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Abstract

Conventional data envelopment analysis (DEA) models assume real-valued inputs and outputs. In many occasions, some inputs and/
or outputs can only take integer values. In some cases, rounding the DEA solution to the nearest whole number can lead to misleading
efficiency assessments and performance targets. This paper develops the axiomatic foundation for DEA in the case of integer-valued
data, introducing new axioms of ‘‘natural disposability’’ and ‘‘natural divisibility’’. We derive a DEA production possibility set that sat-
isfies the minimum extrapolation principle under our refined set of axioms. We also present a mixed integer linear programming formula
for computing efficiency scores. An empirical application to Iranian university departments illustrates the approach.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Data envelopment analysis (DEA) is a mathematical programming approach for evaluating performance of decision
making units (DMUs) that convert multiple inputs into multiple outputs. Conventional DEA models assume real-valued
inputs and outputs. However, there are many occasions in which some inputs and/or outputs must only take integer values.
For example, in efficiency evaluation of university departments, such inputs as the number of professors and such outputs
as the number of published articles are restricted to the whole numbers. While the rounding of performance targets to the
nearest whole number does not necessarily make a big difference for large departments, for small departments it can be a
major issue. For example, suppose a department has 3 full professors, and the DEA analysis suggests the efficient level of
professors is 2.4. Such result raises a dilemma: there is no evidence that 2 professors would suffice to meet the educational
and scientific objectives of the department, but rounding 2.4 up to 3 does not save any resources even though the efficiency
score of the department is only 0.8.

The need to deal with integer-valued data in DEA naturally occurs when one uses categorical or ordinal data (Banker
and Morey, 1986; Kamakura, 1988; Rousseau and Semple, 1993; among others), but restricting to the whole numbers can
be important even when the input–output variables are defined on the interval or ratio scales. Lozano and Villa (2006) were
the first to address the issue at a more general level, proposing a mixed integer linear programming (MILP) DEA model to
guarantee the required integrality of the computed targets. However, this pioneering article has two major shortcomings.
First, the theoretical foundation of Lozano and Villa’s model is ambiguous. Clearly, assuming integer-valued inputs and
outputs immediately violates the standard convexity, free disposability and returns to scale properties of DEA. Thus, Loz-
ano and Villa’s model is not consistent with the minimum extrapolation principle (Banker et al., 1984), which is the foun-
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dation of all DEA models. Second, Lozano and Villa’s MILP formulation for computing efficiency scores can lead to over-
estimated efficiency results, as shown below by numerical examples.

This paper tackles both these problems. We develop a new axiomatic foundation for integer-valued DEA models, and
show that the production possibility set proposed by Lozano and Villa (2006) is consistent with the proposed set of axioms.
We also proposed a modification of the classic Farrell input efficiency measure, and derive a MILP formulation for com-
puting it.

The rest of the paper is organized as follows. We start by introducing the new notions of ‘‘natural disposability’’ and
‘‘natural divisibility’’ in the next section. In Section 3 we derive the associated DEA production sets that satisfy the fun-
damental minimum extrapolation principle (Banker et al., 1984). Section 4 generalizes the method to the hybrid case where
both real and integer-valued inputs and outputs are present. In Section 5 we adapt the Farrell input efficiency measure to
the integer DEA setting, and show how the efficiency score can be computed by solving a MILP problem, which differs
from that of Lozano and Villa (2006) in two important respects. An application to the efficiency evaluation of 42 depart-
ments of the Islamic Azad University, Karaj Branch (IAUK) in Iran illustrates the method in Section 6. Section 7 presents
our concluding remarks and suggests avenues for future research.
2. Axioms

In DEA, each observed DMU is characterized by a pair of non-negative input and output vectors ðXj;YjÞ 2 Rmþs
þ ,

j 2 J = {1, . . . ,n}. The classic Charnes et al. (1978) DEA model assumes that the underlying production possibility set,
denoted by T ¼ fðx; yÞ j x 2 Rm

þ can produce y 2 Rs
þg, satisfies the following axioms:

(A1) Envelopment: (Xj,Yj) 2 T "j 2 J.
(A2) Free disposability: (x,y) 2 T and ðu; vÞ 2 Rmþs

þ , y P v,) (x + u,y � v) 2 T.
(A3) Constant returns to scale: ðx; yÞ 2 T ) ðkx; kyÞ 2 T 8k 2 Rþ.
(A4) Convexity: ðx; yÞ; ðx0; y0Þ 2 T ; ð~x; ~yÞ ¼ kðx; yÞ þ ð1� kÞðx0; y0Þ; 0 6 k 6 1) ð~x; ~yÞ 2 T .

