdhþ s1

X1
N¼0

Z ðNþ1ÞT

NTþt1

e�RhqðhÞ � f ðhÞdh:

ð23Þ
So, expected total profit from last cycle is given by
EfTP LðT Þg ¼
sðaþ bq0Þ

R
þ c1ðaþ bq0Þ

Rh

� �
k

ðRþ kÞ
e�ðRþkÞt1 � 1

1� e�ðRþkÞT

� �
þ 1� e�kt1

1� e�ðRþkÞT

� �� �
þ sðaþ bq0Þ

R
e�kt1 � e�kT � e�ðRþkÞt1 þ e�Rt1�kT

1� e�ðRþkÞT

� �
þ sa

R
� sab

Rðbþ hÞ þ
C1a

Rðbþ hÞ

� �
k

ðRþ kÞ
e�ðRþkÞT � e�ðRþkÞt1

ð1� e�ðRþkÞT Þ

� ��
þ e�ðRþkÞt1 � e�Rt1�kT

1� e�ðRþkÞT

� ��
þ sb
ðRþ bþ hÞ q0 þ

a
ðbþ hÞ

� �
e�ðRþkÞt1 � e�Rt1�kT

ð1� e�ðRþkÞT Þ

� �
þ ksb
ðRþ bþ hÞðRþ bþ hþ kÞ q0 þ

a
ðbþ hÞ

� �
eðbþhÞt1�ðRþbþhþkÞT � e�ðRþkÞt1

1� e�ðRþkÞT

� �
þ C1

ðRþ hÞ Qþ ðaþ bq0Þ
h

� �
k

ðRþ hþ kÞ
1� e�ðRþhþkÞt1

1� e�ðRþkÞT

� �
þ e�kt1 � 1

1� e�ðRþkÞT

� �� �
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� c1ðaþ bq0Þ
Rh

e�ðRþkÞt1 � e�Rt1�kT

1� e�ðRþkÞT

� �
� e�kt1 � e�kT

1� e�ðRþkÞT

� �� �
þ C1

ðRþ hÞ Qþ ðaþ bq0Þ
h

� �
e�ðRþkþhÞt1 � e�ðRþhÞt1�kT

1� e�ðRþkÞT

� �
� e�kt1 � e�kT

1� e�ðRþkÞT

� �� �
� C1

ðRþ bþ hÞ q0 þ
a

ðbþ hÞ

� �
e�ðRþkÞt1 � e�Rt1�kT

ð1� e�ðRþkÞT Þ

� ��
þ k
ðRþ bþ hþ kÞ

e�ðbþhÞt1�ðRþbþhþkÞT � e�ðRþkÞt1

1� e�ðRþkÞT

� ��
� ðc � Qþ C3Þ

1� e�kT

1� e�ðRþkÞT

� �
þ s1k
ðRþ kÞ

aþ bq0

h

	 

e�ðRþkÞt1 � 1

1� e�ðRþkÞT

� �
þ s1k
ðRþ hþ kÞ Qþ aþ bq0

h

� �
� 1� e�ðRþkþhÞt1

1� e�ðRþkÞT

� �
þ s1a
ðbþ hÞ

k
ðRþ kÞ

e�ðRþkÞT � e�ðRþkÞt1

1� e�ðRþkÞT

� �� �
þ s1k
ðRþ kþ bþ hÞ q0 þ

a
ðbþ hÞ

� �
e�ðRþkÞt1 � eðbþhÞt1�ðRþbþhþkÞT

1� e�ðRþkÞT

� �
: ð24Þ
3.3. Total profit from the system

Now, total expected profit from the complete time horizon is given by
EðTP Þ ¼ EðPðN ; T ÞÞ þ EfTP LðT Þg:
So
EðTP Þ ¼ sðaþ bq0Þ
R
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3.4. Stochastic model (model-1)

When the resultant effect of inflation and discounting (R) is crisp in nature, then our problem is to deter-
mine T to
MaxEðTP Þ: ð26Þ
3.5. Fuzzy stochastic model (model-2)

In the real world, resultant effect of inflation and time value of money (R) is imprecise, i.e. vaguely defined
in some situations. So we take R as fuzzy number, i.e. as eR. Then, due to this assumption, our objective func-
tion E(TP) becomes EðfTP Þ. Since optimization of a fuzzy objective is not well defined, so instead of EðfTP Þ one
can optimize its equivalent optimistic or pessimistic return of the objective as proposed by Maiti and Maiti [9].
Using this method the problem can be reduced to an equivalent crisp problem as discussed below.

