
FOCUS

Genetic-fuzzy mining with multiple minimum supports based
on fuzzy clustering

Chun-Hao Chen • Tzung-Pei Hong •

Vincent S. Tseng

Published online: 19 November 2010

� Springer-Verlag 2010

Abstract Data mining is the process of extracting desir-

able knowledge or interesting patterns from existing

databases for specific purposes. Most of the previous

approaches set a single minimum support threshold for all

the items and identify the relationships among transactions

using binary values. In real applications, different items

may have different criteria to judge their importance. In the

past, we proposed an algorithm for extracting appropriate

multiple minimum support values, membership functions

and fuzzy association rules from quantitative transactions.

It used requirement satisfaction and suitability of mem-

bership functions to evaluate fitness values of chromo-

somes. The calculation for requirement satisfaction might

take a lot of time, especially when the database to be

scanned could not be totally fed into main memory. In this

paper, an enhanced approach, called the fuzzy cluster-

based genetic-fuzzy mining approach for items with mul-

tiple minimum supports (FCGFMMS), is thus proposed to

speed up the evaluation process and keep nearly the same

quality of solutions as the previous one. It divides the

chromosomes in a population into several clusters by the

fuzzy k-means clustering approach and evaluates each

individual according to both their cluster and their own

information. Experimental results also show the effective-

ness and the efficiency of the proposed approach.

Keywords Data mining � Fuzzy set � Genetic algorithm �
Genetic-fuzzy mining � Fuzzy k-means � Clustering �
Multiple minimum supports

1 Introduction

Data mining is commonly used for inducing association

rules from transaction data. An association rule is an

expression X ? Y, where X is a set of items and Y is a

single item. It means in the set of transactions, if all the

items in X exist in a transaction, then Y is also in the

transaction with a high probability (Agrawal and Srikant

1994). Most previous studies focused on binary-valued

transaction data. Transaction data in real-world applica-

tions, however, usually consist of quantitative values.

Designing a sophisticated data-mining algorithm able to

deal with various types of data presents a challenge to

workers in this research field.

Fuzzy set theory has been used in intelligent systems for

a long time because of its simplicity and similarity to

human reasoning (Chen et al. 2000; William Siler and

James 2004; Zhang and Liu 2006). The theory has been

applied in fields such as manufacturing, engineering,
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diagnosis, economics, among others (Heng et al. 2006;

Ishibuchi and Yamamoto 2005; Liang et al. 2002). Several

fuzzy learning algorithms for inducing rules from given

sets of data have been designed and used to good effect

with specific domains (Casillas et al. 2005; Hong and Lee

2001; Rasmani and Shen 2004).

Most of the previous approaches set a single minimum

support threshold for all the items or itemsets and identify

the relationships among binary transactions. In real appli-

cations, different items may have different criteria to judge

their importance and quantitative data may exist. We can

thus divide the fuzzy data mining approaches into

two kinds, namely single-minimum-support fuzzy-mining

(SSFM) and multiple-minimum-support fuzzy-mining

(MSFM) problems. Several mining approaches (Chan and

Au 1997; Fu et al. 1998; Hong et al. 1999, 2001; Kuok

et al. 1998; Mohamadlou et al. 2009; Mangalampalli and

Pudi 2009; Ouyang and Huang 2009; Yue et al. 2000) have

been proposed for the SSFM problem. Chan and Au pro-

posed an F-APACS algorithm to mine fuzzy association

rules (Chan and Au 1997). They first transformed quanti-

tative attribute values into linguistic terms and then used

the adjusted difference analysis to find interesting associ-

ations among attributes. Kuok et al. (1998) proposed a

fuzzy mining approach to handle numerical data in

databases and derived fuzzy association rules. At nearly the

same time, Hong et al. (1999) proposed a fuzzy mining

algorithm to mine fuzzy rules from quantitative transaction

data. Basically, these fuzzy mining algorithms first used

membership functions to transform each quantitative value

into a fuzzy set in linguistic terms and then used a fuzzy

mining process to find fuzzy association rules. Yue et al.

(2000) then extended the above concept to find fuzzy

association rules with weighted items from transaction

data. They adopted Kohonen self-organized mapping to

derive fuzzy sets for numerical attributes. As to MSFM

problem, Lee et al. (2004) proposed a mining algorithm

which used multiple minimum supports to mine fuzzy

association rules. They assumed that items had different

minimum supports and the minimum support for an itemset

was set as the maximum of the minimum supports of the

items contained in the itemset. Under the constraint, the

characteristic of level-by-level processing was kept such

that the original Apriori algorithm could easily be extended

to finding large itemsets.

In the aforementioned approaches, the membership

functions were assumed to be known in advance. Although

many approaches for learning membership functions were

proposed (Cordón et al. 2001; Roubos and Setnes 2001;

Setnes and Roubos 2000; Wang et al. 1998, 2000), most of

them were usually used for classification or control prob-

lems. For fuzzy mining problems, Kaya et al. proposed a

GA-based approach to derive a predefined number of

membership functions for getting a maximum profit within

an interval of user specified minimum support values

(Kaya and Alhajj 2005). Hong et al. (2006) also proposed a

genetic-fuzzy data-mining algorithm for extracting both

association rules and membership functions from quanti-

tative transactions. It maintained a population of sets of

membership functions and used the genetic algorithm to

automatically derive the resulting one. Its fitness function

considered the number of large 1-itemsets and the suit-

ability of membership functions. The suitability measure

was used to reduce the occurrence of bad types of mem-

bership functions. Other modified approaches based on

Hong’s approach can also be found in (Alcala-Fdez et al.

2009; Hong et al. 2008).

Most of the mentioned approaches were proposed for

the SSFM problem. Chen et al. thus proposed a genetic

approach to solve the MSFM problem (Chen et al. 2009). It

evaluated each chromosome by the criterion of requirement

satisfaction which was composed of the number of

1-itemsets and the suitability of membership functions.

Although the evaluation only by 1-itemsets was much

faster than that by all itemsets or interesting association

rules, it is still time-consuming since the database must be

scanned once for each chromosome.

In the past, many clustering techniques were proposed

(Ben-Dor et al. 1999; Dunn 1973; Ester et al. 1996;

McQueen 1967). The purpose of clustering is to gather

similar objects into clusters for further analysis. Among the

approaches, the k-means (also called c-means) clustering

approach is well known (McQueen 1967). It, however,

requests that each data point belongs to only one group.