According to the minimum extrapolation principle (Banker et al., 1984), the DEA production possibility set (PPS) is the
intersection of all sets S � Rmþs

þ that satisfy the maintained axioms. Under the maintained assumptions (A1)–(A4), the min-
imum extrapolation PPS can be explicitly stated as
T DEA ¼ ðx; yÞ x P
Xn

j¼1

Xjkj; y 6
Xn

j¼1

Yjkj

����� ; k P 0

( )
:

Many variations of axioms (A2)–(A4) have been presented in the literature. Relaxation of (A2) leads to models of weak
disposability (e.g. Kuosmanen, 2005) and congestion (e.g. Cherchye et al., 2001). Relaxation of (A3) leads to models of
variable and non-increasing (decreasing) returns to scale (e.g. Seiford and Thrall, 1990). Relaxation of (A4) leads to free
disposable hull (Deprins et al., 1984) and free replicable hull models (Tulkens, 1993). All these variants assume real-valued
data.

Consider a situation where all input–output data are restricted to be integer-valued (in Section 4 we broaden the scope to
the more general setting that allows for both integer and real-valued input–output variables). Formally, we impose an addi-
tional axiom

(A5) Integrality: ðx; yÞ 2 T ) ðx; yÞ 2 Zmþs
þ .

It is easy to see that (A5) contradicts axioms (A2)–(A4). Therefore, the earlier attempts to deal with integer-valued data in
DEA are not axiomatically sound.

To deal with integer-valued data in a systematic fashion, an alternative set of axioms is needed. To this end, we note that
when (A3) holds, the convexity postulate (A4) can be harmlessly replaced by a weaker postulate

(B4) Additivity: (x,y), (x 0,y 0) 2 T) (x + x 0,y + y 0) 2 T.

Additivity axiom (B4) is consistent with (A5). Moreover, axioms (A3) and (B4) together imply (A3) and (A4) (e.g. Arrow
and Hahn, 1971). Therefore, the main problem with the integer data actually concerns the disposability and scaling prop-
erties (A2) and (A3). We propose to substitute these axioms by the following alternative properties:

(B2) Natural disposability: (x,y) 2 T and ðu; vÞ 2 Zmþs
þ , y P v, )(x + u,y � v) 2 T.

(B3) Natural divisibility: (x,y) 2 T and 9k 2 ½0; 1� : ðkx; kyÞ 2 Zmþs
þ ) ðkx; kyÞ 2 T .
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The notions of natural disposability and natural divisibility are new variants of the standard free disposability (A2) and
non-increasing returns to scale axioms. Intuitively, natural disposability differs from free disposability only in that the dis-
posed input–output quantities (vector ðu; vÞ 2 Zmþs

þ ) must be integer-valued. Similarly, natural divisibility introduces an
additional restriction that downsizing a production plan must result an integer-valued input–output vector. For example,
if two units of input can produce four units of output, then one unit of input can produce two outputs, and four units of
input can produce eight units of output. However, it is not possible to produce just one unit of output because that would
require a half unit of input, and by assumption, inputs cannot be halved. By construction, axioms (B2) and (B3) are con-
sistent with integrality (A5).

Our next objective is to characterize a PPS that satisfies the minimum extrapolation principle subject to the properties
(A1), (A5) and (B2)–(B4). From the outset, this is a challenging task because properties (B2)–(B4) can be applied sequen-
tially one after another. In the spirit of Bogetoft et al. (2000), one could try to construct the PPS by using the admissible
addition, scaling and disposability properties (B2)–(B4) sequentially, but this will generally require an infinite sequence of
operations.

To illustrate this, consider a simple numerical example in a single-input single-output case with only a single observation
(X,Y) = (17,7). By applying natural disposability (B2), we already obtain an infinite number of new points. Point (18, 6) is
one of them. Applying natural divisibility (B3), we obtain point (3, 1) = (18, 6)/6. By additivity (B4), we have
(17,7) + (3, 1) = (20,8). Applying natural divisibility again, we get (5, 2) = (20,8)/4. By additivity, (5,2) + (3, 1) = (8,3).
The procedure can be continued indefinitely.

