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Astigmatans are a large group of mites living in nearly every environment and exhibiting very diverse
reproductive strategies. In spite of an uniform anatomical organization of their reproductive systems,
gametogenesis in each sex is highly variable, leading to gamete formation showing many peculiar fea-
tures and emphasizing the distinct position of Astigmata. This review summarizes the contemporary
knowledge on the structure of ovaries and testes in astigmatic mites, the peculiarities of oogenesis and
spermatogenesis, as well as provides new data on several species not studied previously. New questions
are discussed and approaches for future studies are proposed.
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1. Introduction

Mites (incl. ticks) consist of a large group of chelicerate arthro-
pods comprising more than 55 000 described species, however,
acarologists estimate that many times this number have yet to be
described (Walter and Proctor, 1999; Krantz, 2009). In the last de-
cades mites (Acari) were considered to be a natural taxon; however,
diphyly has also been postulated (Zakhvatkin, 1952; Van der
Hammen, 1977, 1979, 1989). Quite recently, a molecular study on
the phylogeny of Acari again strongly supported its diphyletic
origin (Dabert et al., 2010). Consequently, there are two indepen-
dent branches (superorders): Parasitiformes (=Anactinotrichida)
and Acariformes (=Actinotrichida). The latter originated at least in
the Early Devonian (Hirst, 1923; Norton et al., 1988; Bernini, 1991)
and comprises four taxa: the Trombidiformes (order), the
Endeostigmata (suborder), the Oribatida (suborder), and the cohort
Astigmata (= Astigmatina, Acaridida) (Lindquist et al., 2009).
Astigmata is considered a natural group and most likely derived
from an early clade (infraorder, acc. to Schatz et al.,, 2011) of Ori-
batida, the Desmonomata (OConnor, 1984; Norton, 1998).
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1.1. Systematics of Astigmata

As currently recognized (OConnor, 2009), the astigmatic lineage
diversified into 10 superfamilies, 71 families comprising 960 genera
and more than 6100 described species (Klimov and OConnor, 2013).
At present, even at a high taxonomic level the suggested phyloge-
netic relationships are based on traditional morphological analyses
rather than molecular studies, with the exception of a recent mo-
lecular study by Klimov and OConnor (2013). A provisional but still
temporarily accepted cladogram is presented in Fig. 1 by OConnor
(2009), adopted from earlier work (Norton et al., 1993). It shows
the phylogenetic relationships of Astigmata superfamilies and
combines Pterolichoidea, Analgoidea and Sarcoptoidea into a
monophyletic group Psoroptidia with ca. 3800 species (OConnor,
1982; Klimov and OConnor, 2008), although the composition of
Pterolichoidea and Analgoidea is somewhat disputable (for details
see: Proctor, 2003).

1.2. Environment of Astigmata

Although astigmatan free-living mites are abundant in wet litter
and soil, especially in highly decomposed material, they often are
the dominant mite group in patchy or ephemeral habitats. They are
numerous in decaying organic matter, dung, carrion, sap flows, dry
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Schizoglyphoidea
Histiostomatoidea: Histiostomatidae: Histiostoma feroniarum
Canestrinioidea: Canestriniidae: Canestrinia sellnicki

Hemisarcoptoidea: Carpoglyphidae: Carpoglyphus lactis
Chaetodactylidae: Chaetodactylus osmiae

Glycyphagoidea: Glycyphagidae: Glycyphagus domesticus

Acaroidea

Hypoderatoidea

Pterolichoidea: Falculiferidae: Falculifer rostratus
Sarcoptoidea: Sarcoptidae: Notoedres cati

Analgoidea: Analgidae: Diplaegidia columbae
Proctophyllodidae: Proctophyllodes fuchsi
Pyroglyphidae: Dermatophagoides farinae

Psoroptidia

Fig. 1. Cladogram of Astigmata superfamilies (adopted from Norton et al. (1993) by
OConnor (2009) showing families and species studied originally for this review.

and water-filled tree holes, phytotelmata and caves (Hughes, 1976;
Evans, 1992; Fashing, 1994, 1998). The other species are successful
in destroying stored food such as cereals, flour, cheese, dried fruits
and meat, etc., leading to considerable crop damage (Hughes, 1976).
An abundance of Astigmata is associated with other animals,
mainly insects and amniotic vertebrates (e.g. all Psoroptidia with
the exception of Pyroglyphidae which are free-living), frequently as
serious dermicolous parasites (Fain and Lukoschus, 1986; Proctor,
2003; OConnor, 2009). They can also inhabit bird and mamma-
lian nests or such distinct habitat as feathers. Despite a wide range
of habitats and a successful adaptive radiation, these mites share
many distinct features in reproductive anatomy and reproductive
behavior.

2. Materials and methods

In this review, original results were obtained through routine
transmission electron microscopy (TEM) with a procedure sum-
marized as follows. The sex of studied mite species (Histiostoma-
tidae: Histiostoma feroniarum Dufour, Canestriniidae: Canestrinia
sellnicki (Samsinak), Carpoglyphidae: Carpoglyphus lactis L., Chae-
todactylidae: Chaetodactylus osmiae (Dufour), Glycyphagidae: Gly-
cyphagus domesticus (De Geer), Falculiferidae: Falculifer rostratus
(Buhcholz), Sarcoptidae: Notoedres cati Hering, Analgidae: Diplae-
gidia columbae (Buhcholz), Proctophyllodidae: Proctophyllodes
fuchsi Mironov, Pyroglyphidae: Dermatophagoides farinae Hughes)
(Fig. 1) was identified under a Nikon SMZ1000 stereomicroscope
(Nikon Instruments Europe, Amsterdam, Netherlands). After im-
mersion into a droplet of Karnovsky’s fixative (Karnovsky, 1965)
(mixture containing 2% formaldehyde and 2.5% glutaraldehyde in
0.1 M cacodylate buffer, pH 7.2) on a Parafilm-coated microscopic
slide, the anterior part of the body was cut off with a fine razor
blade and the remaining rear part was transferred into fresh fixa-
tive for 24 h at 4° C. Fixed material was rinsed 4 x 15 min in 0.1 M
cacodylate buffer containing 8% sucrose and postfixed with 1.4%
osmium tetroxide in 8% sucrose overnight at 4° C. The specimens
were then washed and dehydrated in a graded ethanol series fol-
lowed by propylene oxide and embedded in Epon™ 812 substitute
(Sigma—Aldrich).

Semithin cross sections were stained with an Azur Il and
methylene blue (1:1) mixture, whereas thin sections were collected
on formvar coated grids, contrasted with uranyl acetate and lead
citrate according to standard protocols (Venable and Coggeshall,
1965), and examined under a transmission electron microscope
JEOL JEM 100SX (JEOL Ltd., Tokyo, Japan) at 80 kV in the Depart-
ment of Cell Biology and Imaging, Institute of Zoology, Jagiellonian
University.

For fluorescent staining with DAPI and Pyronin Y, the females of
Rhizoglyphus echinopus were processed as follows: the posterior

parts of mite bodies were fixed for 2 h at 4° C in fixative containing
4% paraformaldehyde and 2.5% sucrose in 0.01 M PBS. After fixation,
the material was washed and dehydrated in a graded ethanol series
then embedded in LR-White (Fluka) resin. Semithin sections were
stained 30 min with DAPI, washed several seconds in PBS, and
stained 20 min with Pyronin Y (Sigma—Aldrich)(20 pg/ml). After
brief washing in PBS sections were mounted and examined under a
fluorescence microscope Olympus BX51 (Olympus Corporation,
Tokyo, Japan) fitted with appropriate filters.

3. Reproduction of Astigmata

Both sexual and parthenogenetic species occur in Astigmata, the
latter represented by arrhenotokous, thelytokous, and rare deu-
terotokous organisms. In species possessing both females and
males (sexual and arrhenotokous species) the proportion of sexes
may be only slightly biased towards females. The males use their
intromittent organ, the aedeagus (=penis) to inseminate females
with sperm during copulation. Insemination never occurs through
the oviporus, but via a supplementary inseminatory system. Sexual
species (with diploid females and diploid males) occur for instance
in Acaroidea and Glycyphagoidea, whereas arrhenotokous diplo-
haploid species (with diploid females and haploid males) are
known in Histiostomatoidea (Histiostomatidae: Histiostoma),
Hemisarcoptoidea (Winterschmidtiidae: Kennethiella, Ensliniella,
Kurosaia) (Hughes and Jackson, 1958; Heinemann and Hughes,
1969; Cowan, 1984; Klompen et al., 1987; Okabe and Makino,
2003) and Sarcoptoidea. Thelytokous species occur in Histiosto-
matoidea (Histiostomatidae), Acaroidea (e.g. Acaridae: Schwiebea)
(Okabe and OConnor, 2001; Okabe et al., 2008). Thelytokous pop-
ulations are composed of females but extremely rare males can also
be occasionally found; such males are non-reproducing as is
believed, but their reproductive systems and/or spermatozoa have
never been studied. In Knemidocoptes mutans (Analgoidea: Epi-
dermoptidae) the frequency of males in populations is 2—4%
(Dubinin, 1953); such strong bias towards males in practically
sedentary mites suggests thelytoky rather than the effect of local
mate competition, a phenomenon which can also lead to sex ratio
distortion (Hamilton, 1967). Deuterotoky, in which both males and
females are produced from unfertilized eggs, has been reported in
Histiostomatidae (Heinemann and Hughes, 1969).