Since the property is not suitable for all applications, the

fuzzy k-means (also called fuzzy c-means) clustering

approach was then proposed for getting more flexible

clustering results (Dunn 1973). In this paper, the clustering

technique will be used to reduce the execution time in

solving the MSFM problem. An enhanced approach, called

the fuzzy cluster-based genetic-fuzzy mining algorithm for

items with multiple minimum supports (FCGFMMS), is

proposed to speed up the evaluation process and keep

nearly the same quality of solutions as that in (Chen et al.

2009). In the proposed approach, each chromosome rep-

resents a set of minimum supports and membership func-

tions used in fuzzy mining. The proposed algorithm first

divides the chromosomes in a population into clusters by

using the fuzzy k-means clustering approach. All the

chromosomes then use the requirement satisfaction derived

only from the representative chromosomes in the clusters

and from their own suitability of membership functions to

calculate the fitness values. The evaluation cost can thus be

greatly reduced due to the cluster-based time-saving pro-

cess. Experimental results also show the effectiveness of

the proposed algorithm.

2320 C.-H. Chen et al.

123



The remaining parts of this paper are organized as

follows: The proposed cluster-based genetic-fuzzy mining

framework for items with multiple minimum supports is

introduced in Sect. 2. The adjustment process of mem-

bership functions is explained in Sect. 3. The details of

the proposed algorithm for mining multiple minimum

supports, membership functions and association rules are

described in Sect. 4. An example to illustrate the pro-

posed algorithm is given in Sect. 5. Experiments to

demonstrate the performance of the proposed algorithm

are stated in Sect. 6. Conclusions and future works are

given in Sect. 7.

2 The proposed cluster-based genetic-fuzzy mining

framework for items with multiple minimum

supports

In this paper, the fuzzy, the genetic and the clustering

concepts are used together to discover useful fuzzy asso-

ciation rules, suitable minimum supports and membership

functions from quantitative transactions. A cluster-based

genetic-fuzzy mining framework shown in Fig. 1 is first

proposed for achieving the above purpose. It can be divided

into two phases. The first phase searches for suitable

minimum support values and membership functions of

items, and the second phase uses the final best set of

minimum support values and membership functions to

mine fuzzy association rules.

The proposed framework maintains a population of sets

of minimum support values and membership functions and

uses the genetic algorithm to automatically derive the

resulting one. Data preprocessing is first done to get ini-

tialization information. It then generates and encodes each

set of minimum support values and membership functions

into a fixed-length string according to the initialization

information. It then uses the clustering technique to gather

similar chromosomes into groups. Here, the fuzzy k-means

clustering approach is used for this purpose. All the chro-

mosomes then use the requirement satisfaction derived

from the representative chromosomes in the clusters and

their own suitability of membership functions to calculate

their fitness values. Since the number for scanning a

database decreases, the evaluation cost can thus be

reduced. The evaluation results are utilized to choose

appropriate chromosomes for mating. The offspring sets of

minimum support values and membership functions then

undergo recursive evolution until a good set (the highest

fitness value) has been obtained.

Finally, the derived minimum support values and

membership functions are used to mine fuzzy association

rules. Any fuzzy mining approach for items with multiple

minimum supports can be used in the framework. Here the

approach proposed by Lee et al. (2004) is used as an

example. The details are described in the next section.

3 Details of the proposed approach for the framework

In this section, some implementation details about the

proposed approach are described. The chromosome repre-

sentation and the initial population adopted are first stated.

The concept of the required number of large 1-itemsets

used in fitness evaluation is then explained. The fitness

function and the selection procedure are then stated. The

fuzzy clustering procedure for chromosomes is then

designed, and finally the genetic operators are depicted.

3.1 Chromosome representation and initial population

It is important to encode minimum support values and

membership functions as string representation for GAs to

be applied to our problem. Several possible encoding

approaches were described in the past (Cordón et al. 2001;

Parodi and Bonelli 1993; Wang et al. 1998, 2000). In our

approach, each individual consists of two parts, respec-

tively, for minimum support values and membership

functions. The first part encodes minimum support values

by the real-number scheme. Each real number represents

the minimum support value of a certain item. Assume the

minimum support value of item Ij is encoded with a real

number aj. The entire set of the minimum support values

for all items is then formed by concatenating a1, a2, …, am

together, where m is the total number of items. The second

part handles the sets of membership functions for all the

items. It also adopts the real-number scheme. Here, we

assume the membership functions are isosceles-triangular

for simplicity and can thus use only two parameters to

represent a membership function as Parodi and Bonelli

(1993) did. Figure 2 shows the membership functions for

item Ij, where Rjk denotes the membership function of the

kth linguistic term of Ij, cjk indicates the center abscissa of

fuzzy region Rjk, and wjk represents half the spread of fuzzy

region Rjk. As Parodi and Bonelli did, we then represent

each membership function as a pair (c, w). Thus, all pairs

of (c, w)’s for a certain item are concatenated to represent

its membership functions.

The set of membership functions MFj for the first item Ij

is then represented as a substring of cj1wj1…cjlwjl, where

l is the number of linguistic terms of Ij. The entire set of

membership functions that contains m items is then enco-

ded by concatenating substrings of MF1, MF2, …, MFm.

Note that other types of membership functions (e.g. non-

isosceles trapezes) can also be adopted in our approach. For

coding non-isosceles triangles and trapezes, three and four

points are needed instead of two for isosceles triangles.

Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering 2321
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Besides, the number of fuzzy sets for each item may be

different.

A genetic algorithm requires a population of feasible

solutions to be initialized and updated during the evolution

process. In this paper, the initial set of chromosomes is

generated according to the initialization information

derived by the k-means clustering approach on the trans-

actions. It includes an appropriate number of linguistic

terms, the range of possible minimum supports and mem-

bership functions of each item. The initialization process is

stated as follows (Chen et al. 2009). The items are first

divided into clusters according to the two attributes, aver-

age quantitative values (AQV) and support values (SV),

which are calculated from the given transactions. Items in

the same cluster are considered to have similar character-

istics and are assigned similar values for initializing a

better population. The appearing number of each quanti-

tative value is then found from the items in the same

cluster. If the appearing number of a quantitative value is

less than or equal to a break threshold, then it is thought of

as a break point. The derived break points are then used to

generate intervals. If the total quantity in an interval is less
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than or equal to an interval threshold, it is removed. The

number of the remaining intervals is then set as the number

of linguistic terms for each item in the cluster. The

appearing probability of each quantitative value in its

corresponding interval is then used for generating mem-

bership functions. The first part of each individual in a

population of P is generated according to the support

values of the items. That is, the minimum support of an

item in an individual is randomly generated in the range

between 0 and its support value. The second part of each

individual in a population is generated according to the

found number of linguistic terms and the appearing prob-

abilities of the quantitative values of each item.