This example aptly illustrates that a sequential application of the axioms can generate new feasible points that are not
achievable by applying the axioms just once. For example, point (8, 3) is not directly achievable from observation (17,7) by
any of the axioms, but it can be achieved through a sequential application of feasible operations. It is also clear from this
example that there exist an infinite number of admissible operations, so it is not possible to enumerate all feasible points in
a finite time through such sequential algorithm. Even if one is interested in checking feasibility of a given unobserved inte-
ger-valued input–output vector, one may not be able to verify infeasibility in a finite number of operations, because the
additivity axiom (B4) can be used for generating an arbitrarily large sum vector (X,Y) which can be subsequently scaled
down to the evaluated point by applying the natural divisibility property (B3).
3. Main result

Lozano and Villa (2006) proposed to measure efficiency relative to the production possibility set that consists of inte-
ger-valued production plans. If all inputs and outputs are integer-valued, their reference technology can be formally sta-
ted as
T IDEA ¼ ðx; yÞ 2 Zmþs
þ x P

Xn

j¼1

Xjkj

����� ; y 6
Xn

j¼1

Yjkj; kj P 0 8j
( )

:

This set consists of all integer-valued input–output vectors that are contained by TDEA. However, this set is inconsistent
with the minimum extrapolation principle of DEA under the standard set of axioms (A1)–(A5); for example, TIDEA is
not convex. Fortunately, we can establish the minimum extrapolation interpretation for TIDEA under our adapted set
of axioms.

Theorem 1. Under axioms (A1), (A5), (B2), (B3), and (B4), TIDEA is the minimum extrapolation production possibility set.

Importantly, this theorem sets the intuitive PPS proposed by Lozano and Villa (2006) on a firmer theoretical ground.
We next generalize this result to a hybrid setting where there are both integer and real-valued inputs and outputs.
4. Generalization

Consider next the more general setting where only some of the inputs and outputs are deemed to satisfy the integrality
assumption (A5), while the others are not. Following Lozano and Villa (2006), we partition the set of input variables as
I = II [ INI and the set of output variables as O = OI [ ONI, where subsets II and OI are subject to the integrality condition
(A5) and subsets INI and ONI are real-valued. Subsets II and INI, as well as OI and ONI, are assumed to be mutually disjoint,
and jIIj = p 6 m and jOIj = q 6 s. Based on the preceding notations, every feasible activity which is characterized by a pair

of non-negative input and output vectors (x,y) can be written as x ¼ xI

xNI

� �
; y ¼ yI

yNI

� �
:
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In this hybrid setting, Lozano and Villa (2006) proposed a DEA PPS that can be stated as
T HIDEA ¼
xI yI

xNI ; yNI

� �
ðxI ; yIÞ 2 Zpþq

þ ;
xI

xNI

� �
P
Xn

j¼1

XI
j

XNI
j

 !
kj

����� ;
yI

yNI

� �
6

Xn

j¼1

YI
j

YNI
j

 !
kj; kj P 0 8j

( )
:

The axiomatic foundation established in Theorem 1 can be extended to this PPS by applying different sets of axioms to the
subsets (II,OI) and (INI,ONI), respectively.

Theorem 2. If subsets (INI,ONI) satisfy axioms (A2)–(A4), subsets (II,OI) satisfy (A5), (B2), (B3), and (B4), and axiom (A1)
is jointly satisfied by the observed data, then THIDEA is the minimum extrapolation production possibility set.
5. Efficiency measurement

We now turn to efficiency estimation of DMUs. It is worth to note that the common efficiency measures (including the
radial Farrell input and output measures, the additive Pareto–Koopmans efficiency measures, and the directional distance
functions) all assume continuous real-valued data. For brevity, we here restrict attention to the classic Farrell input effi-
ciency measure, defined as
Effðx0; y0Þ ¼ minfhjðhx0; y0Þ 2 Tg;

where vector (x0,y0) refers to the (observed or hypothetical) DMU under evaluation. Applying this measure directly to
TIDEA can yield counter-intuitive results because TIDEA is a nonmonotonic and nonconvex set of disconnected points.
For example, it is possible that (x0,y0) that is strictly dominated by another point in TIDEA is assigned the efficiency score
1 associated with full efficiency. The following numerical example illustrates.

Consider a two-input single-output case where there are two efficient DMUs A and B with ðX A
1 ;X

A
2 ; Y

AÞ ¼ ð7; 1; 1Þ and
ðX B

1 ;X
B
2 ; Y

BÞ ¼ ð2; 4; 1Þ. Let us evaluate efficiency of DMU 0 with ðx0
1; x

0
2; y

0Þ ¼ ð9; 4; 1Þ. Fig. 1 illustrates the example graph-
ically. The thick black piece-wise linear frontier represents the DEA CRS frontier. Projection path from DMU 0 towards
the origin is indicated by a broken line. Some feasible input vectors are indicated by black circle, and some infeasible points
are indicated by white circles.