In most cases, the type of reproduction is only suspected and is
based mainly on population structure since detailed studies are
usually missing. Moreover, some phenomena concerning repro-
duction can be misinterpreted. For instance, a well-known
cosmopolitan species, H. feroniarum (Histiostomatidae), has been
for years believed to be comprised of arrhenotokous and thelyto-
kous populations (Hughes and Jackson, 1958). Recent unpublished
molecular studies (in co-operation with Dr. Mirostawa Dabert,
Adam Mickiewicz University, Poznan, Poland) revealed that there
are two separate but morphology practically indistinct species, an
arrhenotokous species (H. feroniarum) and a thelytokous form
(Histiostoma sp.).

4. Reproductive systems

The anatomy of reproductive systems in Astigmata has been
studied using light-microscopy since the 19th century (Nalepa,
1884, 1885; Michael, 1901; Hughes and Hughes, 1938; Dubinin,
1953; Hughes, 1959; Popp, 1967; Rohde and Oemick, 1967; Prasse,
1968, 1970; Heinemann and Hughes, 1970; Kuo and Nesbitt, 1970;
Woodring and Carter, 1974; Vijayambika and John, 1975; Griffiths
and Boczek, 1977; Baker and Krantz, 1985; Witalinski and Walzl,
1995), and has also been studied at the ultrastructural level
(Witalinski et al., 1990; Walzl, 1992; Desch, 2001; Walzl et al., 2004;
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Lekimme et al., 2005; Klien and Walzl, 2010; Witalinski et al., 2014).
Some external details of female and male reproductive organs were
also described using scanning electron microscopy (SEM) in pyro-
glyphid mites (Mariana et al., 2008).

Finally, it should be emphasized that the most basal astigmatan
group, Schizoglyphoidea, has not been studied since only several
immature specimens of one species are known (OConnor, 2009),
whereas living adult males and females are required for a
comprehensive description of reproductive anatomy. Therefore, in
this mini-review on anatomical and cytological aspects of repro-
duction, the superfamily Histiostomatoidea is treated as the most
basal in Astigmata.

4.1. The female reproductive system

Reproductive systems in female astigmatans studied so far are
rather uniform and composed of two parts, the oogenetic (primary)
and the inseminatory (secondary) parts (Griffiths and Boczek, 1977;
Witalinski et al., 1990; Witaliniski and Walzl, 1995) (Fig. 2A—D). The
oogenetic part comprises paired ovaries and oviducts, an unpaired
common oviduct (sometimes also called the uterus, e.g. Prasse,
1970; Witalinski et al., 1990), a cuticle-lined preoviporal chamber
(preoviporal canal of Witalinski et al., 1990), and the oviporus. The

Fig. 2. Schematic representation of reproductive systems in females (A—D) and males
(E, F) of Astigmata mites. (A) Acarus siro (Acaridae) dorsal view, (B) Sarcoptes scabiei
(Sarcoptidae) axial section, (C, D) Psoroptes ovis (Psoroptidae) female, dorsal (C) and
lateral (D) view, (E, F) Psoroptes ovis male, ventral (E) and lateral (F) view. Based on
Witalinski et al. (1990) (A), Desch (2001) (B), Lekimme et al. (2005) (C—F). Abbrevia-
tions: asterisk — location of the ovarian nutritive cell (ONC), a — anus, ae — aedeagus,
AG — male accessory gland, chg — chorional gland, chgl, 2 — two parts of chorional
gland in Sarcoptes, covd — common oviduct, de — ejaculatory duct, ic — inseminatory
canal, io — inseminatory opening, mg — midgut, oc — oocyte, op — oviporus, ov —
ovary, ovd — oviduct, pch — preoviporal chamber, rs — spermatheca, scc — sperm-
conveying cord, sz — spermatozoa in spermatheca, t — testis, vd — deferent duct.
Scale bars: 100 pm in (A, B, E, F); 200 pm in (C, D).

oviporus is a complex cuticular structure comprising eugenital lips
(internal paragynal folds of Witalinski et al., 1990) covering the
eugenital orifice, genital papillae in diachilous slits, anterolateral
progenital lips (external paragynal folds of Witalinski et al., 1990),
and a medial (epigynal) lip; the progenital chamber (sensu Van der
Hammen, 1980) is the space between the eugenital lips and ante-
rolateral progenital lips (for details see: Prasse, 1970; Van der
Hammen, 1980, 1989; Witalinski et al., 1990; Evans, 1992; Alberti
and Coons, 1999).

Spherical or subspherical ovaries are located symmetrically in
the rear part of the idiosoma, usually on both sides of the last
section of the alimentary tract, i.e. the postcolon, anal atrium and
anus. They occupy a considerable part of the idiosoma, but in C.
sellnicki are very small, spherical and located directly above the
ventral cuticle (unpublished). In Psoroptidia, ovaries are located
dorsally as in Sarcoptes scabiei and N. cati — Sarcoptidae (Witalinski
and Walzl, 1995), Psoroptes spp. — Psoroptidae (Lekimme et al.,
2005) (Fig. 2B—D), and FE rostratus — Falculiferidae, but in the
latter species they are additionally shifted anteriorly (Fig. 4D).
Oviducts emerge at the ventral, anteroventral or lateroventral
surface of the ovaries and run forward either straight to the ovi-
poral region of the mite body as in the sarcoptid mites: S. scabiei
and N. cati (Witalinski and Walzl, 1995), or are S-shaped bending
twice to reach the oviporal region as in Acarus siro, Tyrophagus
perniciosus, or Sancassania berlesei (Acaridae) (Walzl et al., 2004)

Fig. 3. Ovary organization as visible on cross sections of female mites (A—C) and
fluorescent staining of cross-sectioned ovary (D). (A) Ovary in Histiostoma spp.
showing eccentric ONC with ramified nucleus and large nucleoli (nu). Oocytes in
various developmental stages (oc) are connected with the ONC via intercellular bridges
with diaphragm-crossed lumina (arrows). Germinal line cells are embedded in somatic
ovarian stroma cells (osc). Thin ovarian wall cells (ow) lying on basal lamina (bm)
encompass the ovary. (B) In the ovary of Acaridae and Carpoglyphidae the ONC is
located subcentrally and oocytes (oc) are connected with the ONC via funnel-type
intercellular bridges filled by electron-dense material (arrows). Other abbreviations
as in (A). (C) The ONC in the ovary of Glycyphagus is in a dorsal position whereas the
ventral part of the gonad contains oocytes (oc) in different developmental stages.
Other abbreviations as in (A). (D) The LR-White semithin section through the ovary in
Rhizoglyphus echinopus stained sequentially with DAPI and pyronine Y. DAPI (blue)
reveals DNA whereas pyronine Y counterstains RNA. Note very strong signal for DNA
from the ONC nucleus as compared to oocyte (oc) nuclei. oc — oocytes, ONC — the
ovarian nutritive cell, ow — ovarian wall cells. Scale bars: 10 pm.
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Fig. 4. Differential interference contrast (A) and conventional light microscopy (B—G). (A) Dissected ovary from Rhizoglyphus echinopus showing the ONC, oogonia/early oocytes (og/
oc) and developmentally advanced oocytes (oc) embedded in ovarian stroma cells (osc). Ovarian wall cells (ow) and intercellular bridges (arrows) are also visible. (B) Semithin cross
section through a Histiostoma feroniarum female. Ovaries contain ONCs (asterisks) surrounded at other than abaxial sides by the oocytes (oc). Arrow points to diaphragm-type
intercellular bridge. (C) Semithin cross section through Glycyphagus domesticus female. The ONC is located dorsally whereas the rest of the ovary is filled with oocytes (oc) in
different stages of development. Vitellogenic oocytes just before entering the oviducts are also visible (asterisks). Arrow indicates intercellular bridge. (D) Axial semithin section of
Falculifer rostratus female; anterior end of the body directed to the left. Spermatheca (rs), ovary (ov), vitellogenic oocyte (voc) in the oviduct, as well as chorional gland (chg) close to
oviporus (op) are visible. Note lenticular extensions of perivitelline space in the vitellogenic oocyte. (E) The ovary in F. rostratus sectioned as in (D). The ONC, early oocytes (oc) and
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(Fig. 2A). Ovaries in E rostratus are located both dorsally and more
anteriorly, while oviducts emerge to run posteriorly and then turn
ventrally toward the oviporal region of the idiosoma. Consequently,
in F rostratus two distinct parts of the oviduct are present: a
proximal upper section and a distal lower section. In all species, the
oviducts close to the oviporus coalesce to form an unpaired com-
mon oviduct (=uterus or chorion gland in sarcoptid and psoroptid
mites — Fig. 4D and F). The common oviduct passes forward into a
preoviporal chamber (sometimes incorrectly termed vagina), lined
with a thin, usually plicated cuticle. This part can form a short-tube
ovipositor by eversion which allows precise egg manipulation
during oviposition. The genital aperture, the oviporus, is a longi-
tudinal, transversal, or inverted V-shaped slit located in the mid
region of the mite venter. Its structure is complex because the
cuticular walls are folded and two pairs of finger-like genital
papillae are located between folds (for details see: Witalinski et al.,
1990; Evans, 1992; Walzl, 1992; Alberti and Coons, 1999). The
pregenital sclerite (epigynum) rarely occurs in free-living astig-
matans (many Glycyphagidae) but is common in parasitic Astig-
mata (Ehrnsberger et al., 2001).