3.2 The required number of large 1-itemsets

In our approach, the minimum support values of the items

may be different. It is hard to assign the values. As an

alternative, the values can be determined according to the

required number of rules. It is, however, very time-con-

suming to obtain the rules for each chromosome. Usually, a

larger number of 1-itemsets will result in a larger number

of all itemsets with a higher probability, which will thus

usually imply more interesting association rules. The

evaluation by 1-itemsets is faster than that by all itemsets

or interesting association rules. Using the number of large

1-itemsets can thus achieve a trade-off between execution

time and rule interestingness (Hong et al. 2006).

A criterion should thus be specified to reflect the user

preference on the derived knowledge. In this paper, the

required number of large 1-itemsets (RNL) is proposed for

this purpose. It is the number of large 1-itemsets that a user

wants to get from an item and can be defined as follows:

RNLj ¼ lj � p
� �

;

where lj is the number of linguistic terms of item Ij and p is

the predefined percentage to reflect users’ preference on the

number of large 1-itemsets. The minimum support value

from which the number of large 1-itemsets for an item is

close to its RNL value is thought of as a good one. For

example, assume there are three linguistic terms for an item

and the predefined percentage p is set at 80%. The RNL

value is then set as 3 � 0:8b c; which is 2. RNL is thus used

in the fitness function described in the next section to

evaluate the goodness of a chromosome.

3.3 Fitness and selection

In order to develop a good set of minimum support values

and membership functions from an initial population, the

genetic algorithm selects parent chromosomes for mating

in a probabilistic way. An evaluation function is thus

used to qualify the derived minimum support values and

membership functions. The fitness function of a chromo-

some Cq is defined as follows:

f ðCqÞ ¼
RSðCqÞ

Suitability(CqÞ
;

where RS(Cq) is the requirement satisfaction defined as the

closeness of the number of derived large 1-itemsets for

chromosome Cq to its RNL, suitability(Cq) represents the

suitability of the membership functions for Cq. RS(Cq) is

defined as follows:

RS(CqÞ ¼
Xm

j¼1

RSðCqjÞ;

where m is the number of items and RS(Cqj) represents the

closeness of the number of derived linguistic large

1-itemsets for the jth item in chromosome Cq to its RNL.

RS(Cqj) is defined as follows:

RSðCqjÞ ¼

jL j
1j

RNLj
; if L j

1j �RNLj;

RNLj

jL j
1j
; if RNLj\jL j

1j;

8
>>><

>>>:

where RNLj is the required number of large 1-itemsets for

item j and jL j
1j is the number of derived large 1-itemsets.

RS(Cqj) is used to reflect the closeness degree between the

number of derived large 1-itemsets and the required

number of large 1-itemset. Suitability(Cq) represents the

shape suitability of the membership functions from Cq and

is defined as follows:

Suitability(CqÞ¼
Xm

j¼1

overlap factor(CqjÞ
" #

þweight1

Xm

j¼1

coverage factor(CqjÞ
 !" #

;

where m is the number of items, overlap_factor(Cqj) rep-

resents the overlapping factor of the membership functions

for an item Ij in the chromosome Cq, coverage_factor(Cqj)

represents the coverage ratio of the membership functions

for Ij, and weight1 is the coefficient to represent the relative

weight ratio of the two factors.

The factor overlap_factor(Cqj) is the same as that in

(Hong et al. 2006) and defined as follows:

overlap factor(CqjÞ ¼
X

k 6¼i

max
overlapðRjk;RjiÞ

minðwjk;wjiÞ

� �
; 1

� �
� 1

� �
;

where overlap(Rjk, Rji) is the overlap length of Rjk and Rji.

The factor coverage_factor(Cqj) represents the coverage

ratio of a set of membership functions for an item Ij and is

defined as
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coverage factor(CqjÞ ¼
1

range(Rj1; . . .;RjlÞ=maxðIjÞ
;

where range(Rj1, Rj2, …, Rjl) is the coverage range of the

membership functions, l is the number of membership

functions for Ij, and max(Ij) is the maximum quantity of Ij

in the transactions.

The suitability factor used in the fitness function can

reduce the occurrence of the two bad kinds of membership

functions shown in Fig. 3, where the first one is too

redundant, and the second one is too separate. The overlap

factor in suitable(Cq) is designed for avoiding the first bad

case, and the coverage factor is for the second one. Below,

an example is given to illustrate the above idea.

3.4 Estimated requirement satisfaction by the fuzzy

clustering approach

From the above section, it is known that the large

1-itemsets should be found first before the requirement

satisfaction for each chromosome is calculated. The

transactions must thus be scanned once for each chromo-

some to get its requirement satisfaction. Although the

evaluation only by 1-itemsets is much faster than that by all

itemsets or interesting association rules, it is still time-

consuming since the database must be scanned once for

each chromosome. In the past, we proposed a method

based on the clustering technique to reduce the evaluation

time of large 1-itemsets (Chen et al. 2008). It first used the

coverage factors and overlap factors of all the chromo-

somes to form appropriate clusters. For each cluster, the

chromosome which was the nearest to the cluster center

was thus chosen as the representative chromosome to

derive its number of large 1-itemsets. All chromosomes in

the same cluster then used the number of large 1-itemsets

derived from the representative chromosome as their own.

Finally, each chromosome was evaluated by this number of

large 1-itemsets divided by its own suitability value.

In this paper, we will modify the above approach to

solve the MSFM problem. Since in MSFM, each item has

its own minimum support, using only the two factors

(coverage factor and overlap factor) for clustering is not

enough. For instance, assume there are two membership

functions with the same coverage and overlap factors but

different minimum supports, which are shown in Fig. 4.

In Fig. 4, although the two chromosomes have the same

coverage and overlap factors, they have different numbers of

large 1-itemsets due to their different minimum supports.

The minimum support values of items should thus be con-

sidered as additional attributes for clustering chromosomes.

Since using all minimum support values of items as attributes

will cause high dimensions, the average minimum support

values of items (called the support factor) will be used as an

additional attribute for clustering chromosomes. That is

support factor(CqÞ ¼
100

Pm
j¼1 aj

m
;

where m is the number of items and aj is the minimum

support value of item Ij.