If eA and eB be two fuzzy subsets of real numbers R with membership functions leA and leB respectively, then
taking degree of uncertainty as the semantics of fuzzy number, according to Liu and Iwamura [28], Dubois
Prade [29,30] and Zimmermann [31]:
PosðeAHeBÞ ¼ supfminðl~AðxÞ; l~BðyÞÞ; x; y 2 R; xHyg; ð27Þ

where the abbreviation Pos represent possibility and w is any one of the relations >, <, =, 6, P.

On the other hand necessity measure of an event eAHeB is a dual of possibility measure. The grade of neces-
sity of an event is the grade of impossibility of the opposite event and is defined as
NesðeAHeBÞ ¼ 1� PosðeAHeBÞ; ð28Þ

where the abbreviation Nes represents necessity measure and eAHeB represents complement of the event eAHeB.

So for the fuzzy stochastic model one can maximize the crisp variable z such that necessity/possibility mea-
sure of the event fEðfTP Þ > zg exceeds some predefined level according to decision maker in pessimistic/opti-
mistic sense. Accordingly the problem reduces to the following two models:

Model-2a: When decision maker prefers to optimize the optimistic equivalent of EðfTP Þ, the problem
reduces to determine T to,
maximize z

subject to posfEðfTP ÞP zgP a1

ð29Þ
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Model-2b: On the other hand when the decision maker desires to optimize the pessimistic equivalent of
EðfTP Þ, the problem is reduced to determine T to,

maximize z

subject to nesfEðfTP ÞP zgP a2;

i:e:; posfEðfTP Þ 6 zg < 1� a2:

ð30Þ

4. Solution methodology

To solve the stochastic model (model-1) GA is used. The basic technique to deal problems (29) or (30) is to
convert the possibility/necessity constraint to its deterministic equivalent. However, the procedure is usually
very hard and successful in some particular cases (cf. [9]). Following Liu and Iwamura [28], Maiti and Maiti
[9], here two simulation algorithms are proposed to determine z in (29) and (30) respectively for a feasible T.

Algorithm 1. Algorithm to determine a feasible T to evaluate z for the problem (29):

To determine z for a feasible T, roughly find a point R0 from fuzzy number eR, which approximately min-
imizes z. Let this value be z0 and set z ¼ z0 (for simplicity one can take z0 ¼ 0). Then R0 is randomly generated
in a1-cut set of eR and let z0 ¼ value of EðTP Þ for R ¼ R0 and if z < z0 replace z with z0. This step is repeated a
finite number of times and final value is taken as the value of z. This phenomenon is used to develop the
algorithm.

1. Set z ¼ z0.
2. Generate R0 uniformly from the a1 cut set of fuzzy number eR.
3. Set z0 = value of EðTPÞ for R ¼ R0.
4. If z < z0 then set z ¼ z0.
5. Repeat steps 2, 3 and 4, N 1 times, where N 1 is a sufficiently large positive integer.
6. Return z.
7. End algorithm.
Algorithm 2. Algorithm to determine a feasible T to evaluate z for the problem (30):

We know that nesfEðfTP ÞP zgP a2 ) posfEðfTP Þ < zg 6 1� a2. Now roughly find a point R0 from fuzzy
number eR, which approximately minimizes EðTPÞ. Let this value be z0 (for simplicity one can take z0 ¼ 0 also)
and e be a positive number. Set z ¼ z0 � e and if posfEðfTP Þ < zg 6 1� a2 then increase z with e. Again check

posfEðfTP Þ < zg 6 1� a2 and it continues until posfEðfTP Þ < zg > 1� a2. At this stage decrease value of e and
again try to improve z. When e becomes sufficiently small then we stop and final value of z is taken as the value
of z. Using this criterion, required algorithm is developed as below. In the algorithm the variable F 0 is used to
store initial assumed value of z and F is used to store value of z in each iteration.

1. Set z ¼ z0 � e, F ¼ z0 � e, F 0 ¼ z0 � e, tol ¼ 0:0001.
2. Generate R0 uniformly from the 1� a2 cut set of fuzzy number eR.
3. Set z0= value of EðTP Þ for R ¼ R0.
4. If z0 < z.
5. then go to step 11.
6. End If
7. Repeat step-2 to step-6 N 2 times.
8. Set F ¼ z.
9. Set z ¼ zþ e.