Female accessory glands occurring as paired, separate structures
connected with the oviducts are absent. Paired accessory glands
have been reported in some species (Kuo and Nesbitt, 1970; Baker
and Krantz, 1985; Witalinski et al., 1990), but subsequent studies
with serial semithin sections have shown that the interpretation of
the distal third portion of the oviduct as separate accessory glands
was erroneous (Witalinski, 1993; Witalinski and Walzl, 1995).
However, in non-psoroptidian species the distal third portion of the
oviducts has a thickened glandular wall, whereas in psoroptidians
the common oviduct forms dorsally a large, more or less distinct
glandular pocket, the chorion gland. In S. scabiei and N. cati the
chorion gland comprises only one type of secretory cells, but in E
rostratus it contains two types of cells located in two distinct re-
gions (Fig. 4D and F) (Witalinski, 1993).

The inseminatory part (Fig. 2A—D) starts with a copulatory or
inseminatory opening (bursa copulatrix) located at the rear end of
the idiosoma as in Acaridae, Carpoglyphidae and many other stored
food pests; the copulatory opening is frequently situated in a
shallow depression formed by thickened cuticle (e.g. Acaridae,
Suidasiidae, Carpoglyphidae, Falculiferidae and many other Psor-
optidia)(Witalinski et al, 1990; Witalinski and Walzl, 1995;
Ahamad et al., 2011). In some groups (e.g. Histiostomatoidea: His-
tiostomatidae: H. feroniarum, Histiostoma sp., Hemisarcoptoidea:
Chaetodactylidae: C. osmiae) the bursa copulatrix forms a tube or,
as in Glycyphagoidea: Glycyphagidae, a cuticular collar protruding
from the hind end of the body. An especially long caudal protrusion
of the bursa copulatrix/inseminatory canal is present in some
Pterolichoidea (Crypturoptidae and some Caudiferidae) (Gaud,
1982; Proctor, 2003). Instead terminally, an inseminatory opening
can be located more dorsally and placed at the apex of conical,
several micrometer long cuticular papilla (e.g. Psoroptoidea: Psor-
optidae: Psoroptes spp. — Lekimme et al., 2005; Sarcoptoidea: Sar-
coptidae: S. scabiei — Desch, 2001, and N. cati) (Fig. 2B—D). The type
of bursa copulatrix is correlated with the shape of the apex of the
aedeagus which is either pointed when matched with a concaved
inseminatory opening (Prasse, 1970; Witalinski et al., 1990;
Ahamad et al., 2011), or is modified and concaved terminally to
firmly accept the insertion of the copulatory papilla (Sarcoptidae).

From the copulatory opening, an inseminatory canal (internal
diameter ranges from 0.5 to 0.6 um to several micrometers —
Witalinski and Walzl, 1995; Desch, 2001) leads to the basal part of
the spermatheca (seminal receptacle, receptaculum seminis) where
sperm is stored before migration to ovaries via sperm-conveying
cords (Fig. 2C and D). The inseminatory canal has a cuticular lin-
ing, sometimes with additional external taenidia-like strength-
ening as in A. siro (Witalinski et al., 1990), Pterodectes sp. (Popp,
1967), S. scabiei (Desch, 2001) and Psoroptes spp. (Lekimme et al.,
2005), and varies considerably in length. In non-psoroptidians it
is short or moderately long (15—20 um in H. feroniarum — orig.,
14 um in A. siro — Witalinski et al., 1990; 62—65 pm in Caloglyphus
(=Sancassania) berlesei and 43—47 um in G. domesticus — Witalinski
and Walzl, 1995), but in Psoroptidia it is usually long (70—75 um in
N. cati — Witalinski and Walzl, 1995)(ca. 70 um in S. scabiei —
Witalinski and Walzl, 1995, 50 pm in D. farinae, 100 um in Ptero-
lichus obtusus, Grallolichus proctogamus, 130 pm in Pseudolichus
phasiani — Liana, 2004). The inseminatory canal in F rostratus is
extremely long (290—300 pm) and narrow, with a lumen diameter
of 0.6 um. According to Dubinin’s (1953) illustration, the insemi-
natory canal in Trouessartia rosterii is also very long, but it is short in
other analgesoid feather mites such as Bdellorhynchus polymorphus
and Analges passerinus.

Sperm-conveying cords are solid cellular structures, conical in A.
siro, but thin and cord-like in most other species in which the
spermatheca is placed far from the ovaries, as, for instance, in E
rostratus and P. fuchsi where their diameter is 4.0—4.5 um and ca.
3.0 um, respectively. Spermatozoa migrate between conveying cord
cells (Fig. 6A) from the basal part of the spermatheca towards the
ovaries (A. siro — Witalinski et al., 1990; F rostratus — unpublished).
Syngamy occurs within the ovary with previtellogenic oocytes
before they are covered by a vitelline envelope; consequently, in
sperm cells of Astigmata the acrosome is absent (Liana and
Witalinski, 2005).

The spermatheca in Astigmata (Figs. 2A, D and 4C, D)
(Witalinski et al., 1990; Desch, 2001; Lekimme et al., 2005) is a
complex saccular organ which consists of cellular and cuticular
elements. The cuticular lining of the inseminatory canal amal-
gamates with the solid cuticular basal part of the spermatheca, the
main part of the spermatheca visible in mites on microscopical
slides examined under a light microscope. The cuticle of the basal
part is supported by a thick layer of cells which continue anteri-
orly to form the saccular part of the spermatheca. The wall of the
saccular part is thin and its cells form many long, internally pro-
jecting microvilli. The margin of the basal part of the spermatheca
protrudes to form two very thin, more or less continuous, fine
cuticular lamellae which encompass the internal space of the
spermatheca. Thus, the lumen of the spermatheca is divided into
two compartments, (1) an external one, penetrated with micro-
villi of spermatheca cells, and (2) an internal one, delimited by
double lamellae, to which sperm and other male-derived sub-
stances are introduced. It is believed that sperm cells leave the
spermatheca basis to enter conveying cords and then ovaries via a
pair of openings in the basal part of the spermatheca located near
two minute V-shaped cuticular appendages visible in light
microscopical images. Klien and Walzl (2010) demonstrated that
in S. berlesei, sperm cells aggregate in the spermatheca close to the
entrance into such V-shaped appendages. These appendages,

advanced previtellogenic oocyte (asterisk) are sequentially distributed from the anterior to posterior end of the ovary. (F) Chorional gland in F. rostratus sectioned as in (D), showing
two types of glandular cells (1 and 2), preoviporal chamber (asterisk) and oviporal opening (op) in the ventral cuticle (cu). Vitellogenic oocyte (voc) contains dark yolk spheres and
lenticular extensions of perivitelline space (arrow). (G) Sections of two oviductal oocytes in Chaetodactylus osmiae. The right oocyte contains numerous smaller yolk spheres than
the left one, much advanced in vitellogenesis. Light profiles of lipid droplets occur between the yolk spheres. a — anal slit, aa — anal atrium, col — colon, gu — guanine, rs —

spermatheca. Scale bars: 50 pm in (A, C, G); 100 pm in (D), 20 um in (B, E, F).
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Fig. 5. Details of the ovaries in TEM. (A) Dermatophagoides farinae. Funnel-type intercellular bridge filled with an electron-dense granular material connecting the ONC and oocyte
(oc). The ONC contains elongated inclusions of microorganismal appearance surrounding the lipid droplet (L); similar inclusions are abundant in the ovarian stroma cell (osc). (B)
Glycyphagus sp. Funnel-type intercellular bridge (sectioned somewhat out of axis) between a protrusion of the ONC and previtellogenic oocyte (oc). Mitochondria (m) in the oocyte
are radially aggregated in the vicinity of the electron-dense bridge material and around the nucleus (n). (C) Glycyphagus domesticus. The ONC surrounded by oocytes (oc). Note
spherical protrusions of the ONC embedded in the ovarian stroma cell (osc) close to the ONC surface. n — nucleus, nu — nucleolus, osc — ovarian stroma cell. Scale bars: 5 um in (A,

C); 10 um in (B).

named the ducti conjunctivi, consist of a sclerotized part, the
funnel, which is ca. 40 pm long. Its diameter varies from 1 pm at
the spermatheca to 20 um at the distal end. These interesting
structures, however, are still waiting for precise descriptions at
the ultrastructural level.

4.1.1. The ovary

The ovaries in Astigmata (Fig. 3) are of nutrimental type and, as
in other animals, are composed of two elements: germinal and
somatic cells. Oogonia and previtellogenic oocytes belong to
germinal cells, as well as one very large and spherical cell of
nutritive nature, the so-called ovarian central cell. All these germ-
line cells are embedded in only several somatic cells with periph-
erally positioned nuclei. The ovary is surrounded by a layer of thin
epithelium which is difficult to discern under a light microscope
and, e.g., is not mentioned in the sarcoptid mite N. cati (Witalinski,
1988). Vitellogenic oocytes occur in the transient zone between the

ovary and oviduct and fill the oviductal lumen, in which vitello-
genesis is completed and egg envelopes begin to form.