The clustering process is thus executed according to the

coverage factors, the overlap factors and the support factors

of chromosomes. In this paper, the fuzzy k-means clus-

tering approach is adopted. Since the chromosomes with

similar coverage, overlap and support factors will form a

cluster, their minimum supports and shapes of membership

functions will be close, thus generating about the same

requirement satisfaction. For each cluster, the chromosome

which is the nearest to the cluster center (with the highest

membership value to the cluster) is thus chosen as the

representative and used to derive its requirement satisfac-

tion. Each chromosome then estimates its requirement

satisfaction by the requirement satisfaction of its

(a)

5 8 9

Low Middle High

Quantity0 5 20 25

Low Middle High

Quantity0

(b)Fig. 3 Two bad sets of

membership functions

milk
Low Middle High

Quantity

1
(a) minsup = 0.01 milk

Low Middle High

Quantity

1
(b) minsup = 0.1Fig. 4 Two membership

functions with the same

coverage and overlap factors but

different minimum supports
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representative chromosome and its membership value to

the cluster. That is

EstimatedRS(CqÞ ¼
Xk

g¼1

RSðRepChrogÞ � lqg;

where RepChrog is the representative chromosome of clus-

terg, RS(RepChrog) is the requirement satisfaction of the

representative chromosome RepChrog, and lqg is the

membership value of chromosome Cq belonging to clusterg.

Finally, each chromosome uses its estimated requirement

satisfaction and own suitability of membership functions to

calculate its fitness value. The details of the process will be

further illustrated later.

3.5 Genetic operators

Genetic operators are very important to the success of

specific GA applications. Two genetic operators, the max-

min-arithmetical (MMA) crossover proposed in (Herrera

et al. 1997) and the one-point mutation, are used in the

proposed genetic-fuzzy mining framework. Assume there

are two parent chromosomes:

Ct
u ¼ ðc1; . . .; ch; . . .; cZÞ and Ct

w ¼ ðc1; . . .; ch; . . .; cZÞ

The max-min-arithmetical (MMA) crossover operator

will generate the following four candidate chromosomes

from them:

1. Ctþ1
1 ¼ ctþ1

11 ; . . .; ctþ1
1h ; . . .; ctþ1

1Z

� 	
;

where ctþ1
1h ¼ dch þ ð1� dÞc0h;

2. Ctþ1
2 ¼ ctþ1

21 ; . . .; ctþ1
2h ; . . .; ctþ1

2Z

� 	
;

where ctþ1
2h ¼ dc

0

h þ ð1� dÞch;

3. Ctþ1
3 ¼ ctþ1

31 ; . . .; ctþ1
3h ; . . .; ctþ1

3Z

� 	
;

where ctþ1
3h ¼ min ch; c

0

h

n o
;

4. Ctþ1
4 ¼ ctþ1

41 ; . . .; ctþ1
4h ; . . .; ctþ1

4Z

� 	
;

where ctþ1
4h ¼ max ch; chf g;

where the parameter d is either a constant or a variable

whose value depends on the age of the population. The best

two chromosomes of the four candidates are then chosen as

the offspring.

The one-point mutation operator will add a random value

x to the minimum support value aj of each jth chromosome.

The newly derived minimum support value will thus be

changed to aj ± x. A new fuzzy membership function will

also be created by adding a random value e to the center or to

the spread of an existing linguistic term, say Rjk. Assume that

c and w represent the center and the spread of Rjk. The center

or the spread of the newly derived membership function will

be changed to c ± e or w ± e by the mutation operation.

Mutation at the center of a fuzzy membership function may,

however, disrupt the order of the resulting fuzzy membership

functions. These fuzzy membership functions then need

rearrangement according to their center values.

4 The proposed mining algorithm: FCGFMMS

According to the above description, the proposed algorithm

for mining minimum support values, membership functions

and fuzzy association rules is described below.

The proposed fuzzy cluster-based genetic-fuzzy mining

algorithm for items with multiple minimum supports

(FCGFMMS):

INPUT A body of n quantitative transactions, a set of

m items, a parameter k for fuzzy k-means cluster-

ing, a coefficient w1 to represent the relative

weight ratio, a population size P, a crossover rate

Pc, a mutation rate Pm, a crossover parameter d,

a percentage of the required number of large

1-itemsets p, and a confidence threshold k.

OUTPUT A set of fuzzy association rules with its

associated set of minimum support values

and membership functions.

STEP 1 Generate a population of P individuals by the

procedure stated in Sect. 3; each individual is a

set of minimum support values and member-

ship functions for all the m items.

STEP 2 Calculate the coverage_factor, overlap_factor

and support_factor of each chromosome. The

three factors are calculated using the formulas

defined in Sect. 3.

STEP 3 Divide the chromosomes into k clusters by the

fuzzy k-means clustering approach based on

the three attributes (coverage_factors, over-

lap_factors and support_factors). For each

cluster g, find the chromosome with the highest

membership value to the cluster as the repre-

sentative RepChrog, 1 B g B k.

STEP 4 Calculate the requirement satisfaction of each

representative chromosome by the following

substeps:

SUBSTEP 4.1 For each transaction datum Di, i = 1–n,

and for each item Ij, j = 1 to m,

transform the quantitative value vj
(i) into

a fuzzy set fjk
(i) represented as:

f
ið Þ

j1

Rj1
þ

f
ið Þ

j2

Rj2
þ � � � þ

f
ið Þ

jl

Rjl

 !

;

using the corresponding membership

functions represented by the chromosome,
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where Rjk is the kth fuzzy region (term) of

item Ij, fjl
(i) is vj

(i)’s fuzzy membership

value in region Rjk, and l (=|Ij|) is the

number of linguistic terms for Ij.

SUBSTEP 4.2 For each item region Rjk, 1 B j B m,

calculate its scalar cardinality on the

transactions as follows:

countjk ¼
Xn

i¼1

f
ið Þ

jk :

SUBSTEP 4.3 For each Rjk, 1 B j B m and 1 B k B l,

check whether its countjk is larger than

or equal to the minimum support value

represented in the chromosome. If Rjk

satisfies the above condition, put it in the

set of large 1-itemsets (L1). That is:

L1 ¼ Rjkjcountjk� aj; 1� j�m



and 1� k� lg:

SUBSTEP 4.4 Set the requirement satisfaction of each

representative chromosome using the

formulas defined in Sect. 3.

STEP 5 Calculate the fitness values of the representa-

tive chromosomes by the formula defined in

Sect. 3.3. Calculate the estimated requirement

satisfaction of the other chromosomes by the

requirement satisfaction of the representative

chromosomes and their membership values to

the clusters. That is

EstimatedRS(CqÞ ¼
Xk

g¼1

RS(RepChrogÞ � lqg;

where RepChrog is the representative chromo-

some of clusterg, RS(RepChrog) represents the

requirement satisfaction of RepChrog, and lqg

is the membership value of chromosome Cq

belonging to clusterg.