The example illustrates the need to modify the input efficiency measure in the case of integer DEA. No feasible integer-
valued point coincides on the line segment between DMU 0 and the origin. The example also illustrates that simply round-
ing the DEA CRS efficiency score can give misleading results. Solving the DEA CRS model, we obtain the input efficiency
of 0.553, and the reference point ðx̂1; x̂2Þ ¼ ð4:979; 2:213Þ. If we round to the nearest integer (5,2) (point indicated by a
white circle), we end up to an infeasible point. If we round both inputs upward, we end up to a feasible point (5,3),
but this yields an efficiency score of 0.75 which is unnecessarily high. Note that the rounding error of one unit of input
can have a major impact on the efficiency score. In the example of Fig. 1, suppose we evaluate efficiency of DMU C with
inputs (4,4) producing 1 unit of output. Rounding the DEA efficiency score to the nearest integer would give the reference
B

A

x0

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
x1

x2

Fig. 1. Illustration of the numerical example.
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point (3, 3), and the associated input efficiency of 0.75. However, point (3, 3) is not feasible. In fact, no strictly dominating
feasible input vector exists in this example.

To measure efficiency improvement potential in integer variables, a modified input efficiency measure is needed. We pro-
pose to modify the Farrell input efficiency measure as
ðIDE
Effþðx0; y0Þ ¼ minfh 2 Rþj9ð~x; ~yÞ 2 T : ~xI 2 Zp
þ; hx0 P ~x; y0 6 ~yg:
This modified measure gauges radial distance to the monotonic hull of the production possibility set, requiring that the
reference point (hx0,y0) is such that ðhxI

0; y
I
0Þ is integer-valued. This preserves the usual interpretation of the Farrell mea-

sure as a downward scaling potential in inputs at the given output level, and guarantees that DMUs assigned the efficiency
score one are weakly efficient in the Pareto–Koopmans sense.

The modified input efficiency scores relative to the general THIDEA reference technology can be computed by solving the
following MILP problem, which is computable by standard MILP algorithms and solver software
Effþðx0; y0Þ ¼ min
h;k;~x;s

h� e
Xs

r¼1

sþr þ
Xm

i¼1

s�i þ
Xp

i¼1

sI
i

 !
;

s:t: yro þ sþr ¼
Xn

j¼1

yrjkj; r 2 O;

hxio � s�i ¼
Xn

j¼1

xijkj; i 2 INI ;

~xi � s�i ¼
Xn

j¼1

xijkj; i 2 II ;

AÞ hxio � sI
i ¼ ~xi; i 2 I I ;

~xi 2 Zþ; i 2 I I ;

kj P 0; j 2 J ;

sþr P 0; s�i P 0; sI
j P 0; r 2 O; i 2 I ; j 2 II :
Symbol e denotes a non-Archimedean infinitesimal, variables sþr ; s
�
i ; s

I
r represent the nonradial slacks, and ~x 2 Zp

þ is the
integer-valued reference point for inputs II.

Theorem 3. For any non-negative data (x0,y0), (X,Y), the optimal h* of model (IDEA) is equal to the modified Farrell input

efficiency measure Eff+(x0,y0) defined with respect to the THIDEA reference technology.

It is worth to note that model (IDEA) distinguishes between two types of input slacks: slacks s�i represent the difference
between the convex combination

Pn
j¼1xijkj and the reference point ð~x; hxNI

0 Þ 2 Zp
þ � Rs�p

þ , while input slacks sI
i represent the

difference between the reference point and the projection ðhx0Þ 2 Rs
þ in the subset II. In the example of Fig. 1, the reference

point of DMU 0 is ~x ¼ ð6; 2Þ with slacks s� ¼ 2
3
; 0

� �
. Radial input efficiency is h ¼ 2

3
and the nonradial slack sI ¼ 0; 2

3

� �
.

It is worth to emphasize that model (IDEA) differs from the MILP formulation by Lozano and Villa (2006) in one very

important respect. While our model (IDEA) only requires that vector
Pn

j¼1XI
jkj;
Pn

j¼1YI
jkj

� �
dominates our integer-valued

reference point ð~x; yI
0Þ 2 Zpþq

þ (consistent with Theorem 1), Lozano and Villa’s MILP problem impose a more stringent

requirement that
Pn

j¼1XI
jkj;
Pn

j¼1YI
jkj

� �
itself must be integer-valued. As a result, the intensity weights kj need not be

optimal.