Prasse (1968) was the first to observe the ovarian central cell
and later observations confirmed its presence in all studied species
(Witalinski et al., 1990; Walzl, 1992; Witalinski and Walzl, 1995;
Desch, 2001; Lekimme et al, 2005; Schwaha et al, 2008;
Witalinski et al., 2014). Indeed, the central cell in many species is
located centrally or subcentrally (A. siro, R. echinopus, C. sellnicki)
within the ovary (Fig. 3B and D), but in some cases is shifted
adaxially, as in H. feroniarum (Figs. 3A and 4B), Histiostoma sp.,
abaxially as in C. lactis, abaxially and anteriorly as in Psoroptes spp.
(Lekimme et al.,, 2005), antero-dorsally as in S. scabiei (Desch,
2001), dorsally as in N. cati, or is located either dorsally or sub-
centrally as in G. domesticus (Figs. 3C and 4C). Since it can actually
take central or quite eccentric positions, I propose to use the term
ovarian nutritive cell (ONC), as a more proper name instead of
central cell.
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Fig. 6. Sperm-conveying cord in Proctophyllodes fuchsi (A), fragment of the ovary (B) and oviductal vitellogenic oocytes (C—E) in Chaetodactylus osmiae, and oviductal vitellogenic
oocyte in Falculifer rostratus (F). (A) Cross-sectioned sperm-conveying cord (scc) containing spermatozoon with chromatin threads (ch). (B) Early oocyte (oc) with mitochondria (m)
surrounding nucleus (n), which is connected via a bridge (asterisk) to the ONC. Note many protrusions of the ONC hosted in the ovarian stroma cell (osc). Oocytes are surrounded by
ER cisterna of stroma cell (arrows). (C) Periphery of the vitellogenic oocyte containing yolk spheres (Y) in different stages of maturation, lipid droplets (L) and vitelline envelope (ve).
(D) Higher magnification of the vitelline envelope (ve) showing a lamellated structure. Note the different appearance of two yolk spheres (Y); the left one is less mature and contains
only several condensed cores in flocculent material, whereas in the more developed, dense right sphere there are paracrystalline cores (asterisk), electron-lucent inclusions (white
arrow) and meandering structures (black arrow). (E) Bilayered vitelline envelope (ve) on an oviductal oocyte more developed than those in (C) and (D). Note that the vitelline
envelope material is homogenous rather than lamellated and yolk spheres (Y) are well developed. (F) A vitellogenic oviductal oocyte in Falculifer has a well developed roughly
spherical yolk (Y), lenticular extensions of vitelline space (asterisk), and very poorly contrasted vitelline envelope (ve). ovd — oviduct wall. Scale bars: 1 um in (A); 2 um in (B, D-F);
5 um in (C).
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The ONC (Figs 3 and 4A—C, E) is a very large cell (diameter from
ca. 20 um in Falculifer and Pseudolichus, 25—30 pm in Sarcoptes,
Scutulanyssus and Grallolichus, 30—35 um in Canestrinia, Glycy-
phagus, Notoedres, 40 um in Pterolichus, up to 50 pm in Histiostoma,
Psoroptes and Dermatophagoides) (Desch, 2001; Liana, 2004;
Lekimme et al.,, 2005) containing an elaborated nucleus with a
number of prominent nucleoli. In most species the ONC has been
described as multinucleate (Pyroglyphidae: D. farinae, Dermato-
phagoides pteronyssinus — Walzl, 1992) or mononucleate with a
multilobular nucleus (Acaridae: A. siro — Witalinski et al., 1990), but
recent studies with serial sectioning following 3-D reconstruction
performed on representatives of three families (Schwaha et al.,
2008): S. berlesei (Acaridae), G. domesticus (Glycyphagidae), Cho-
rioptes bovis and Otodectes cynotis (Psoroptidae) led to the conclu-
sion that in all Astigmata in ONCs only one extensively branched
nucleus is present. DNA-specific fluorescence after DAPI staining
suggests polyploidy (Fig. 3D). The nuclear envelope forms many
concavities rich in nuclear pore complexes with frequently
adhering fine granular or flocculent nuage material. The rest of the
cytoplasm is packed with free ribosomes; it also contains mito-
chondria and scarce ER and profiles of Golgi bodies. Lysosome-like
bodies with non-homogenous content (H. feroniarum: Witalinski
et al., 2014) as well as crystalline inclusions (S. scabiei: Desch,
2001) can also be found.

Eccentrically located ONCs are partly covered by oogonia and
previtellogenic oocytes distributed usually in one to several layers;
in this area the plasmalemma of the ONC can form many short
protrusions described, e.g. in S. scabiei (Desch, 2001), as microvilli.
In G. domesticus and C. osmiae the ONC also forms irregular,
sometimes terminally expanded protrusions, penetrating the
ovarian stroma cells at some distance (Figs. 5C and 6B). Oogonia
and oocytes are connected with the ONC through conspicuous
intercellular bridges (Figs. 4A, C, 5A, B and 6B). In general, inter-
cellular bridges in all Astigmata except Histiostomatidae are
funnel-shaped and filled with an electron-dense granular material
(Fig. 6B) (Witalinski et al., 1990; Lekimme et al., 2005; Schwaha
et al., 2008; Florek and Witalinski, 2010b; Klien and Walzl,
2010). The bridge opening at the ONC side is ca. 6 um wide and
is smaller than at the oocyte side. Oogonia and small, young oo-
cytes have elongated and much thinner bridges, but their diameter
increases with the growth of the cells. Recent preliminary studies
(Florek and Witalinski, 2010b) indicated that in histiostomatid
mites (H. feroniarum) a second, unusual type of intercellular bridge
is present (Figs. 3A and 4B). This bridge is practically two-
dimensional and very large in advanced previtellogenic oocytes
(10 um or more) but its lumen is crossed with a thin diaphragm of
electron dense material, hence it has been termed a diaphragm-
crossed bridge. At higher magnification, the dense material is ar-
ranged in a rectangular lattice. The same was observed in another
undescribed Histiostoma species (Witalinski et al., 2014). In
another histiostomatid mite, Bonomoia opuntiae, the bridge has
somewhat intermediate structure since the diaphragm dense
material is thickened in the center of the bridge lumen (pre-
liminary observations).

Oocytes entering meiotic prophase are small roundish cells
with a relatively large spherical nucleus in which synaptonemal
complexes may be visible (Witalinski et al., 2014). After the first
meiotic division, the oocytes start to grow at previtellogenic
phase. In S. berlesei, meiosis is completed much later in oocytes
moving along the second, backward-curved part of the oviduct,
whereas the first cleavage into two blastomeres occurs at the
beginning of the third, forward-curved part of the oviduct (Walzl
et al, 2004).

Detailed studies on the architecture of the ovary and oocyte
pathways within the ovary during their development are absent,

but light-microscopical observations of semithin sections suggest
that previtellogenic oogenesis occurs generally around the ONC
towards the pole where the oviduct emerges. Thus, in most cases
oogonia and early previtellogenic oocytes are distributed dorsally
or dorso-laterally, whereas the oocytes entering vitellogenesis are
distributed ventrally or ventro-laterally in the ovary, i.e. close to the
oviduct entrance.

4.1.2. Vitellogenesis

Vitellogenesis in Astigmata occurs in oviductal rather than
ovarian oocytes (Fig. 4C—G) (Witalinski, 1995; Walzl et al., 2004),
but this process is known only superficially, since no in-
vestigations have dealt with the subject and data are only avail-
able from papers focused on other aims (Walzl et al., 2004;
Lekimme et al., 2005; Witalinski et al., 2014). The nucleus in
early vitellogenic oocytes is similar to that in previtellogenic ones
but its outline is irregular (Fig. 4E); cytoplasmic organelles accu-
mulate mainly at the oocyte periphery, whereas the rest of the
cytoplasm is filled with two types of inclusions: electron-dense
protein yolk spheres and electron-lucent inclusions, which are
lipid droplets (Fig. 6C—F). The protein yolk spheres are usually
several times larger than the lipid droplets; in Psoroptes (Lekimme
et al., 2005) their size is 8 um and 0.9 um, respectively. Periph-
erally located protein yolk spheres are small, ca. 1.6 um in His-
tiostoma and 1.0 in Sancassania. Much larger protein yolk spheres,
ca. 5 um in Histiostoma and up to 15 pm in Sancassania, are packed
more centrally in the egg. Large spheres contain several darker
roughly spherical cores of crystalline appearance. Lipid spheres
comprise small lipid droplets (0.5—0.6 um) grouped between
protein yolk and sometimes surrounding areas of moderate den-
sity (Witalinski et al., 2014).