STEP 6 Calculate the fitness value of each chromosome

by the following formula:

f ðCqÞ ¼
EstimatedRSðCqÞ

Suitability(CqÞ
:

STEP 7 Execute the crossover operation on the

population.

STEP 8 Execute the mutation operation on the

population.

STEP 9 Calculate the fitness values of chromosomes by

using STEPs 2–6.

STEP 10 Use the selection operation to choose appro-

priate individuals for the next generation.

STEP 11 If the termination criterion is not satisfied, go

to Step 2; otherwise, do the next step.

STEP 12 Find the chromosome with the highest fitness

value and get the set of minimum supports and

membership functions contained in it.

STEP 13 Mine fuzzy association rules using the set of

minimum supports and membership functions.

The set of minimum supports and membership functions

are thus used to mine fuzzy association rules from the

given database. Any fuzzy mining approach for items with

multiple minimum supports can be used in the framework.

Here the approach proposed by Lee et al. (2004) is used as

an example to achieve this purpose.

5 An example

In this section, a simple example is given to illustrate the

proposed FCGFMMS algorithm. Assume there are four

items in a transaction database: milk, bread, cookies and

beverage. Also assume the data set includes the ten trans-

actions shown in Table 1. The proposed FCGFMMS

algorithm proceeds as follows.

STEP 1 P individuals are generated as the initial popu-

lation by the clustering procedure. Assume P is

set at 10. Each individual is a set of minimum

support values and membership functions for all

the four items: milk, bread, cookies and bever-

age. Assume the ten individuals generated are

shown below, where the first four numbers are

minimum supports and the others are the param-

eters for membership functions:

C1: 0.25, 0.07, 0.16, 0.17, 4, 2, 7, 4, 11, 3, 4, 1, 8,

3, 11, 4, 7, 3, 10, 7, 6, 1, 12, 7;

C2: 0.26, 0.06, 0.01, 0.12, 4, 3.41, 6, 1.67, 10,

7.42, 3, 2.81, 8, 4.71, 10, 1.42, 6, 4.03, 12, 3.63,

7, 1.65, 12, 2.24;

Table 1 The ten transactions in this example

TID Items

T1 (milk, 6); (bread, 4); (cookies, 7); (beverage, 7)

T2 (milk, 7); (bread, 7); (cookies, 12)

T3 (bread, 8); (cookies, 12); (beverage, 6)

T4 (milk, 2); (bread, 3)

T5 (milk, 3); (bread, 8)

T6 (milk, 6); (beverage, 6)

T7 (milk, 10); (cookies, 6)

T8 (milk, 11); (bread, 11)

T9 (beverage, 11)

T10 (beverage, 10)
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C3: 0.2, 0.3, 0.16, 0.2, 2, 1.97, 8, 7.48, 11, 10.66,

2, 1.68, 7, 1.05, 11, 6.85, 6, 4.1, 12, 5.73, 6, 5.57,

11, 10.21;

C4: 0.33, 0.09, 0.09, 0.05, 3, 2.9, 7, 1.37, 10, 7.92,

3, 1.13, 8, 5.99, 10, 8.2, 7, 3.93, 12, 2.22, 7, 1.01,

10, 9.78;

C5: 0.12, 0.18, 0.06, 0.22, 2, 1.76, 8, 4.71, 11,

6.66, 3, 1.88, 6, 5.68, 11, 8.86, 7, 6.97, 10, 6.99,

7, 2.12, 12, 5.62;

C6: 0.28, 0, 0.08, 0.16, 4, 2.3, 6, 3.46, 11, 9.71, 2,

1.78, 7, 4.62, 10, 5.86, 6, 4.33, 10, 8.24, 6, 2.99,

11, 9.93;

C8: 0.33, 0.06, 0.01, 0.11, 3, 2.49, 8, 6.32, 11, 6.8,

4, 1.07, 7, 1.81, 10, 8.85, 6, 5.53, 12, 2.45, 7,

5.37, 12, 10.01;

C8: 0.33, 0.06, 0.01, 0.11, 3, 2.49, 8, 6.32, 11, 6.8,

4, 1.07, 7, 1.81, 10, 8.85, 6, 5.53, 12, 2.45, 7,

5.37, 12, 10.01;

C9: 0.27, 0.02, 0.16, 0.1, 3, 2.31, 7, 4.27, 11,

10.41, 3, 1.6, 6, 3.5, 10, 3.08, 6, 5.9, 12, 4.89, 7,

3.41, 12, 3.46;

C10: 0.26, 0.17, 0.13, 0.15, 3, 2.61, 8, 5.6, 11,

8.55, 3, 1.87, 6, 5.8, 11, 5.98, 6, 2.56, 11, 5.31, 6,

5.01, 12, 8.51.

STEP 2 The coverage_factor, overlap_factor and sup-

port_factor of each chromosome are calculated

by the formulas defined in Sect. 3. The results

are shown in Table 2, where the column

‘‘Attributes’’ represents the tuples (cover-

age_factor, overlap_factor, support_factor).

STEP 3 The fuzzy k-means clustering approach is

executed to divide the ten chromosomes into

clusters. In this example, assume the parameter

k is set at 3. The membership values of the

chromosomes to each cluster and the represen-

tative chromosomes are shown in Table 3. The

representative chromosomes (with the highest

membership value to each cluster) in the three

clusters are C1, C3 and C6.

STEP 4 The requirement satisfaction of each representa-

tive chromosome is calculated by the following

substeps.

SUBSTEP 4.1 The quantitative value of each transac-

tion datum is transformed into a fuzzy

set according the membership functions

in each chromosome. Take the first item

in transaction T6 using the membership

functions in chromosome C1 as an

example. The amount ‘‘6’’ of item milk

is then converted into the fuzzy set

0:75

milk:Middle

� �
using the membership

functions for milk in C1. The results for

all the items are shown in Table 4,

where the notation item.term is called a

fuzzy region.

SUBSTEP 4.2 The scalar cardinality of each fuzzy

region in the transactions is calculated

as the count value. Take the fuzzy

region milk.Middle as an example. Its

scalar cardinality = (0.75 ? 1.0 ? 0 ?

0 ? 0 ? 0.75 ? 0.25 ? 0 ? 0 ? 0) =

2.75. The counts for all the fuzzy

regions are shown in Table 5.

SUBSTEP 4.3 The count of any fuzzy region is checked

against the minimum support value in

C1. The minimum support values of four

items milk, bread, cookies and beverage

are 0.25, 0.07, 0.16 and 0.17, respec-

tively. Take milk as an example. Its

minimum support is 0.25. Since the

count values of milk.Low is larger than

2.5 (=0.25*10), these items are put in L1.