Consider again the example of Fig. 1. The reference point ~x ¼ ð6; 2Þ is achievable as a convex combination of observa-
tions, but this requires assigning a positive weight to the inefficient DMU 0. Suppose the example includes a third input,
which is real-valued, and assume xA,3 = xB,3 = 2 and x0,3 = 3. It is easy to see that assigning a positive weight to the inef-
ficient DMU 0 will directly increase the input efficiency measure above the value of 2

3
found above. Therefore, Lozano and

Villa’s MILP formulation will overestimate the efficiency score in this modified example. The application of the next sec-
tion demonstrates that the two MILP formulations can yield substantially different results even when all inputs and outputs
are integer-valued.

6. Application

We next illustrate the integer DEA model by applying it to the real-world data of 42 university departments of IAUK.
These data are used for the internal performance assessment by the university. The input variables are the number of post
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graduate students (x1), the number bachelor students (x2), and the number of master students (x3). The output variables are
the number of graduations (y1), the number of scholarships (y2), the number of research products (y3), and the level of
manager satisfaction (y4). Note that all variables have integer structure and y4 is an ordinal-scale variable. The full data
are presented in the first eight columns of Table 1.

For comparison, four alternative models were computed: (1) model (IDEA) described above, (2) Lozano and Villa’s
integer DEA model, (3) the conventional DEA CRS model, and (4) the free disposable hull (FDH) model. We used Lingo
7 software on an Intel 4, 256 Mbytes RAM, 2 GHz PC. The computational times for the DEA CRS and FDH models were
negligible, and for the integer DEA models just a few seconds per MILP problem.

The obtained radial input efficiency scores are presented in the last four columns of Table 1. The results of our integer
DEA model come close to those of Lozano and Villa’s and DEA CRS models, but there are some notable differences, par-
ticularly with DMUs 42, 20, and 41. It is worth to stress that the non-Archimedean e does not play any role in these results:
all models were computed using the two-stage method where the radial input efficiency component (h) is minimized in the
first stage and the non-radial slacks (s) are maximized in the second stage. In general, the efficiency scores of our integer
DEA model must be always larger than those of DEA CRS model, but smaller than those of Lozano and Villa’s model.
Table 1 confirms this. The FDH model suggests generally much higher efficiency level than the other two models. This
suggests that the additivity and natural divisibility axioms can enhance the discriminatory power of the model
considerably.
Table 1
Data and efficiency scores