10. Go to step-2.
11. If ðz ¼ F 0Þ // In this case optimum value of z < z0 � e
12. Set z ¼ F 0 � e, F ¼ F � e, F 0 ¼ F 0 � e.
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13. Go to step-2
14. End If
15. If ðe < tolÞ
16. go to step-21
17. End If
18. e ¼ e=10
19. z ¼ F þ e
20. Go to step-2.
21. Output F.
22. End algorithm.

So for a feasible value of T, we determine z using the above algorithms and to optimize z we use GA. GA
used to solve model-1 is presented below. When fuzzy simulation algorithm is used to determine z in the algo-
rithm, this GA is named as fuzzy simulation based genetic algorithm (FSGA). This is used to determine fuzzy
objective function values.
4.1. Genetic algorithm (GA)/fuzzy simulation based genetic algorithm (FSGA)

Genetic algorithm is a class of adaptive search technique based on the principle of population genetics. In
natural genesis. we know that chromosomes are the main carriers of the hereditary information from parents
to offsprings and that genes, which carry hereditary factors, are lined up in chromosomes. At the time of
reproduction, crossover and mutation take place among the chromosomes of parents. In this way, hereditary
factors of parents are mixed up and carried over to their offsprings. Darwinian principle states that only the
fittest animals can survive in nature. So a pair of fittest parents normally reproduce better offspring.

The above mentioned phenomenon is followed to create a genetic algorithm for an optimization prob-
lem. Here potential solution of the problem are analogous with the chromosomes and chromosome of bet-
ter offspring with the better solution of the problem. Crossover and mutation are performed among a set of
potential solutions and a new set of solutions are obtained. It continues until terminating conditions are
encountered. Michalewicz [32] proposed a genetic algorithm named the contractive mapping genetic algo-
rithm (CMGA) and proved the asymptotic convergence of the algorithm by the Banach fixed-point theo-
rem. In CMGA, movement from an old population to a new population takes place only when the average
fitness of a new population is better than the old one. This algorithm is modified with the help of a fuzzy
simulation process to solve the fuzzy stochastic models of this paper. The algorithm is named FSGA and
this presented below. In the algorithm, pc; pm are probabilities of the crossover and the probability of
mutation, respectively, I is the iteration counter, and P(I) is the population of potential solutions for iter-
ation I. The (P(I)) function initializes the population P(I) at the time of initialization. The (P(I)) function
evaluates the fitness of each member of P(I) and at this stage an objective function value due to each solu-
tion is evaluated via the fuzzy simulation process (using Algorithm 1 or Algorithm 2). In case of stochastic
model (model-1) objective function is evaluated directly without using simulation algorithms. So in that
case this GA is named ordinary GA. M is iteration counter in each generation to improve P(I) and M0

is upper limit of M.

4.2. GA/FSGA algorithm

1. Set I ¼ 0, M ¼ 0, M0 ¼ 50.
2. Initialize pc; pm.
3. Initialize (P(I)) and let N 0 be its size.
4. Evaluate (P(I)).
5. While ðM < M0Þ
6. Select N 0 solutions from P(I) for mating pool using roulette-wheel selection process [32]. Let this set

be P 1ðIÞ.
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7. Select solutions from P 1ðIÞ for crossover depending on pc.
8. Perform crossover on selected solutions to obtain population P 1ðIÞ.
9. Select solutions from P 1ðIÞ for mutation depending on pm.

10. Perform mutation on selected solutions to obtain new population P(I + 1).
11. Evaluate (P(I + 1)).
12. Set M = M + 1.
13. If average fitness of P(I + 1) > average fitness of P(I) then
14. Set I = I + 1.
15. Set M = 0.
16. End If.
17. End While.
18. Output: Best solution of P(I).
19. End algorithm.

4.3. GA/FSGA procedures

(a) Representation: A ‘n dimensional real vector’ X ¼ ðx1; x2; . . . ; xnÞ is used to represent a solution, where
x1; x2; . . . ; xn represent n decision variables of the problem.