The results for other items are shown in

Table 6.

SUBSTEP 4.4 Assume the percentage p of the required

number of large 1-itemsets is set at 0.8.

Table 2 The coverage_factor, overlap_factor and support_factor of

each chromosome

Chromosome Attributes Chromosome Attributes

C1 (5.58, 2.88, 16.25) C6 (4.39, 5.23, 13.12)

C2 (5.43, 3.26, 11.06) C7 (4.72, 6.08, 14.78)

C3 (4.29, 4.53, 21.70) C8 (4.34, 4.06, 12.58)

C4 (4.54, 5.19, 13.79) C9 (4.61, 2.43, 13.86)

C5 (4.73, 3.77, 14.74) C10 (4.54, 3.22, 17.94)

Table 3 The membership values of chromosomes and the represen-

tative chromosomes

Cluster1 Cluster2 Cluster3

C1 0.917 0.025 0.056

C2 0.220 0.042 0.736

C3 0.002 0.996 0.001

C4 0.111 0.013 0.874

C5 0.731 0.018 0.249

C6 0.045 0.006 0.948

C7 0.352 0.065 0.581

C8 0.049 0.006 0.943

C9 0.536 0.035 0.427

C10 0.621 0.245 0.132

Representative chromosome C1 C3 C6
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The RNL values of the four items milk,

bread, cookies and beverage are 2 ¼ð
3 � 8b cÞ; 2 ¼ 3 � 8b cð Þ; 1 ¼ 3 � 8b cð Þ and

1 ¼ 2 � 8b cð Þ; respectively. The number

of L1 of the four items milk, bread,

cookies and beverage are 1, 3, 2 and 2

from Table 6. The requirement satisfac-

tion of milk, bread, cookies and bever-

age are thus 0.5 (=1/2), 0.66 (=2/3), 0.5

(=1/2) and 0.5 (=1/2). The requirement

satisfaction of C1 is thus 2.16

(=0.5 ? 0.66 ? 0.5 ? 0.5). The results

for the three representative chromo-

somes are shown in Table 7.

STEP 5 and 6 The estimated requirement satisfaction of

each chromosome is calculated. Take C5

as an example. Its membership values

to cluster1, cluster2 and cluster3 are

0.731, 0.018 and 0.249, respectively. Its

estimated requirement satisfaction is thus

2.28

(=2.16*0.731 ? 2*0.018 ? 2.66*0.249).

The fitness value of each chromosome is

calculated. Take C5 as an example. Its

estimated requirement satisfaction is 2.28

and its suitability is calculated as 4.96

when the weight weight1 is set at 0.25.

The fitness value of C5 is thus 2.28/4.96

(=0.46). The evaluation results for the

other chromosomes can be similarly

derived and are shown in Table 8.

STEP 7 The crossover operation is executed on the

population. Assume the crossover rate is set at

0.8. According to the MMA crossover operator,

totally eighty offspring chromosomes are gen-

erated. The offspring chromosomes are put into

the population.

Table 4 The fuzzy sets

transformed from the data in

Table 1

TID Fuzzy Set

T1 0:75

milk:Middle

� �
1:0

bread:Low

� �
1:0

cookies:Low
þ 0:571

cookies:High

� �
0:285

beverage:High

� �

T2 1:00

milk:Middle

� �
0:66

bread:Low

� �
1:0

cookies:High

� �

T3 1

bread:Middle
þ 0:25

bread:High

� �
1

cookies:High

� �
1:0

beverage:Low
þ 0:142

beverage:High

� �

T4 0:0
milk:Low

� �
0:0

bread:Low

� �

T5 0:5
milk:Low

� �
1:0

bread:Middle
þ 0:25

bread:High

� �

T6 0:75

milk:Middle

� �
1:0

beverage:Low
þ 0:142

beverage:High

� �

T7 0:25

milk:Middle
þ 0:666

milk:High

� �
0:666

cookies:Low
þ 0:428

cookies:High

� �

T8 1:0
milk:High

� �
1:0

bread:High

� �

T9 0:857

beverage:High

� �

T10 0:714

beverage:High

� �

Table 5 The counts of the fuzzy regions

Item Count Item Count

milk.Low 0.5 bread.High 1.5

milk.Middle 2.75 cookies.Low 1.66

milk.High 1.66 cookies.High 2.99

bread.Low 1.0 beverage.Low 2.00

bread.Middle 2.66 beverage.High 2.14

Table 6 The set of large 1-itemsets (L1) in this example

Itemset Count Itemset Count

milk.Middle 2.75 cookies.Low 1.66

bread.Low 1.0 cookies.High 2.99

bread.Middle 2.66 beverage.Low 2.00

bread.High 1.5 beverage.High 2.14

Table 7 The requirement satisfaction for the three representative

chromosomes

Clusteri Representative chromosome RS

Cluster1 C1 2.16

Cluster2 C3 2.0

Cluster3 C6 2.66
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STEP 8 The mutation operation is executed on the

population to generate possible offspring. The

operation is the same as the traditional one

except that rearrangement may need to be done.

Here, the offspring chromosomes are also put

into the population.

STEP 9 Steps 2–6 is executed to calculate the fitness

values of the chromosomes in the population.

STEPs 10–13 The elitist selection operation is executed to

generate ten chromosomes as the next

population. The same procedure is then

executed until the termination criterion is

satisfied. The best chromosome (with the

highest fitness value) is output as the

minimum support values and membership

functions for deriving fuzzy rules. After the

minimum support values and membership

functions are derived, the fuzzy mining

method proposed in (Lee et al. 2004) is then

used to mine fuzzy association rules.

6 Experimental results

In this section, experiments made to show the performance

of the proposed approach are described. They were

implemented in Java on a personal computer with Intel

Pentium IV 3.20 GHz and 512 MB RAM. 64 items and

10000 transactions were used in the experiments. The

initial population size P was set at 50, the cluster number

k was set at 5, 10, 15 and 20, the crossover rate pc was set at

0.8, and the mutation rate pm was set at 0.001. The

parameter d of the crossover operator was set at 0.35

according to Herrera et al.’s paper (Herrera et al. 1997).

The percentage of the required number of large 1-itemsets

was set at 0.8 and the weight weight1 was set at 1/64.

In the following sections, we first give a description of

the experimental dataset. We then analyze the performance

of the proposed approach according to the designed fitness

function. The comparison of the proposed approach

(FCGFMMS) and the previous approach (GFMMS) (Chen

et al. 2009) are then made to show the efficiency of the

proposed algorithm.

