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Abstract The worldwide energy demand is growing and the development of sus-
tainable power generation is a critical issue. Among several possibilities, dye-sensi-
tized solar cells, DSSCs, have emerged as a promising device to meet the energy
needs as an environmentally friendly alternative and investigation for academic and
technological improvement of DSSCs are being carried out. One of the most
important components of this device is the dye-sensitizer, since it is responsible for the
sunlight harvesting and electron injection, the first steps of energy conversion. Herein,
we review the developments on tris-heteroleptic ruthenium dye-sensitizers, which
have been gaining much attention on the last years due to the possibility of modulating
their photochemical and photophysical properties of the complex by using different
ligands. Besides synthetic compounds, natural dyes have also been employed as
semiconductor sensitizers for these devices and are also reviewed. These dyes can
lower the device production costs since they can be promptly obtained from fruits or
flowers in a very simple way. Among numerous classes of natural dyes, anthocyanins
have been the most investigated ones and gained special attention in this work.

1 Aims and Scope

Dye-sensitized solar cells, DSSCs, gained much attention since it is a simple and
cheap device capable of converting the sunlight into electricity through a regen-
erative photoelectrochemical process. DSSCs overall efficiency attained 11 % and
it is estimated to last around 20 years. Besides the economic advantages, these
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devices can be transparent and allows their use for distinct architectonic purposes,
such as facades of buildings. DSSCs are based on a nanocrystalline mesoporous
semiconductor films sensitized by dyes, which are responsible for light harvesting
and electron transfer, these processes, start the energy conversion and are directly
responsible for its overall efficiency.

This chapter aims to review a specific class of synthetic dye, the tris-heteroleptic
ruthenium sensitizers, which have been attracting much attention on the last years
due to the possibility of tune their spectroscopic and electrochemical properties as
well as to improve the stability of the device. The recent advances on the use of
natural dyes as semiconductor sensitizers, from 2003 to 2010, are also reviewed.

2 Introduction

The use of fossil fuel based technologies is the major responsible for the contin-
uous increase in the pollution and in the concentration of greenhouse gases.
Renewable sources must have higher contribution on the energetic matrix in
providing more energy available for the humanity in a short period, having low
environmental impact [1, 2]. The interest on the conversion of environmentally
friendly energy sources led to the development of several devices that took the
advantage of the continuous evolution on several fields of research, which can
result in new materials for already developed devices. For instance, the perfor-
mance of direct methanol fuel cells, a well known technology [3, 4] was improved
due to the development of nanomaterials especially designed for the energy
conversion process [5, 6] and their evolution allows the use of light to boost the
process through a synergic arrangement [7–10].

The use of sunlight has been gaining much attention due to its abundance. For
instance, it is possible to supply human energy needs up to 2050 covering only
0.16 % of the earth surface with 10 % efficiency solar devices [1, 11]. There are
several investigations on the conversion of sunlight in substances with more
chemical energy than the reactants in a process that mimics the photosynthesis;
this approach is known as artificial photosynthesis [12]. Most recently, the
investigation on this research field is being called solar fuels and several papers
were published describing photochemical approaches to produce high energy
content substances, or fuels, from simple reactants such as water or CO2 [13–19].

Great interest is dedicated to an especially attractive, the Dye-sensitized solar
cells, DSSC, since they are capable of converting the sunlight into electricity based
on photoelectrochemical principles. The materials employed for the construction
of these new solar cells are common and cheap and the procedures do not require
controlled environment, thus clean rooms or any other sophisticated control can be
avoided, consequently a very low production cost is estimated (less than 1 € per
Wp) [20]. The use of new nanomaterials allows interesting features of these
devices, such as transparency, possibility to have distinct colors, among others.
These characteristics are very interesting for new applications of solar cells, since
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it can substitute glass windows and promote the co-generation of energy, or for
any other architecture design.

Albeit the possible use of sensitization effect for solar energy conversion is
known for a long time [21], the breakthrough of these solar cells was in 1991 when
B. O’Reagan and M. Grätzel published the use of nanocrystalline and mesoporous
TiO2 film [22]. This film enhanced the light absorption due to its sponge-like
characteristic which increases the surface area. The nanocrystallinity plays an
important role on the electron injection and transport in these devices [23].

Since the paper of 1991, this field has been growing very fast and all the aspects
of these solar cells are investigated [24–27]. In this review, the focus is on the
development of tris-heteroleptic ruthenium (II) dyes as well as the use of natural
extracts as a source of sensitizers. The absorption spectra and photoelectrochem-
ical parameters published for these compounds since 2003 will be reviewed and
discussed.