The origin of yolk protein (vitellogenin, Vg) varies among mite
groups. In mites possessing an arachnid-type ovary (i.e. a hollow,
tubular ovary with oocytes protruding outside on stalks and
covered with basement membrane only), as in ticks and some
Parasitengonina (for further references see Evans, 1992; Alberti and
Coons, 1999; Coons and Alberti, 1999), the Vg is either produced by
the oocyte itself or, rather, derived from external sources. Fat
bodies, midgut cells, and specialized subepidermal cells have been
proposed as external sources (for further discussion and references
see: Cabrera et al., 2009). Externally produced Vgs are supplied
through the hemolymph and absorbed via pinocytosis into oocytes.
In many mites, however, the ovary is a compact structure and more
or less evidently of nutrimental type (e.g. higher Gamasina: Arc-
tacarina — Alberti and Krantz, 2007; Parasitina — Alberti et al., 1999;
Dermanyssina — Alberti and Zeck-Kapp, 1986; Di Palma and Alberti,
2001; Nuzzaci et al., 2001; Di Palma et al., 2012; or some Para-
sitengonina: Erythraeidae — Witte, 1975). In such cases, the oocytes
are supplied by nutritive cords from nurse cells with mitochondria,
ribosomes and other cytoplasmic components (Steiner et al., 1995),
as well as ribonucleoproteins involved in oocyte growth, but Vgs
are synthetized and absorbed from hemolymph as above. In Ori-
batida, nutritive cells/tissues are absent in the ovary (for further
references see Liana and Witalinski, 2012). In Astigmata, despite
their close evolutionary relations to Oribatida, the ovaries are of
nutrimental type, but the ONC seems to be a source of ribosome/
ribosome subunits and probably mRNA for Vg authosynthesis
rather than of Vg itself, since 1) cytoplasm of previtellogenic oo-
cytes is highly saturated with free ribosomes (e.g. Fig. 5), 2) vitel-
logenesis starts and progresses in oocytes which are no longer
connected via bridges with the ONC, and 3) when oocytes are
transported along oviducts, they do not show any signs of intensive
pinocytotic uptake; moreover, they are coated with a vitelline en-
velope (VE) transformed later into an impermeable chorion which
can effectively block uptake from the hemolymph. It should be
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noted, however, that newly formed VE in S. berlesei is lamellated
and contains pores at regular intervals; it was suggested (Walzl
et al., 2004) that yolk or yolk precursors can be transported from
the oviduct wall into the egg via these pores. A similar lamellated
VE also grows on oviductal oocytes in C. osmiae (Fig. 6C and D).

The molecular foundations of Vgs and their genes in Astgmata
are, as in other mites, fragmentary and are known in only a few
species (Blomia tropicalis, D. farinae, D. pteronyssinus, G. domesticus,
S. scabiei and Suidasia medanensis) (Cabrera et al., 2009). Equally
unexplored is the regulation of vitellogenesis and, in particular, the
identification and physiological role of ecdysteroids and juvenile
hormon (JH) in endocrine regulation of vitellogenesis. In mites,
ecdysteroids such as ecdysone, 20E, 2-deoxyecdysone, and maki-
sterone A have been identified in the gamasid mites, Dermanyssus
gallinae (Chambers et al., 1996) and Varroa jacobsoni (Feldlaufer and
Hartfelder, 1997), and an astigmatan, Tyrophagus putrescentiae
(Sakagami et al., 1992). Because JH and its analogs have a major role
in influencing oogenesis/vitellogenesis in most insects, in-
vestigations aimed at finding these substances in mites have been
conducted. Only farnesol, a precursor of JH, was identified in deu-
tonymphs of Tetranychus urticae (Regev and Cone, 1975, 1976).
However, farnesol is present in plants and can be sequestered from
food by females which may use this substance as a sex attractant.
On the other hand it was shown that exogenous farnesol increase
oviposition.

In contrast, many studies explored the effects of exogenous JH
and its analogs or anti-JHs on mite reproduction (see Cabrera et al.,
2009: Table 2), but in the case of Astigmata there was either no
effect (farnesol, JH analogs: methoprene and pyriproxyfen on T.
putrescentiae) or the effect was negative (JH analogs: fenoxycarb,
hydroprene and methoprene on D. farinae; ecdysone analog:
halofenozide on T. putrescentiae). The only positive effect was
shown by the JH analog, fenoxycarb, on female reproduction in A.
siro. In conclusion, studies with JH precursors and anti-JHs were
equivocal in establishing that mites have insect JH or they use it to
regulate reproduction; thus a new concept for the regulation of
female reproduction in mites was proposed in which ecdysteroids
instead of JHs play the main role in stimulation of Vg gene
expression in the fat body and midgut in ticks, or the midgut and
ovaries in other mites (Cabrera et al., 2009).

4.1.3. Egg envelopes

Eggs of Astigmata are protected by envelopes of complex origin
(Witalinski, 1993). First, an early vitellogenic oocyte entering the
oviduct starts to secret a VE, which is therefore of primary origin.
TEM studies on VE structure and formation indicated that at the
beginning the VE material is either lamellated or coarse-fibrillar (A.
siro, Tyrophagus, S. berlesei — Acaridae; Witalinski, 1993; Walzl
et al., 2004), but is not penetrated by oocyte microvilli as sug-
gested by Reger (1977) for Caloglyphus anomalus (=Sancassania
anomala) (Acaridae), a species with a VE of the same appearance in
TEM as A. siro (Witalinski, 1993) and C. osmiae (Fig. 6C and D). In
Psoroptes spp. (Lekimme et al., 2005), the VE is homogenous and
electron-lucent, and its thickness is 0.2—0.3 pm. An electron-lucent
VE also appears on oocytes in F rostratus; the oocyte, as in other
psoroptid mites, forms many deep concavities (Figs. 4D, F and 6F).
The early VE in Histiostoma sp. has a variable thickness (0.6—1.5 pm)
and its material is electron-dense, but contains ellypsoidal lucent
spaces (Witalinski et al., 2014). In S. berlesei the lamellated VE is
1 pm thick (Walzl et al., 2004).

As observed in several astigmatans, the thickness of the VE
changes: at the beginning of VE formation its thickness increases,
but decreases later when the VE lamellae or fibrils disappear,
leading to a homogenous VE (see Fig. 6D and E). Interestingly, the
disappearance of VE substructure is concomitant with up to a

twofold decrease in VE thickness and occurs when the eggs are
passing through the distal third portion of the oviduct. Its wall is
thick and possibly contains secretory cells. Secretion was not evi-
denced, but secretory activity was suggested to be a source of VE
modifications in structure and properties (Witalinski, 1993). A
modified, homogenous VE is 0.3—0.4 and 0.7 um thick in A. siro and
T. perniciosus, respectively, and in A. siro it was named the chorion
since it was the only layer enveloping a deposited egg. In other
species, additional, exochorional material can be deposited on the
egg chorion (which therefore is termed the endochorion) prior to
laying. In the distal portion of oviducts in T. perniciosus and puta-
tively Tyrophagus longior, an exochorion of three types is secreted:
dense patches, granules, and locular chambers. In Aleuroglyphus
ovatus, tiny spherical patches were found instead of locular
chambers. In psoroptid mites S. scabiei, N. cati, and F. rostratus, a VE
of flocculent appearance also transforms into a homogeneous
chorion.

Chorional glands in sarcoptid mites release exochorion material
on the egg surface and form a vesicular monolayer (Witalinski,
1993). In E rostratus, the chorional gland (Fig. 4D and F)produces
a substance which is used to glue the egg on the feather barb of its
host (the pigeon). It seems likely that the function of adhesive
exochorion material is mainly egg fixation to substratum (Sarcoptes,
Notoedres, Falculifer, pterolichoid feather mites — Dubinin, 1953),
but additional functions were also proposed, e.g. limited water loss
from eggs due to locular chambers in Tyrophagus (Witalinski, 1993).

4.2. The male reproductive system

Male reproductive systems in Astigmata were studied on several
occasions by light-microscopy (Michael, 1901; Rohde and Oemick,
1967; Prasse, 1968; Heinemann and Hughes, 1970; Kuo and
Nesbitt, 1970; Vijayambika and John, 1975; Baker and Krantz,
1985; Witalinski and Walzl, 1995) and ultrastructurally
(Witalinski et al., 1990; Walzl, 1992; Lekimme et al., 2005) and are
more variable in organization compared to female reproductive
systems. They comprise paired spherical or ellypsoidal testes
located usually symmetrically in the rear part of the idiosoma, two
deferent ducts (vasa deferentia), and one, two or no accessory
glands (e.g. Fig. 2E and F). The proximal part of deferent ducts
serves as a sperm reservoir, while the distal one has a glandular
character (Witalinski et al., 1990). In males of analgesoids A. pass-
erinus (Analgidae) and Trouessartia appendiculata (Trouessartiidae),
deferent ducts empty into vesicular structure described by Dubinin
(1951) as a seminal vesicle; however, further studies seem neces-
sary to clarify its structure and function. Both deferent ducts merge
together with duct(s) of accessory gland(s), if present, to form a
short unpaired deferent duct passing into an ectodermal, cuticle-
lined ejaculatory duct (ductus ejaculatorius). In Pterodectes (Proc-
tophyllodidae) the ejaculatory duct is an extremely complicated
structure functioning during insemination as a sperm pump (Popp,
1967; Alberti and Coons, 1999). The ejaculatory duct enters the
aedeagus to terminate at its apex.