6.1 Description of the experimental datasets

Two simulated datasets with 64 items and with 10,000

transactions were used in the experiments. One dataset

followed exponential distribution and another one followed

uniform distribution. The factors for the two datasets

included the transaction length, the purchased items and

their quantities. In the experiments, the number (transac-

tion length) of purchased items in a transaction was ran-

domly generated in a uniform distribution of the range

(Agrawal and Srikant 1994; Hong et al. 1999) for both the

two datasets. The purchased items in each transaction were

then selected from the 64 items in a uniform distribution of

the range [1, 64] for the uniform dataset and in an expo-

nential distribution with the rate parameter set at 16 for the

exponential dataset. Their quantities were then assigned

from a uniform distribution of the range (Agrawal and

Srikant 1994; Dunn 1973) for the uniform dataset and from

an exponential distribution with the rate parameter set at 5

for the exponential dataset. The simulation process was

repeated until the dataset size was reached. An item could

not be generated twice in a transaction.

6.2 The performance of the proposed approach

After 500 generations, the final membership functions were

apparently much better than the original ones. For example,

the initial minimum supports and membership functions of

some two items among the 64 items are shown in Fig. 5a.

The membership functions have the two bad types of

shapes according to the definition in the previous section.

After 500 generations, the final minimum support values

and membership functions for the same items are shown in

Fig. 5b. It is easily seen that the membership functions in

Fig. 5b is better than those in Fig. 5a. The two bad kinds of

membership functions are improved in the final results.

The average fitness values of the chromosomes along

with different numbers of generations by the proposed

approach were then found. The average fitness value was

calculated by the following formula:

AvgFitness ¼
XP

q¼1

f ðCqÞ=P;

where P is the size of the population and f(Cq) is the fitness

value of chromosome Cq. The results are shown in Fig. 6.

As expected, the curves for the dataset gradually went

upward, finally converging to a fixed value.

Next, experiments were made for providing a compar-

ative analysis of the proposed approach with different

clustering approaches, including hard c-means (HCM) and

fuzzy c-means (FCM) clustering approaches. The average

fitness values of the chromosomes along with different

Table 8 The fitness values of the chromosomes

Chromosome f Chromosome f

C1 0.512 C6 0.421

C2 0.547 C7 0.336

C3 0.356 C8 0.511

C4 0.410 C9 0.662

C5 0.460 C10 0.502
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numbers of generations of the proposed approach with

HCM and with FCM for different numbers of clusters are

shown in Fig. 7.

From Fig. 7, it can be first observed that the average

fitness values gradually increased by both the clustering

approaches when the number of clusters increased. Overall,

the average fitness values of the proposed approach with

fuzzy c-means were better than that with hard c-means.

The results were reasonable since the fuzzy c-means could

estimate the requirement satisfactions of the chromosomes

through the property that an object could belong to more

than one cluster.

6.3 The comparisons of the proposed approach

and the previous approach

Experiments were then made to compare the proposed

method (FCGFMMS) with our previous one (GFMMS)

(Chen et al. 2009) for showing the effect of using clusters

in evaluation. The average fitness values of the chromo-

somes along with different numbers of generations for

different numbers of clusters for exponential and uniform

distributions are shown in Figs. 8 and 9, respectively.

It could be observed from Fig. 8 that the average fitness

values by the proposed approach were only a little less than

those by the previous one. The similar experimental phe-

nomenon could also be observed in Fig. 9, in which the

results were very close when the number of clusters

increased. The results were reasonable since the proposed

approach just estimated the requirement satisfaction of

chromosomes. The comparisons for the execution time of

the two approaches with different numbers of clusters for
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Fig. 5 The initial and the final
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both the exponential and uniform distributions are shown

in Tables 9 and 10. The results were averaged for five runs

with different seeds.

From Tables 9 and 10, it could be seen that the proposed

approach (FCGFMMS) ran nearly five to ten times faster

than the previous one (GFMMS) on both the datasets.

Besides, based on Lee et al.’s approach (Lee et al. 2004),

the number of rules, the average support and the average

confidence of the rules were also shown in Tables 9 and 10.

From Table 9, it was found that when k was set at 10–20,

the proposed approach could get good results both on the

average fitness values and the obtained rules for the dataset

with exponential distribution when compared with the

GFMMS approach. From Table 10, it could be found that

when k was set at 15 or 20, the proposed approach had

good results for the dataset with uniform distribution.

Usually, the results should be better along with the increase

of the number of clusters. However, due to the heuristic

that the number of large 1-itemsets was used in the eval-

uation, the number of rules did not necessarily increase

along with the number of clusters. Appropriate choice of a

cluster number is thus important.

7 Conclusion and future works

In this paper, we have proposed a genetic-fuzzy mining

algorithm, namely FCGFMMS, for extracting multiple

minimum supports, membership functions and fuzzy asso-

ciation rules from quantitative transactions. The proposed

algorithm can adjust the minimum support and membership

functions for each item by genetic algorithms and use them

to fuzzify quantitative transactions. It can also speed up the

evaluation process and keep nearly the same quality of

solutions by incorporating the clustering technique.

In the proposed approach, each chromosome represents

a set of minimum support values and membership
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Table 9 The execution time of

the two approaches for the

dataset with exponential

distribution

Approaches Execution

time (min)

Speed-up

ratio

#Rules Avg.Sup. Avg.Conf.

FCGFMMS (k = 5) 18.775 13.372 830 0.027 0.237

FCGFMMS (k = 10) 25.924 9.685 1,100 0.024 0.222

FCGFMMS (k = 15) 33.854 7.416 1,032 0.024 0.238

FCGFMMS (k = 20) 39.970 6.281 1,306 0.022 0.229

GFMMS 251.060 1 1,347 0.021 0.234

Table 10 The execution time

of the two approaches for the

dataset with uniform

distribution

Approaches Execution

time (min)

Speed-up

ratio

#Rules Avg.Sup. Avg.Conf.

FCGAMMS (k = 5) 25.511 11.887 777 0.022 0.505

FCGFMMS (k = 10) 33.118 9.157 1,122 0.022 0.570

FCGFMMS (k = 15) 42.601 7.118 1,378 0.021 0.624

FCGFMMS (k = 20) 53.316 5.688 1,437 0.022 0.640

GFMMS 303.253 1 1,593 0.021 0.689
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functions used in fuzzy mining. The proposed algorithm

first divides the chromosomes in a population into clusters

by using the fuzzy k-means clustering approach. All the

chromosomes then use the requirement satisfactions

derived from the representative chromosomes of the clus-

ters and their own suitability of membership functions to

calculate the fitness values. The evaluation cost can thus be

significantly reduced due to the time-saving in finding

requirement satisfaction.