(b) Initialization: N 0 such solutions X 1;X 2;X 3; . . . ;X N 0 are randomly generated by random number genera-
tor. This solution set is taken as initial population P(1). Here we take N 0 ¼ 50, pc ¼ 0:3, pm ¼ 0:2,
I ¼ 1. These parametric values are assumed as these give better convergence of the algorithm for the
model.

(c) Fitness value: Value of the objective function due to the solution X, is taken as fitness of X. Let it be
f ðX Þ. Objective function is evaluated via fuzzy simulation process (using Algorithm 1 or Algorithm
2) for Model-2.

(d) Selection process for mating pool: The following steps are followed for this purpose
(i) Find total fitness of the population F ¼

PN 0

i¼1f ðX iÞ.
(ii) Calculate the probability of selection pi of each solution X i by the formula pi ¼ f ðX iÞ=F .

(iii) Calculate the cumulative probability qi for each solution X i by the formula qi ¼
Pi

j¼1pj.
(iv) Generate a random number ‘r’ from the range [0, 1].
(v) If r < q1 then select X 1: Otherwise select X i ð2 6 i 6 NÞ, where qi�1 6 r 6 qi.

(vi) Repeat step (iv) and (v) N 0 times to select N 0 solutions from old population. Clearly one solution
may be selected more than once.

(vii) Selected solution set is denoted by P 1ðIÞ in the proposed GA/FSGA algorithm.
(c) Crossover:

(i) Selection for crossover: For each solution of P(I) generate a random number r from the range [0, 1].
If r < pc then the solution is taken for crossover, where pc is the probability of crossover.

(ii) Crossover process: Crossover taken place on the selected solutions. For each pair of coupled solu-
tions Y 1; Y 2 a random number c is generated from the range [0,1] and their offsprings Y 11 and
Y 21 are obtained by the formula:
Y 11 ¼ cY 1 þ ð1� cÞY 2; Y 21 ¼ cY 2 þ ð1� cÞY 1:
(d) Mutation:

(i) Selection for mutation: For each solution of P(I) generate a random number r from the range [0, 1].
If r < pm then the solution is taken for mutation, where pm is the probability of mutation.

(ii) Mutation process: To mutate a solution X ¼ ðx1; x2; . . . ; xnÞ select a random integer r in the
range [1, n]. Then replace xr by randomly generated value within the boundary of rth component
of X.
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5. Numerical illustration

5.1. Stochastic model

To illustrate the models we consider the following numerical data.
Table
Result

b

0.50
0.55
0.60
0.50
0.55
0.60
0.50
0.55
0.60

Table
Result

b

0.50
0.55
0.60
0.50
0.55
0.60
0.50
0.55
0.60
C3 ¼ $50; c ¼ $5; s ¼ $9; C1 ¼ $1:0; a ¼ 180; q0 ¼ 100; k ¼ 0:05; s1 ¼ $4; r ¼ 0:15;

i ¼ 0:05;
i.e. R ¼ 0:1 in appropriate units.
The optimal values of T along with maximum expected total profit have been calculated for different values

of h and b and the results are displayed in Table 1.
It is observed that for fixed value of h, as b increases, expected profit increases. And for fixed value of b, as h

(deterioration rate) increases, expected profit decreases. All these observations agree with the reality.

5.2. Fuzzy stochastic model

Here, the resultant inflationary effect is considered as a triangular fuzzy number i.e. eR ¼ ~r �~i ¼
ð0:11; 0:15; 0:19Þ � ð0:04; 0:05; 0:06Þ ¼ ð0:05; 0:1; 0:15Þ and assume a1 ¼ 0:9, a2 ¼ 0:05, e ¼ 10 and all other
data remain same as in stochastic model. The maximum optimistic/pessimistic return from expression (29)
and (30) has been calculated for different h and b, and results are displayed in Table 2.