DMU x1 x2 x3 y1 y2 y3 y4 Integer DEA Lozano & Villa DEA CRS FDH

1 0 261 0 225 1 1 3 0.881 0.881 0.880 1.000
2 0 170 56 213 2 0 3 0.964 0.977 0.956 1.000
3 0 281 70 326 2 0 3 0.943 0.947 0.940 1.000
4 0 138 33 159 1 0 2 0.942 0.964 0.941 1.000
5 164 0 0 52 1 0 3 1.000 1.000 1.000 1.000
6 291 815 0 1014 2 2 2 0.918 0.918 0.917 1.000
7 0 0 61 50 0 0 4 1.000 1.000 1.000 1.000
8 113 95 0 73 0 0 2 0.495 0.513 0.487 1.000
9 0 727 0 675 3 0 3 0.928 0.931 0.928 1.000
10 0 773 0 697 2 0 3 0.902 0.904 0.902 1.000
11 0 0 66 46 0 0 3 0.758 0.758 0.758 0.924
12 346 197 0 132 0 0 1 0.266 0.274 0.264 0.629
13 0 988 0 812 8 10 2 0.883 0.885 0.882 1.000
14 0 0 34 32 0 0 2 1.000 1.000 1.000 1.000
14 0 795 0 601 6 2 2 0.758 0.764 0.758 1.000
16 0 672 0 591 6 12 2 1.000 1.000 1.000 1.000
17 0 166 0 166 7 0 4 1.000 1.000 1.000 1.000
18 0 761 0 761 0 3 2 1.000 1.000 1.000 1.000
19 193 124 0 293 0 0 3 1.000 1.000 1.000 1.000
20 484 0 0 361 0 0 1 0.893 0.998 0.892 1.000
21 0 517 0 434 0 4 2 0.880 0.880 0.879 1.000
22 0 584 0 492 1 4 2 0.875 0.875 0.874 1.000
23 0 682 0 565 2 3 2 0.840 0.841 0.840 0.985
24 0 565 0 423 1 2 2 0.758 0.758 0.756 1.000
25 0 603 0 433 1 3 2 0.740 0.740 0.738 0.969
26 0 373 0 332 1 1 1 0.890 0.895 0.890 1.000
27 0 347 0 328 2 3 3 0.997 0.997 0.996 1.000
28 0 0 70 51 0 3 4 1.000 1.000 1.000 1.000
29 0 328 0 170 0 1 3 0.540 0.543 0.539 0.796
30 0 267 0 123 0 0 3 0.468 0.498 0.466 0.622
31 262 0 0 219 3 0 3 1.000 1.000 1.000 1.000
32 0 1023 0 794 2 0 4 0.776 0.780 0.776 1.000
33 366 995 0 1111 2 2 3 0.817 0.819 0.816 1.000
34 0 266 15 238 3 4 3 0.951 0.955 0.949 1.000
35 172 375 0 547 4 3 3 1.000 1.000 1.000 1.000
36 0 460 0 385 4 8 3 1.000 1.000 1.000 1.000
37 223 0 535 232 14 6 4 1.000 1.000 1.000 1.000
38 0 1202 58 1158 12 0 3 0.923 0.924 0.922 1.000
39 0 1025 61 394 4 1 3 0.365 0.367 0.364 1.000
40 0 0 69 50 0 2 4 0.971 0.986 0.971 1.000
41 314 0 0 204 0 0 1 0.780 0.834 0.777 0.834
42 371 0 0 226 0 0 1 0.730 0.868 0.729 1.000
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Table 2 presents the integer-valued input targets (i.e., ~x) of our model (IDEA), Lozano and Villa’s integer DEA
model, and the conventional DEA CRS model. Consider first the input targets obtained by simply rounding the
DEA CRS targets. For 12 departments (29% of the sample), rounding the DEA CRS benchmark to the nearest integer
results a different target point from that of our integer DEA model. The result was somewhat better when we rounded
the DEA CRS benchmarks upward: 8 departments (or 19% of the sample) were projected to a different target point.
Especially for small departments, rounding of the conventional DEA benchmarks can give over-optimistic (or pessi-
mistic) performance goals.

The interpretation of our integer DEA model can be illustrated by considering a specific university department, say
DMU 13. The integer DEA efficiency score of this DMU was 0.883, obtained with the intensity weights
k�16 ¼ 0:7376378, k�17 ¼ 0:510961, and k�18 ¼ 0:3827820 (the weights of all other DMUs are equal to zero). These weights
yield the reference input vector

P42
j¼1xjkj ¼ ð0; 871:809; 0Þ, which dominates our integer-valued input target

~x ¼ ð0; 872; 0Þ; see Table 2. Theorem 1 implies that ~x ¼ ð0; 872; 0Þ is a feasible target. Note that Lozano and Villa’s MILP
formulation yields input target (0, 874, 0), with two units higher target value for input 2. The result is due to the fact that it
is impossible to find intensity weights k that satisfy both

P42
j¼1xjkj ¼ ð0; 872; 0Þ and constraintsP42

j¼1yjkj 2 Z4
þ;
P42

j¼1yjkj P ð812; 8; 10; 12Þ simultaneously.
Table 2
Input targets according to Integer DEA, Lozano & Villa’s and DEA CRS models