In acarid mite Caloglyphus (=Sancassania) berlesei, the testes are
situated asymmetrically: the left testis is located dorsally whereas
the right one is located ventrally as a result of the occupation of the
left side of the body by a very large accessory gland (Witaliniski and
Walzl, 1995). In Lardoglyphus konoi (Acaroidea: Lardoglyphidae),
one testis is in front of the other, and two different accessory glands
(one of them named a chambered organ) are present (Vijayambika
and John, 1975). In the hemisarcoptoid mite C. osmiae two testes —
each with its own germarium — adhere very tightly to one another
filling the right side of the idiosoma, whereas the left side is
occupied by a large accessory gland which opens into the left
deferent duct (Fig. 7B). In the glycyphagoid G. domesticus two testes
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Fig. 7. (A)Testis organization as visible in cross sections of male mites in case the germarium contains a testicular central cell (TCC) (e.g. Acaridae). The TCC with ramified nucleus is
tightly surrounded by spermatogonia (sg) whereas spermatocytes (sc) and spermatids (sd) in various developmental stages are spread in testicular stroma cells (tsc). The entrance
of deferent duct (vd) collects maturing sperm cells (sz). The basement membrane (bm) of testicular stroma cells surrounds the testis. (B) Semithin cross section of Chaetodactylus
osmiae male showing two germaria (asterisks) in closely located testes at right side and a large accessory gland (AG) which occupies the left side of the mite body. a — anal opening,

vd — deferent duct. Scale bars: 10 um in (A); 100 um in (B).

are displaced symmetrically (Fig. 8A), but the left one is shorter as a
large accessory gland is located anteriorly (Fig. 8B). In Psoroptes ovis
(Psoroptidae) (Fig. 2E and F), paired testes are secondarily fused at
their proximal parts, thus being actually unpaired (Lekimme et al.,
2005). Similarly, in N. cati (Sarcoptidae), testes are interconnected
by a narrow bridge which is filled with an electron-dense, floccu-
lent material (Witalinski, 1988). In D. farinae and D. pteronyssinus
(Pyroglyphidae), the testis is unpaired (Walzl, 1992). In the sar-
coptid mites S. scabiei and N. cati, testes are situated anteriorly to
the aedeagus due to its posterior shifting while short, quickly
merging deferent ducts run postero-ventrally rather than antero-
ventrally (as in most other astigmatans), to empty into the begin-
ning of the ejaculatory duct (Witalinski and Walzl, 1995).

The aedeagus is a sclerotized organ located midventrally, pro-
truded by hydrostatic pressure and retracted by muscles attached
to sclerites in the genital atrium (Prasse, 1970). Its tip is shaped to fit
the female bursa copulatrix opening; in Proctophyllodes males, the
aedeagus is extremely long extending far behind the body of the
male (OConnor, 2009).

4.2.1. The testis

Testes in astigmatans have usually been briefly described in
conjunction with studies on spermatogenesis and sperm structure
(Alberti, 1980; Witalinski et al., 1986; Witalinski and Afzelius, 1987;
Witalinski, 1988; Witaliniski et al., 1990; Walzl, 1992; Florek and
Witalinski, 2010a; Lekimme et al., 2005). They are rather compact
organs (Fig. 7A), delimited by a thin amorphous layer (Vijayambika
and John, 1975) resembling a basal lamina in the light microscope.
The membrane surrounds a few somatic cells in which germ cells at
different stages are embedded (Witalinski et al., 1990; Walzl, 1992).
In this review, such somatic cells are termed the testicular stroma
cells. In some species (D. columbae, F. rostratus), stroma cells are
multinucleate and perhaps syncytial (Fig. 9A and B). In S. scabiei
two other kinds of somatic cells were found: distal cells and muscle
cells (Witalinski and Afzelius, 1987).

The germinal part (germarium) of the testis can be located
dorsally or dorsolaterally (in S. scabiei and N. cati — Witalinski and
Walzl, 1995; C. lactis — Florek and Witalinski, 2010a), but if the testis
is elongated then the dorsally located germarium may be found
either in the anterior or posterior part of the gonad, as in G.

domesticus (Witalinski and Walzl, 1995) (Fig. 8A) and A. siro
(Witalinski et al., 1990), respectively. In C. osmiae the germaria are
located less regularly but rather adaxially in both testes adhering
closely to each other as mentioned above.

The germarium is composed of a compact group of early germ
cells, spermatogonia, adhering tightly to one another (Fig. 8C and
D) and to the so-called testicular central cell (TCC), if such a cell is
present in the adult gonad. The TCC (Fig. 8C) has been reported in A.
siro (Witalinski et al., 1990), Sancassania (=Caloglyphus) berlesei and
S. (=Caloglyphus) michaeli (Prasse, 1968), Rhizoglyphus robini (Baker
and Krantz, 1985) and H. feroniarum (Florek and Witalinski, 2010a),
but is absent in many other species: D. pteronyssinus, D. farinae
(Walzl, 1992), G. domesticus, S. scabiei, N. cati (Witalinski and Walzl,
1995), C. lactis and E rostratus (Florek and Witalinski, 2010a). The
TCCs are of special interest since their origin — germinal or somatic
— and function were for a long time enigmatic. The very similar
placement of ONCs and TCCs in gonads suggested a germinal origin
and, moreover, a nutritive function. However, intercellular bridges
connecting spermatogonia with the TCC were not observed, thus
the question remained open. Studies performed recently on gonad
development in Histiostoma provided evidence that ONCs and TCCs
belong to the germinal cell line (Witalinski et al., 2014), because
both are connected by bridges with surrounding gonial cells in a
quite similar way. The nutritive role of TCCs is rather doubtful;
instead, it was postulated (Florek and Witaliniski, 2010a) that the
TCC can “suppress and/or drive the proliferation of adjacent sper-
matogonia” (for further discussion see Florek and Witalinski,
2010a). Indeed, growing and subsequently proliferating sper-
matogonia lose tight contact with the TCC, as was observed in H.
feroniarum (unpublished) and A. siro (Fig. 8C), or separate from a
compact mass of germarial earliest spermatogonia in species in
which the TCCs in testes are absent (Fig. 8D).

The deferent duct entrance is located opposite to the germa-
rium, usually in the ventral area of the testis (Fig. 7A). The entrance
of the deferent duct and its vicinity are packed with sperm cells
(Figs. 8A and 9A). Spermatocytes and spermatids disperse after
leaving the germarium which disrupts the sequential distribution
of spermatogenesis stages (Fig. 9A). They disperse singly or in small
clonal groups which do not form wall-encapsulated cysts; rather,
they are hosted within large, sometimes multinucleate somatic
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Fig. 8. Two semithin sections of Glycyphagus domesticus male in light microscope (A, B) and details of the testis in TEM, in Acarus siro (C) and Carpoglyphus lactis (D, E). (A) Section at
anal opening (a) level shows two symmetrically distributed testes, each with dorsally located germarium (white asterisks) and ventrally visible spermatozoa (black asterisks) within
or close to the entrance of a deferent duct. (B) section as in (A) but more anteriorly. Anal opening is absent, right testis still occurs, but the left one is replaced by a large accessory
gland (AG). Lumen of opisthonotal gland and alimentary tract are indicated by black and white asterisks, respectively. (C) Germarium containing the testicular central cell (TCC)
surrounded tightly by early spermatogonia (sg’). Proliferating spermatogonia (sg”) are separated from the TCC. (D) Early spermatogonia (sg’) in germarium adhere tightly to each
other, whereas proliferating ones (sg”) are distant. Note early spermatogonia nuclei with prominent central nucleoli (nu) and nuage material adhering to nuclear envelope (arrows).
(E) Spermatocyte showing formation of spongy layer with participation of Golgi body (arrow). In a more advanced spermatocyte a spongy layer (sl) is formed. n — nucleus, sd —
spermatid, tsc — testicular stroma cell. Scale bars: 50 pm in (A, B); 5 um in (C); 2 um in (D, E).
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Fig. 9. Section through the testis in Falculifer rostratus in TEM. (A) Early spermatogonia (sg’) form the germarium and are electron-dense; proliferating spermatogonia (sg”) are
located at the germarium periphery whereas a spermatocyte (sc’) before division is less dense and enveloped in a thick spongy layer. Dividing spermatocytes (sc”’) and spermatids
(sd) show lower density and their nuclei are absent. A spongy layer still occurs. Spermatozoa (sz) are electron-lucent and contain dense lamellae (dl), grouped mitochondria (m),
and chromatin threads (arrows). Somatictesticular stroma cells (tsc) are multinucleate and their nuclei (n’) are peripherally distributed. (B) Fragment of the testis. Spermatocyte (sc)
containing a nucleus (n) is covered by a spongy layer (asterisk). Several nuclei (n’) of a testicular stroma cell (tsc) are marked. Scale bars: 10 um in (A); 2 pm in (B).
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cells filling the testis, i.e. the testicular stroma cells (Figs. 8C—E and
9A, B).