2.1 Dye-Sensitized Solar Cells: Principles and Operation

Dye-sensitized solar cells are prepared in a sandwich arrangement and are com-
prised by two electrodes, the photoanode and the counter-electrode, Fig. 1. The
photoanode is a conducting glass covered by a mesoporous and nanocrystalline
TiO2 film, sensitized by the dye-sensitizers. The counter electrode is a conducting
glass covered by a thin film of catalyst, such as platinum or graphite. Between
these electrodes is placed a mediator layer, usually a solution of I3

-/I- in nitriles.

In order to promote the energy conversion, the sunlight is harvested by the
dye-sensitizers leading to an excited-state capable of inject an electron into
the semiconductor conducting band. The oxidized dye is immediately regenerated
by the mediator and the injected electron percolates through the semiconductor
film, reaches the conducting glass and flows by the external circuit to the counter-
electrode. The counter electrode is responsible for regenerating the oxidized specie
of the mediator, reducing it by a catalyzed reaction using electrons from the

Fig. 1 Schematic
arrangement of a dye-
sensitized solar cell

Nanomaterials for Solar Energy Conversion 51

habib
Strikeout



external circuit. Since there is not a permanent chemical change for dye-sensitized
solar cells, the estimated lifetime of these devices is 20 years [23].

2.2 Performance Experiments

Dye-sensitized solar cells are evaluated by several experimental approaches. For
instance, the recombination processes or electron injection dynamics are investi-
gated by time-resolved experiments [27–35], information about electron transport
and electrical characteristics of TiO2 film can be obtained by electrochemical
impedance spectroscopy [36]. Among several experiments used in evaluation of
DSSCs, two experiments play an important role for investigation of dye perfor-
mance, the current–voltage curves and photocurrent action spectra. Due to their
importance, they are detailed in the next sections.

2.2.1 Current–voltage (IxV) Curves

Current–voltage curves allow the access to one of the most important information
about the prepared solar cells, the overall efficiency, g. Other important parameters
such as the short circuit current density, Jsc, open-circuit potential, Voc, and fill
factor, ff, are also determined by this experiment. In most cases, IxV curves
determined experimentally for dye-sensitized solar cells are similar to the sche-
matic one, Fig. 2.

Fig. 2 Schematic current–voltage curve
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Short-circuit current density, JSC, and open-circuit potential, VOC, are the
values determined by the intersection of IxV curve to the current density axis. The
voltage at this axis is zero, the short-circuit condition, thus the current is named for
this condition. Analogous idea is applied for the determination of open-circuit
potential, since the current at voltage axis is zero, open circuit condition.

The maximum power output of a DSSC, Pmax, is the highest value obtained for
the multiplication of current density and voltage for each point of the IxV curve
and can be graphically expressed as the area covered by the orange rectangle in of
Fig. 2. On the other hand, the multiplication of VOC by JSC results in the maximum
power output possible to be achieved for this DSSC and it can also be represented
by the green rectangle of Fig. 2. The fill-factor, ff, is named for the amount of the
green rectangle which is filled by the orange one and. Thus ff express the electrical
losses of DSSCs. Mathematically, ff can be determined by the ratio of Pmax and the
multiplication of JSC by VOC, Eq. 1.

ff ¼ PmaxðmW � cm�2Þ
Jsc mA:cm�2ð Þ � VocðVÞ ð1Þ

Under simulated solar irradiation condition (1 sun = Pirr = 100 mW cm-2),
the overall efficiency, gCell, can be determined by dividing Pmax by the total
incident light power, Pirr, Eq. 2, resulting in the percentage amount of solar light
converted in electrical Output.

g% ¼ Pmax

Pirr
� 100 % ð2Þ

2.2.2 Photocurrent Action Spectra

Photocurrent action spectra exhibit the photoelectrochemical behavior of solar
cells as a function of wavelength. For each wavelength can be determined the
incident photon-to-current conversion efficiency, IPCE, and the spectra are valu-
able to analyze the performance of new dyes prepared. IPCE values can be
determined by a relationship that considers the energy and intensity of the incident
light, the JSC and Planck’s constant, Eq. 3.

IPCEðkÞ ¼ Jsc

Pirr � e
� hc

k
ð3Þ

Jsc Short-circuit photocurrent density (A m-2);
h Planck’s constant (J s);
c Speed of light (m s-1);
k Irradiation wavelength (nm);
Pirr Power of the incident light (W m-2);
e Elementary charge (C).
For practical purposes, this equation can be simplified to Eq. 4.
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IPCE % ðkÞ ¼ 1239:8 � JscðmA � cm�2Þ
PirrðmW � cm�2ÞkðnmÞ

� �
� 100 % ð4Þ

IPCE values are also related to some important parameters for DSSCs, such as
light harvesting efficiency, LHE, electron injection quantum efficiency, UEI, and
the efficiency of collecting electrons in the external circuit, gEC, Eq. 5 [37]. The
simple measurements, such as JSC and Pirr allow the access to important infor-
mation such as the electron injection quantum yield.