DMU Integer DEA Lozano & Villa DEA CRS

x�1 x�2 x�3 x�1 x�2 x�3 x�1 x�2 x�3

1 0 230 0 0 230 0 0 229.6 0
2 0 163 54 0 166 54 0 162.6 53.6
3 0 264 66 0 266 66 0 264.1 65.8
4 0 130 31 0 133 31 0 129.8 31
5 164 0 0 164 0 0 164 0 0
6 267 747 0 267 748 0 266.8 747.2 0
7 0 0 61 0 0 61 0 0 61
8 55 47 0 58 48 0 55.1 46.3 0
9 0 675 0 0 677 0 0 675.1 0
10 0 697 0 0 699 0 0 697 0
11 0 0 50 0 0 50 0 0 50
12 92 52 0 94 54 0 91.2 51.9 0
13 0 872 0 0 874 0 0 871.7 0
14 0 0 34 0 0 34 0 0 34
14 0 603 0 0 607 0 0 602.5 0
16 0 672 0 0 672 0 0 672 0
17 0 166 0 0 166 0 0 166 0
18 0 761 0 0 761 0 0 761 0
19 193 124 0 193 124 0 193 124 0
20 432 0 0 483 0 0 431.9 0 0
21 0 455 0 0 455 0 0 454.3 0
22 0 511 0 0 511 0 0 510.2 0
23 0 573 0 0 574 0 0 572.6 0
24 0 428 0 0 428 0 0 427.1 0
25 0 446 0 0 446 0 0 445.1 0
26 0 332 0 0 334 0 0 332 0
27 0 346 0 0 346 0 0 345.4 0
28 0 0 70 0 0 70 0 0 70
29 0 177 0 0 178 0 0 176.6 0
30 0 125 0 0 133 0 0 124.5 0
31 262 0 0 262 0 0 262 0 0
32 0 794 0 0 798 0 0 793.9 0
33 299 812 0 299 815 0 298.7 812.2 0
34 0 253 14 0 254 14 0 252.3 14.2
35 172 375 0 172 375 0 172 375 0
36 0 460 0 0 460 0 0 460 0
37 223 0 535 223 0 535 223 0 535
38 0 1109 53 0 1110 53 0 1108 53.4
39 0 374 22 0 376 22 0 373.1 22.2
40 0 0 67 0 0 68 0 0 67
41 245 0 0 262 0 0 244.0 0 0
42 271 0 0 322 0 0 270.4 0 0
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Although the efficiency scores of our integer DEA model come on the average very close to those obtained by Lozano
and Villa’s model, the differences can be rather substantial for benchmarking and target setting. The benchmarks obtained
by the two integer DEA models are different for 29 DMUs (69% of the sample). For some DMUs (in particular DMUs 42,
20, 32, 41, and 9) the differences are rather substantial, up to 51 units. An anonymous reviewer of this journal correctly
pointed out that the input targets may not be always unique, and thus there may exist alternative, equally valid input tar-
gets. In practice, we expect such alternative input targets to be unlikely in the present setting. Moreover, this is by no means
a special feature of the proposed model: all DEA models (including that of Lozano and Villa) are subject to alternate
optima in one form or another, which should be born in mind when interpreting the results. Finally, we would like to
emphasize that this application only includes integer-valued data; we would expect the differences to be even greater in
a hybrid setting involving both integer and real-valued variables.
7. Conclusions

The conventional axioms of convexity and free disposability fail if DMUs are restricted to operate with integer-valued
input and output quantities. In this paper we have presented an axiomatic foundation for a DEA model that assumes sub-
sets of input and output variables to be integer-valued. After modifying the notions of convexity and free disposability axi-
oms by introducing the new notions of ‘‘natural disposability’’ and ‘‘natural divisibility’’, we showed that the production
possibility set proposed by Lozano and Villa (2006) satisfies the minimal extrapolation principle under the new set of axi-
oms. We also modified the Farrell input efficiency measure to take into account the possibility of integer-valued inputs and
outputs, and presented a MILP formulation for computing it. Our MILP formulation differs from that of Lozano and Villa
(2006) in that we do not restrict the convex combination

Pn
j¼1XI

jkj;
Pn

j¼1YI
jkj

� �
to be integer-valued, but only require dom-

inance by this vector.
An empirical efficiency evaluation of 42 university departments further illustrated the importance of dealing with inte-

ger-valued data, and the differences resulting form alternative model formulations. The application demonstrates that the
MILP formulation by Lozano and Villa can underestimate the production possibility set, leading to overestimated effi-
ciency assessment and inefficient targets. The application also showed that simply rounding the DEA CRS results to
the nearest integer-valued point results as infeasible performance targets for many DMUs.

This paper has restricted to the DEA setting characterized by constant returns to scale (additivity and natural divis-
ibility of integer-valued inputs and outputs), similar to Lozano and Villa (2006). Later work by Lozano and Villa
(2007) has extended the approach to variable returns to scale technology and alternative non-radial and additive effi-
ciency measures. Unfortunately, the axiomatic foundation presented in this paper does not easily generalize to the var-
iable returns to scale setting where the additivity and natural divisibility axioms are not valid. We consider the
development of the axiomatic basis for integer DEA in the variable returns to scale environment as an interesting chal-
lenge for future research.
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Appendix. Proofs of Theorems

Theorem 1

Denote the true minimum extrapolation set subject to axioms (A1), (A5), (B2), (B3), and (B4), by Ttrue. We need to show
that TIDEA = Ttrue. Since axioms (A2)–(A4) imply (but are not implied by) (B2)–(B4), we must have

(i) Ttrue � TDEA,
Moreover, it is straightforward to verify that

(ii) T IDEA ¼ T DEA \ Zmþs
þ .