In this case also same trend of result as in the case of stochastic model is observed.
1
s for stochastic model

h T E(TP)

0.100 0.5887 6296.69
0.100 0.6072 6364.63
0.100 0.6229 6442.63
0.125 0.5888 6128.27
0.125 0.6034 6205.14
0.125 0.6156 6289.79
0.150 0.5824 5992.24
0.150 0.5949 6073.87
0.150 0.6061 6161.96

2
s for fuzzy stochastic model

h Optimistic return ða1 ¼ 0:9Þ Pessimistic return ða2 ¼ 0:05Þ
0.100 6621.77 6145.35
0.100 6694.51 6211.06
0.100 6777.61 6286.71
0.125 6445.28 5980.66
0.125 6527.22 6055.19
0.125 6617.18 6137.41
0.150 6302.54 5847.76
0.150 6389.36 5927.00
0.150 6482.83 6012.61



Table 3
Sensitivity analysis with respect to present inflation rate for stochastic model

R Percentage
change in R

Percentage change in
R expected total profit
ðh ¼ 0:1 and b ¼ 0:50Þ

Percentage change in
expected total profit
ðh ¼ 0:15 and b ¼ 0:5Þ

Percentage change in
expected total profit
ðh ¼ 0:1 and b ¼ 0:6Þ

Percentage change in
expected total profit
ðh ¼ 0:15 and b ¼ 0:6Þ

0.06 �40 +62.99 +63.18 +63.58 +63.66
0.07 �30 +41.08 +41.21 +41.43 +41.49
0.08 �20 +24.22 +24.30 +24.42 +24.45
0.09 �10 +10.86 +10.89 +10.94 +10.95
0.10 00 0.0 0.0 0.0 0.0

(*6296.69) (*5992.23) (*6442.63) (*6161.96)
0.11 +10 �08.99 �09.02 �09.05 �09.06
0.12 +20 �16.56 �16.61 �16.67 �16.69
0.13 +30 �23.02 �23.09 �23.16 �23.20
0.14 +40 �28.60 �28.69 �28.77 �28.81

Table 4
Sensitivity analysis with respect to the parameter k for stochastic model

k Percentage
change in k

Percentage change in
expected total profit
ðh ¼ 0:1 and b ¼ 0:5Þ

Percentage change in
expected total profit
ðh ¼ 0:15 and b ¼ 0:5Þ

Percentage change in
expected total profit
ðh ¼ 0:1 and b ¼ 0:6Þ

Percentage change in
expected total profit
ðh ¼ 0:15 and b ¼ 0:6Þ

0.030 �40 +19.22 +19.53 +19.42 +19.57
0.035 �30 +14.42 +14.58 +14.51 +14.62
0.040 �20 +09.60 +09.69 +09.61 +09.73
0.045 �10 +04.81 +04.82 +04.81 +04.83
0.050 00 0.0 0.0 0.0 0.0

(*6296.69) (*5992.23) (*6442.63) (*6161.96)
0.055 +10 �04.71 �04.74 �04.73 �4.76
0.060 +20 �09.41 �09.45 �09.43 �09.49
0.065 +30 �14.02 �14.12 �14.04 �14.18
0.070 +40 �18.60 �18.69 �18.63 �18.83
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5.3. Sensitivity analysis

A sensitivity analysis is performed for stochastic model with respect to different resultant inflationary effect
(R) for crisp inflation and results are presented in Table 3. It is observed that as R increases, profit decreases
which agrees with reality.
Possibility Vs Profit
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Fig. 2. Possibility vs profit for b ¼ 0:5 and h ¼ 0:1.
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Fig. 3. Necessity vs profit for b ¼ 0:5 and h ¼ 0:1.
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A sensitivity analysis is performed for the maximum expected total profit with respect to the different values
of parameter k for stochastic model and presented in Table 4. It is observed that as k decreases, profit
increases. This happens because as k decreases, expected time horizon increases which increases the total
expected profit.

Results due to different values of confidence levels a1 and a2 for Models-2a and 2b are calculated and plot-
ted in Figs. 2 and 3. In both cases, as expected, profit decreases with the increase of confidence levels.

6. Conclusion

Stock dependent inventory models are normally developed in a finite or infinite time horizon. But for sea-
sonal goods where time horizon is finite but imprecise in nature, it can be estimated as a fuzzy or stochastic
parameter. In this paper, for the first time inventory model of a deteriorating item with displayed stock depen-
dent demand has been considered under inflation and time discounting over a stochastic time horizon. Again
inflation and discount rate of money are also assumed as imprecise in nature. As a result we consider resultant
effect of inflation and time value of money (R) as a fuzzy parameter eR. A methodology is suggested for opti-
mization of a fuzzy objective, where instead of the objective function, the optimistic/pessimistic return of the
objective is optimized. The methodology presented here is quite general and can be applied to the inventory
problems with dynamic demand, allowing shortages, etc.
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