Experimental results first show that the adopted fitness

function can derive a good minimum support values and

membership functions. Comparisons of the proposed

approach with different clustering methods (HCM and

FCM) are also made. The results show that the proposed

approach with the FCM clustering approach can get better

results than that with the HCM clustering approach. The

experimental results also show that using the clustering

technique to speed up the evaluation process can not only

get nearly the same fitness values as the previous approach,

but can also significantly reduce execution time. The pro-

posed approach can thus get a good trade-off between

accuracy and execution time.

The proposed approach would like to derive as much

knowledge amount as possible under a set of multiple

minimum support thresholds. It implies that for the same

knowledge amount to be obtained, the proposed approach

can get a set of higher minimum support thresholds than the

others. Using a set of higher minimum supports is usually

better in the meaning of relevance than using a set of lower

ones in the mining process. This is an advantage of the

approach. In most applications, the large majority of rules

obtained are non-interesting for experts when evaluated

despite they may be considered interesting by the support-

confidence framework employed. Thus, how to determine

appropriate minimum support thresholds or design an

alternative measure to control the number of large 1-item-

sets is thus very critical. This is a big challenge that we will

try to solve in the future. At last, some interesting works on

generic fuzzy systems and rule reduction approaches can be

found as well in (Casillas and Carse 2009; Gacto et al.

2009). These works also provide possible future directions

for enhancing the proposed approach.
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Gacto MJ, Alcalá R, Herrera F (2009) Adaptation and application of

multi-objective evolutionary algorithms for rule reduction and

parameter tuning of fuzzy rule-based systems. Soft Comput

13(3):419–436

Heng PA, Wong TT, Rong Y, Chui YP, Xie YM, Leung KS, Leung

PC (2006) Intelligent inferencing and haptic simulation for

Chinese acupuncture learning and training. IEEE Trans Info

Technol Biomed 10(1):28–41

Herrera F, Lozano M, Verdegay JL (1997) Fuzzy connectives based

crossover operators to model genetic algorithms population

diversity. Fuzzy Sets Syst 92(1):21–30

Hong TP, Lee YC (2001) Mining coverage-based fuzzy rules by

evolutional computation. In: The IEEE international conference

on data mining, pp 218–224

Hong TP, Kuo CS, Chi SC (1999) A data mining algorithm for

transaction data with quantitative values. In: The eighth inter-

national fuzzy systems association world congress, pp 874-878

Hong TP, Kuo CS, Chi SC (2001) Trade-off between time complexity

and number of rules for fuzzy mining from quantitative data. Int

J Uncertain Fuzziness Knowl Based Syst 9(5):587–604

Hong TP, Chen CH, Wu YL, Lee YC (2006) A GA-based fuzzy

mining approach to achieve a trade-off between number of rules

and suitability of membership functions. Soft Comput 10(11):

1091–1101

Hong TP, Chen CH, Lee YC, Wu YL (2008) Genetic-fuzzy data

mining with divide-and-conquer strategy. IEEE Trans Evol

Comput 12(2):252–265

2332 C.-H. Chen et al.

123



Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy

rule-based classification systems. IEEE Trans Fuzzy Syst 13(4):

428–435

Kaya M, Alhajj R (2005) Genetic algorithm based framework for

mining fuzzy association rules. Fuzzy Sets Syst 152(3):587–601

Kuok C, Fu A, Wong M (1998) Mining fuzzy association rules in

databases. SIGMOD Rec 27(1):41–46

Lee YC, Hong TP, Lin WY (2004) Mining fuzzy association rules

with multiple minimum supports using maximum constraints.

Lect Notes Comput Sci 3214:1283–1290

Liang H, Wu Z, Wu Q (2002) A fuzzy based supply chain management

decision support system. World Congr Intell Control Autom

4:2617–2621

Mangalampalli A, Pudi V (2009) Fuzzy association rule mining

algorithm for fast and efficient performance on very large

datasets. In: The IEEE international conference on fuzzy systems,

pp 1163–1168

McQueen JB (1967) Some methods of classification and analysis of

multivariate observations. In: Proceedings of the 5th Berkeley

symposium on mathematical statistics and probability, pp 281–297

Mohamadlou H, Ghodsi R, Razmi J, Keramati A (2009) A method for

mining association rules in quantitative and fuzzy data. In: The

international conference on computers & industrial engineering,

pp 453–458

Ouyang W, Huang Q (2009) Mining direct and indirect weighted

fuzzy association rules in large transaction databases. Int Conf

Fuzzy Syst Knowl Discov 3:128–132

Parodi A, Bonelli P (1993) A new approach of fuzzy classifier

systems. In: The fifth international conference on genetic

algorithms. Morgan Kaufmann, Los Altos, CA, pp 223–230

Rasmani KA, Shen Q (2004) Modifying weighted fuzzy subsethood-

based rule models with fuzzy quantifiers. IEEE Int Conf Fuzzy

Syst 3:1679–1684

Roubos H, Setnes M (2001) Compact and transparent fuzzy models

and classifiers through iterative complexity reduction. IEEE

Trans Fuzzy Syst 9(4):516–524

Setnes M, Roubos H (2000) GA-fuzzy modeling and classifica-

tion: complexity and performance. IEEE Trans Fuzzy Syst

8(5):509–522

Siler W, James J (2004) Fuzzy expert systems and fuzzy reasoning.

Wiley, London

Wang CH, Hong TP, Tseng SS (1998) Integrating fuzzy knowledge

by genetic algorithms. IEEE Trans Evol Comput 2(4):138–149

Wang CH, Hong TP, Tseng SS (2000) Integrating membership

functions and fuzzy rule sets from multiple knowledge sources.

Fuzzy Sets Syst 112:141–154

Yue S, Tsang E, Yeung D, Shi D (2000) Mining fuzzy association

rules with weighted items. In: The IEEE international conference

on systems, man and cybernetics, pp 1906–1911

Zhang H, Liu D (2006) Fuzzy modeling and fuzzy control. Springer,

Berlin

Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering 2333

123


	Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering
	Abstract
	Introduction
	The proposed cluster-based genetic-fuzzy mining framework for items with multiple minimum supports
	Details of the proposed approach for the framework
	Chromosome representation and initial population
	The required number of large 1-itemsets
	Fitness and selection
	Estimated requirement satisfaction by the fuzzy clustering approach
	Genetic operators

	The proposed mining algorithm: FCGFMMS
	An example
	Experimental results
	Description of the experimental datasets
	The performance of the proposed approach
	The comparisons of the proposed approach and the previous approach

	Conclusion and future works
	Acknowledgments
	References