IPCEðkÞ ¼ LHEUE1gEC ð5Þ

Photocurrent action spectra are valuable experiments to evaluate new dye-
sensitizers since it is possible to directly associate the absorption response of the
dye with the conversion efficiency. This is valuable information for design new
sensitizers.

2.3 Molecular Engineering

The design of new dye-sensitizers is based on joining in just one specie compo-
nents capable of performing specific tasks. Using different ligands it is possible to
have excellent light harvesting, electron injection on semiconductor conducting
band and fast regeneration by the mediator. A new molecule to be employed in
DSSCs should fulfill some basic requirements such as having an intense absorption
on the visible region, which corresponds to 44 % of the incident sunlight on the
earth’s surface, having an anchoring group capable of promoting the chemical
adsorption onto TiO2 surface, improving the electronic coupling between dye and
semiconductor interface.

The first DSSC that exhibited g[ 10 % employed cis-di(isothiocyanato)bis-
(2,20-bipyridyl-4,40-dicarboxylic acid)ruthenium(II), N3 as dye-sensitizer [38].
after this dye, the complex mer-tri(isothiocyanato)(2,20,20’-terpyridyl-4,40,40’-tri-
carboxylic acid)ruthenium(II), black-dye was prepared and also successfully used
as sensitizer [39], Fig. 3.

Due to the outstanding performance of N3 and black-dye as dye-sensitizers,
they can be used as models for molecular engineering of new dyes. Their chemical
attachment onto TiO2 surface through the carboxylic acid groups of the 2,20-

Fig. 3 Structures of the N3
(a) and black-dye
(b) sensitizers
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bipyridine or of the 2,20,20’-terpyridine ligands. Particularly, the 4,40-dicarboxylic
acid-2,20-bipyridine anchoring ligand is been widely employed among several
other possible groups investigated and it has been considered the best one for
ruthenium(II) sensitizers [40]. This ligand allows intimate electronic coupling
between the dye excited state wavefunction and the semiconductor conducting
band. Its lowest unoccupied orbital, LUMO, is the lowest one of the coordination
compound and facilitates an efficient electronic transfer of excited dye molecules
and Titania nanocrystals [41].

Great influence on the absorption spectra and molar absorptivities of com-
pounds; emission maxima and quantum yields, as well as excited state lifetimes, in
addition to the redox properties was observed as a function of the degree of
protonation of the carboxylic acids of the ligand. These changes are directly
responsible for the increase on photovoltaic performance of solar cells sensitized
by N719, Fig. 4, which is the di-deprotonated N3 specie [42]. As a natural con-
sequence, the use of compounds having one or more deprotonated carboxylic
groups in the dcbH2 has been increasing [32, 41, 43–48].

In the case of N3, consequently of N719, the presence of two dcbH2 ligands
results in absorption spectra which overlaps the visible region of the incident sun-
light. The absorption bands have high molar absorptivity (e * 104 L mol-1 cm-1),
typical of metal-to-ligand charge transfer transitions, MLCTdpRu-p*dcbH2. The high
molar absorptivity improves the light harvesting efficiency, allowing the absorption
of almost all incidents light in a few micrometers of optical length of the TiO2 film.
Besides the bipyridine, the two isothiocyanate ligands in these complexes are
valuable to promote the stabilization of the t2g orbitals and result in a fine tuning of
the energy levels of the complex.

3 Ruthenium Tris-Heteroleptic Complexes

The knowledge acquired understanding the structure of the N3 dye can be used for
the development of several other complexes by using the molecular engineering
[49]. Among several classes of compounds developed, ruthenium tris-heteroleptic
complexes have been gaining attention on the last years due to the possibility to
modulate their properties, just changing one of the polypyridinic ligand. This
approach is very interesting for the development of new sensitizers.
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O OH

O

O
- O
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Fig. 4 Structure of N719
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There are several classes of ruthenium tris-heteroleptic compounds described
by the general formula cis-[Ru(dcbH2)(L)(NCS)2], Fig. 5, since each new ligand L
and its derivatives can be a new class. In this work, our focus will be on 2,20-
bipyridine derivatives and 1,10-phenanthroline derivatives, even that several other
compounds of this general formula is known [34, 50–52].