4.2.2. Spermatogenesis

As mentioned above, the earliest spermatogonia located in the
germarium adhere to the TCC or, if a TCC is absent, they adhere to
the other spermatogonia so tightly that their borders can be
detected only by TEM (Fig. 8C and D). A relatively large spermato-
gonial nucleus contains a prominent central nucleolus (Fig. 8D). The
nuclear envelope shows shallow concavities with adhering nuage
material. Mitochondria are distributed close to the nucleus. Sper-
matogonia located at the periphery of the germarium are larger and
make contact with the germarium one-sidedly (Fig. 8D), eventually
to separate and enter the spermatocyte stage.

Early spermatocytes (Fig. 8E) are singular spherical cells with a
roundish, “empty” nucleus devoid of condensed chromatin, but
usually with a nucleolus located peripherally. Nuage material is still
present. As the spermatocyte grows, the peripheral cytoplasm
hosts many mitochondria and Golgi bodies; the latter participate in
the formation of a characteristic superficial spongy layer of anas-
tomosing membranes/cisternae covering the cell (Figs. 8E, 9B and
10A). The contribution of Golgi bodies to spongy layer formation
was observed in many species (Witalinski et al., 1986, 1990; Liana,
2004; Florek and Witalinski, 2010a), nevertheless, sub-
plasmalemmal cisternae of ER were also proposed to be a source of
spongy layer membranes in Astigmata spermatocytes (Witalinski
and Afzelius, 1987; Lekimme et al., 2005).

In general, growing spermatocytes undergo division (Fig. 10B
and C), however, division is doubtful in some astigmatic species
(see below). During division neither the nuclear envelope nor
condensed chromatin with synaptonemal complexes is visible. This
suggests that normal meiosis may be absent. Daughter cells remain
interconnected by bridges delimited by unthickened cisterns of the
spongy layer, thus typical contractile rings lined with electron-
dense material typical for conventional intercellular bridges or
ring canals (permanent intercellular bridges in gametogenesis) are
likely absent (Florek and Witaliniski, 2010a). The number of inter-
connected spermatids is no more than four, since in most species,
sectioned groups of spermatids contain two (C. lactis — Florek and
Witalinski, 2010a) or three to four (A. siro, T. putrescentiae —
Witalinski et al., 1986, D. columbae — Fig. 10C) cells in section,
whereas in some species, e.g. in G. domesticus and C. osmiae, sper-
matocytes and spermatids are singular. Moreover, the size of
spermatids is only somewhat smaller than that of spermatocytes,
decreasing progressively. In such cases, male germ cells differen-
tiate, but evidently do not divide.

During spermiogenesis many unusual changes occur. Mito-
chondria in early spermatids can be located peripherally beneath
the spongy layer (e.g. in C. lactis — Florek and Witaliniski, 2010a);
later, in many species they transform into more or less modified
mitochondrial derivatives, sometimes vesicular and difficult to
distinguish, as in A. siro, T. putrescentiae (Witalinski et al., 1986,
1990), H. feroniarum (Witalinski et al., 2014), D. columbae (Fig. 10B
and C), or P. fuchsi (Fig. 10E). In some cases, however, mitochondrial
morphology is altered moderately (e.g. S. scabiei and N. cati —
Witalinski and Afzelius, 1987; Witalinski, 1988; C. osmiae —
Fig. 11B), or only slightly, as in G. domesticus (Fig. 11D and E) or
E rostratus (Liana and Witalinski, 2005). In some species, mito-
chondria have a tendency to aggregate forming large assemblages,
as in D. pteronyssinus and D. farinae (Walzl, 1992); in P. obtusus
many rod-shaped mitochondria aggregate end-to-end and side-by-
side forming bundles meandering within the cell (Liana and
Witalinski, 2005).

As spermiogenesis progresses, cisterns of the spongy layer can
aggregate to form a spherical spongy body (Fig. 11E, inset) (Florek

and Witalinski, 2010a); cisterns of the spongy layer sometimes
participate in the formation of very conspicuous structures (Fig. 11A
and C). In consequence, the spermatid is no longer covered by a
spongy layer, but its plasmalemma seems to be thickened.

Chromatin appears in spermatid cytoplasm as progressively
thickening threads. Electron-dense lamellae (most species) or tu-
bules (Sarcoptes and Notoedres) derived from ER also occur. In some
cases, a band of granular material (C. sellnicki) or many chains of
small vesicles (Scutulanyssus obscurus) occur in the spermatids, but
dense lamellae or tubules are absent (Liana, 2004).

4.2.3. Sperm structure

Several papers dealing with sperm structure in Astigmata have
described their peculiar organization: S. anomala (=C. anomalus)
(Reger, 1971), A. siro (Alberti, 1980; Witalinski et al., 1986, 1990), T.
putrescentiae (Witalinski et al., 1986), D. farinae (Walzl, 1992),
Psoroptes equi (Alberti, 1984), S. scabiei (Witalinski and Afzelius,
1987), and N. cati (Witalinski, 1988). In the only review dealing
with sperm structure in Astigmata (Liana and Witalinski, 2005), the
number of studied species was substantially enlarged to include H.
feroniarum, C. sellnicki, Glycyphagus sp., S. berlesei, P. obtusus,
P. phasiani, G. proctogamus, F. rostratus, S. obscurus, Trouessartia
minutipes and Myocoptes musculinus. Quite recently, data on the
ultrastructure of spermatozoa in C. lactis have become available
(Florek and Witalinski, 2010a). Sperm structure in four other spe-
cies, C. osmiae (Hemisarcoptoidea: Chaetodactylidae), G. domesticus
(Glycyphagoidea: Glycyphagidae), D. columbae (Analgoidea: Anal-
gidae), and P. fuchsi (Analgoidea, Proctophyllodidae), are described
in this review and thereby increase the number of studied species
to 23. Representatives of 8 superfamilies from 9 available for
investigation were studied and only spermatozoon structure in
Hypoderatoidea is still unknown.

Spermatozoa in astigmatic mites are multiform cells (Figs. 9A
and 10D, E and 11B, D, E) making their dimensions difficult to
precisely determine. As calculated from TEM micrographs, sperm
cell size varies considerably from ca. 2 pum in H. feroniarum, 3—4 pm
in M. musculinus, N. cati and S. scabiei, 5 um in G. proctogamus, 6 pm
in A. siro, 6—7 pm in F rostratus and D. farinae, 7—8 pum in Glycy-
phagus sp., 8—10 um in P. phasiani, 8—11 um in P. obtusus and 12 um
in T. minutipes, but reaching ca. 18 um in C. sellnicki and 22—27 pm
in S. obscurus (Liana and Witalinski, 2005). Sperm diameter in the
newly studied species D. columbae is ca. 1.4—2.9 pm, 2.9—4.5 um in
P. fuchsi, whereas in C. osmiae and G. domesticus spermatozoon size
isca. 4 x 11 pm and in 7 x 15 um, respectively.

The most striking feature of sperm cells is the lack of a nucleus;
instead, chromosomal material is visible as threads embedded
directly in the cytoplasm and located more or less centrally in the
cell (e.g. Alberti, 1980; Lekimme et al., 2005; Liana and Witalinski,
2005; Florek and Witalinski, 2010a). Chromatin has a star-like
appearance in two of three genera in the Pterolichidae family,
suggesting that several threads cross at some sites. The diameter of
chromatin threads varies from 40 to 60 nm in most species up to
170—190 nm in H. feroniarum.

Other peculiarities of Astigmata sperm are electron-dense
lamellae derived from flat ER cisternae which are present in sper-
matids. In C. lactis there is only one lamella partly surrounding the
chromatin threads (Florek and Witalinski, 2010a). In the Histios-
toma spermatozoon (Liana and Witalinski, 2005; Witalinski et al.,
2014) two lamellae run parallel to each other and this tandem is
located laterally to the chromatin threads. Two to several lamellae
occur in the vicinity of chromatin threads in Tyrophagus (Witalinski
et al,, 1986). In several other species shorter or longer profiles of
lamellae, frequently in parallel arrangement, are placed mostly
around the chromatin (Acarus, Glycyphagus, Dermatophagoides,
Falculifer, Grallolichus, Psoroptes, Myocoptes), whereas in Pterolichus
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Fig. 10. Spermatogenesis and sperm structure in Carpoglyphus lactis (A), Diplaegidia columbae (B—D), and Proctophyllodes fuchsi (E), TEM. (A) Two spermatocytes with Golgi bodies
(asterisks) contributing to spongy layer (sl) formation. (B) Spermatocyte division. In the upper cell condensed chromatin (ch) is visible. (C) Four spermatids (sd) with fine chromatin
(asterisks) and short electron-dense lamellae (dl). Note that the spongy layer is thinner than in spermatocytes (B). (D) Spermatozoa showing granular chromatin (ch) and
moderately electron-dense profiles (dl). A spongy layer is absent, but the sperm plasmalemma (arrow) is thickened. (E) Spermatozoa containing chromatin threads (ch) and
electron-dense lamellae (dl). Thickened plasmalemma indicated by arrow. sl — spongy layer, tsc — testicular stroma cell. Scale bars: 1 pm in (A—E).
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Fig. 11. Spermatogenesis and sperm structure in Chaetodactylus osmiae (A, B) and Glycyphagus domesticus (C—E), TEM. (A) Spermatid with chromatin (ch) and area of anastomosing
membranes (asterisk) separated by electron-dense lamella (dl). Anastomosing membranes are surrounded by arcuate cisterns (arrows); their external membranes show periodic densities
(inset). (B) Several sperm cells at different levels of condensation (1—4): less condensed spermatozoon (1) shows an electron-dense lamella (dl) which separates chromatin threads (ch) from
circular profiles (arrows). Mitochondrial derivatives (m) are also present. (C) Spermatid fragment containing a conspicuous cisternal arrangement which later transforms into a spongy body
of the spermatozoon. There are also electron-dense lamellae (dl) and mitochondria (m). (D) Several spermatozoa in a deferent duct (vd) containing chromatin (ch), dense lamellae (dl), and
mitochondria (m). Material filling the deferent duct is highly electron-dense. (E) Spermatozoon at higher magnification showing chromatin (ch), dense lamellae (dl), and mitochondria. In
the lower spermatozoon a fibrillar bundle (arrow) is present. Inset shows a spongy body. Scale bars: 1 pm in (A—C); 5 pm in (D, E); 1 pm in (E inset).
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they are visible in between chromatin threads; in Pseudolichus
lamellae are scarce and curved showing circular profiles. Sperma-
tozoa in Trouessartia are packed with stacks of parallel and short
lamellae. In contrast, lamellae are absent in Canestrinia and Scutu-
lanyssus sperm; in the former species sperm contains a band of
granular material, whereas the Scutulanyssus sperm cell is filled
with branching chains of vesicles (Liana and Witalinski, 2005). In
sarcoptid mites (Notoedres and Sarcoptes), ramifying electron-
dense tubules distributed within the cell are visible in place of
lamellae; these tubules originate during spermiogenesis from
tubular profiles of ER rather than flat ER cisternae (Witalinski and
Afzelius, 1987). Psoroptes sperm shows intermediate lamellar
structures since spermatozoa contain many parallel lamellae
organized in groups and electron-dense tubules which seem to
grow out from the lamellae margins (Alberti, 1984; Liana and
Witalinski, 2005).