Consider an arbitrary ðx; yÞ 2 Zmþs
þ such that (x,y) 62 TIDEA. Equality (ii) implies that (x,y) 62 TDEA. By (i), (x,y) 62 Ttrue.

Thus,

http://www.nomepre.net
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(iii) (x,y) 62 TIDEA) (x,y) 62 Ttrue.
We next need to show that the converse also holds.Consider now an arbitrary ðx; yÞ 2 Zmþs

þ such that (x,y) 2 TIDEA. There-
fore, $k P 0 such that
Xn
(iv)
x P

j¼1

Xjkj;
y 6
Xn

j¼1

Yjkj:

(v)
ext multiply both sides of inequalities (iv) and (v) by some real number r 2 Rþ such that

rx P
Xn

j¼1

XjðrkjÞ;

We n

(vi)
ry 6
Xn

Y ðrk Þ
(vii) j j
j¼1

hat rkj 2 Zþ8j 2 J . To see that such multiplication is always possible, suppose kj 2 Rþ has k 2 Zþ decimal digits.
kþ1
and t
Multiplying by r ¼ 10 2 Rþ will ensure that the product rkj is an integer. Multiplier r can be arbitrarily large.Since
rkj is an integer, we can obtain the point

Pn
j¼1XjðrkjÞ;

Pn
j¼1YjðrkjÞ

� �
by applying rkj times the additivity axiom (B4) to

each DMU j. Applying the natural disposability axiom (B2) to
Pn

j¼1XjðrkjÞ;
Pn

j¼1YjðrkjÞ
� �

, we obtain the point (rx, ry)
(see inequalities (vi) and (vii)). Finally, point (x,y) is obtained from point (rx, ry) by simply applying the natural divisibility
axiom (B3). Thus, we have shown that
(viii) (x,y) 2 TIDEA) (x,y) 2 Ttrue.
Combining (iii) and (viii), we have TIDEA = Ttrue. h

Theorem 2

Note first that axioms (B2) and (B3) are integrality restricted special cases of axioms (A2) and (A3). Moreover, it is
known that the set of axioms {(A2), (A3), (B4)} is equivalent to the set of axioms A = {(A2), (A3), (A4)} (Arrow and
Hahn, 1971). Therefore, the set of axioms B = {(A5), (B2), (B3), (B4)} is just an integrality restricted special case of A.
Therefore, the same intensity weights k apply to both subsets (INI,ONI) and (II,OI). The minimum extrapolation result
for the case of (INI,ONI) with axioms A has been formally proved by Banker et al. (1984), and the case of (II,OI) with axi-
oms B was proved in Theorem 1 above. h

Theorem 3

Inserting set THIDEA to the modiefied Farrell measure Eff+(x0,y0) yields
Effþðx0; y0Þ ¼ minfh 2 Rþj9ð~x; ~yÞ 2 T HIDEA : ~xI 2 Zp
þ; hx0 P ~x; y0 6 ~yg
(ix) ¼ minh;k;~x h 9~x 2 Zp
þ : hxI

0 P ~x;
~x
hxNI

0

� ����� P
Pn

j¼1

XI
j

XNI
j

 !
kj;

yI
0

yNI
0

� �
6
Pn

j¼1

YI
j

YNI
j

 !
kj; kj P 0 8j

( )

We can equivalently express (ix) as the MILP problem
min
h;k

h;

s:t: yro 6

Xn

j¼1

yrjkj; r 2 O;

hxio P
Xn

j¼1

xijkj; i 2 INI ;

hxio P ~xi P
Xn

j¼1

xijkj; i 2 II :
(x) ~xi 2 Zþ; i 2 I I ,
kj P 0; j 2 J .
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The inequality constraints of (x) can be equivalently expressed as equalities if we introduce slack variables: the con-
straints of (x) are equivalent to those of model (IDEA). Note in particular that the third constraint of (x) involves two
inequalities; thus two different sets of slack variables are necessary. Finally, adding the slack variables to the objective func-
tion, multiplied by a non-Archimedean infinitesimal, does not influence the value of the objective function. Hence, problem
(x) is equivalent to problem (IDEA). h
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