As was mentioned earlier, mitochondria during spermiogenesis
in Astigmata either persist — at least to some degree — in their
normal structure, or they transform into mitochondrial derivatives
of variable appearance and distribution within the cell. Nearly
unmodified mitochondria have been found in sperm of P. obtusus
(Liana and Witalinski, 2005), in which they form large assemblages
with rod-shaped mitochondria aggregating end-to-end and side-
by-side in a bundle meandering within the cell. Distinct and large
assemblages of mitochondria are also present in Dermatophagoides
sperm. In other studied species mitochondrial derivatives are more
or less altered and their internal structures, especially cristae, are
no longer discernible; such poorly visible vesicular structures occur,
for instance, in Acarus and Tyrophagus sperm (Witalinski et al.,
1986, 1990). Thus, in most cases the function of mitochondrial
derivatives as energy (ATP) donors for spermatozoon movement
seems unlikely; their deeply disintegrated structure is in accor-
dance with the uniparental theory of maternal mitochondrial in-
heritance (e.g. Giles et al., 1980; Sutovsky et al., 1999).

Sperm structure in the currently studied species also shows
some special characters. In C. osmiae (Fig. 11B) the spermatozoon
contains only one meandering lamella which separates chromatin
threads (40—45 nm thick) and circular profiles likely derived from
spermatid arcuate cisterns present around a large spongy area
(Fig. 11A). The latter is putatively a remnant of the spermatocyte
superficial spongy layer. Spermatozoa in G. domesticus (Fig. 11D and
E) contain many electron-dense lamellae surrounding chromatin
threads (70—80 nm thick), as well as many globular mitochondria
with frequent incisions. In the sperm cell of P. fuchsi (Fig. 10E)
centrally located, tightly packed chromatin threads (27—33 nm
thick) are surrounded by radially oriented groups of lamellae ar-
ranged in parallel. Most remarkable is the sperm of D. columbae
(Fig. 10D), since this is the only case of astigmatic spermatozoon
without chromatin threads; instead, there are many granules of
variable size (90—125 nm) and density surrounded by moderately
dense, elongated or circular profiles derived from a short electron-
dense lamella visible in spermatids (Fig. 10C).

The acrosome is absent in sperm of Astigmata. This is the
consequence of early syngamy, since sperm penetrates ovaries
(Prasse, 1968; Witalinski et al., 1986; Witalinski, 1988) and en-
counters naked oocytes before the vitelline envelope/chorion is
formed. Interestingly, spermatozoa found within the female show
fine filaments regularly distributed under the cell membrane; their
role in sperm motion have been suggested (Alberti, 1980;
Witalinski et al., 1986).

4.2.4. Testicular somatic cells

Germinal cells in testis are embedded in a few somatic cells
(Figs. 7A and 8C, D and 9), termed the testicular stroma cells in this
review. The number of stroma cells is difficult to determine; their

irregularly shaped nuclei located peripherally are scarcely visible,
suggesting a low number of these cells in the testis (e.g. Sarcopti-
dae: N. cati — Witalinski, 1988). In some species, e.g. C. lactis, stroma
cells are distinct and connected by adherent junctions, at least close
to the testis-deferent duct transition (Florek and Witalinski, 2010a).
However, in F. rostratus (Fig. 9) and S. scabiei, stroma cells (originally
named the main somatic cells; Witalinski and Afzelius, 1987)
contain many nuclei and their syncytial nature is possible. In the
latter species, two additional kinds of somatic cells were found: the
so-called distal somatic cells and muscle cells. The distal somatic
cells are located close to the beginning of the deferent duct, thus
may be considered as an element of the deferent duct wall. More
interesting are muscle cells embedded in stroma cells, with con-
tractile filaments containing appendages penetrating stroma cells
and observable between germ cells in testis regions rather distant
from the entrance of the deferent duct.

5. Conclusions and perspectives

Studies on the reproduction of Astigmata are fragmentary and
focused mostly on some aspects of reproduction and reproductive
behavior having implications in the evolution of reproductive
strategies (Tilszer et al., 2006; Radwan, 2009) rather than gonad
structure, details of gametogenesis and functioning of reproductive
systems. For example, very little is known on the functioning of the
spermatheca in Astigmata females (Radwan and Witalinski, 1991),
as well as on events during sperm storage, migration to ovaries and
details of fertilization. The same deficiency of information pertains
to the role of the TCC in spermatogenesis. Recent studies on gonad
development in Histiostoma (Witalinski et al.,, 2014) confirmed
earlier suggestions (Witalinski et al., 1990) on TCC origin from the
germinal line. However, the role of the TCC during the early stages
of gametogenesis and reasons, why TCCs are absent in adult testes
in some species whereas they remain in others, are still enigmatic.
Further conclusions may stem from studies on species with adult
testes devoid of TCC to evidence whether TCCs are present in
developing gonads and, if so, when and how they disappear.

A very intriguing problem concerns oogenesis, in particular the
structure of the unique intercellular bridges connecting pre-
vitellogenic oocytes with the ONC. In all studied Astigmata except
Histiostomatidae, funnel shaped bridges filled tightly with some
electron-dense material are present. The function of such struc-
tures as a gate controlling the in-and-out flow between the ONC
and oocytes is only suggested; the same concerns the even more
conspicuous and enigmatic diaphragm-crossed bridges found in
Histiostoma species. The reasons for such profund modifications of
ordinary intercellular bridges and mechanisms involved in their
function should be studied in the future. Moreover, studies on
ovaries in Histiostomatoidea other than Histiostoma could clarify
whether the funnel-shaped intercellular bridges evolved from
diaphragm-crossed bridges or vice versa, or both types appeared
independently.

A different body of information should be collected and
considered in the light of the evolution of gonads and reproduction
in Astigmata. If we accept the idea that Astigmata evolved from
within early Oribatida (Desmonomata: Trhypochthoniidae)
(Norton et al., 1993) a number of problems must be considered.
First, the gonads in contemporary Oribatida are quite different than
in Astigmata (further literature: Alberti and Coons, 1999; Liana,
2004; Bergmann et al., 2008; Liana and Witalinski, 2012). For
instance, oribatid ovaries are unpaired and composed of oocyte
clusters connected via microtubule-rich protrusions with one or
several enucleate centers (medullae). Such ovaries are evidently
not of nutrimental type. Oribatid testes are usually paired, but
consist of germinal and glandular parts. Second, sperm
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organization in both taxa is completely different, showing pecu-
liarities in each group (e.g. oribatid sperm contains compact, highly
condensed chromatin containing mitochondrial derivatives,
whereas in astigmatic spermatozoa separate chromatin threads are
freely embedded in cytoplasm). Third, differences in reproductive
behavior are also striking and not easy to explain: Oribatida are
inseminated through stalked spermatophores deposited on the
substrate, whereas Astigmata females are inseminated during
copulation via an accessory inseminatory system. Moreover, the-
lytokous parthenogenesis is a main reproductive strategy in Des-
monomata, whereas in Astigmata thelytoky seems to be
secondarily evolved in some taxa only. It is necessary to emphasize,
however, that in fact we know practically nothing on the repro-
duction of the ancestors of Astigmata since we can only study living
oribatid taxa and it is at least theoretically possible that oribatid
progenitors of Astigmata were much different from contemporary
Desmonomata/Trhypochthoniidae.
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