3.1 2,20-Bipyridine Derivative Ligands

The search for high-efficiency ruthenium(II) dyes focused on the development of
complexes having high molar absorptivity, mainly in visible and near infra-red
region [53, 54]. A good light harvesting yield and a reduction on the film thick-
ness, which implies in reduction of transport losses in the nanoporous environ-
ment, resulting in higher open-circuit potentials and more efficient devices [55,
56]. Another approach is the development of dye-sensitizers capable of improving
the lifetime performance of a dye-sensitized solar cell.

The first tris-heteroleptic ruthenium compounds investigated as dye sensitizers
are based on 2,20-bipyridine derivatives and it is possible to observe three different
approaches, following the bipyridine substituent. These subclasses are the
amphiphilic, donor-antenna and thiophene compounds.

3.1.1 Amphiphilic Compounds

In 2003, a thermally stable DSSC was disclosed employing the amphiphilic
Z907 sensitizer. Using this dye was possible to prepare stable devices under
prolonged thermal stress at 80�. However, the molar extinction coefficient of this
sensitizer is somewhat lower than that of the standard N719 dye. Meanwhile, a
compromise between efficiency and high temperature stability has been noted for
the Z907 sensitizer [57]. Subsequently, the concept of developing a high molar
extinction coefficient, amphiphilic ruthenium sensitizer, was followed by other
groups, with a motivation to enhance device efficiency [34, 58–61]. The
absorption properties as well as the performance parameters determined for

N

N

N

NCS

N

SCN
Ru

O OH

O

OH

Fig. 5 General structure of
cis-[Ru(dcbH2)(L)(NCS)2]
dyes

56 J. d. S. de Souza et al.

habib
Strikeout



ruthenium tris-heteroleptic complexes having amphiphilic derivatives of 2,20-
bipyridine are listed in Table 1.

The absorption spectra of amphiphilic compounds usually exhibit two MLCT
bands in the visible region, typical of ruthenium bis-bipyridyl compounds. Molar
absorptivity values listed on Table 1 are similar to those determined for the
complexes N3 or N719. This behavior is expected since the aliphatic substituents
do not have significant influence in the chromophoric properties of the complexes.

Amphiphilic ruthenium tris-heteroleptic dye-sensitizers exhibit lower photo-
electrochemical performance than determined for N3. The highest efficiency
achieved by this class of dyes is 8.6 % [59]. The advantage of these compounds is
their long-term stability. These amphiphilic heteroleptic sensitizers have the
ground-state pKa of 4,40-dicarboxy-2,20-bipyridine higher than determined for N3,
enhancing the chemical adsorption of the complex onto the TiO2 surface [60, 62,
63]. The structure of amphiphilic ligands decreases the charge density on the
sensitizer, resulting in less electrostatic repulsion and results in higher amount of
dye adsorbed. The hydrophobic substituent of 2,20-bipyridine does not allow the
presence of water molecules close to TiO2 surface, improving the stabilization of
solar cells toward water-induced desorption of the dye. The redox potentials of
these complexes are shifted toward a more positive electrochemical potential in
comparison to the N3 sensitizer, increasing the reversibility of the ruthenium III/II
couple, leading to higher electrochemical stability [60, 62, 63].

3.1.2 Donor-Antenna Compounds

Complexes prepared with donor-antenna substituents of 2,20-bipyridine are an
approach to improve the light absorption at the same time that the hydrophobic
character is enhanced. The use of aromatic substituents can have this function since
the aromaticity increases the light absorption and the existence of the hydrophobic
chain allows the protection to dye desorption caused by water. The spectral and
photoelectrochemical parameters of this class of dyes are listed in Table 2.

In most cases it is observed higher molar absorptivities values in comparison to
amphiphilic compounds or N3 or N719 dyes which can be ascribed to an extended
p-cloud delocalized in the substituent. The higher light harvesting efficiency
results directly in higher IPCE values as well as overall efficiency of the solar cell,
Tables 2.

There are a few investigations on the use of p-excessive heteroaromatic rings as
end-groups in substituted bpy ligands [43, 44, 64]. The use of conjugated p-
excessive heteroaromatic rings as end-substituents donors directs the electron
injection in the excited state and enhances the oscillator strength resulting in
significant increases in the short circuit photocurrent [54].

The higher molar absorptivity in the visible region can be understood by the
influence of the different delocalised p-systems integrated in the bipyridyl donor-
antenna ligands. The reason for the lower absorption of the standard N719 dye in
this region is the absence of any these groups [56].

Nanomaterials for Solar Energy Conversion 57

habib
Strikeout



T
ab

le
1

A
bs

or
pt

io
n

pr
op

er
ti

es
an

d
ph

ot
oe

le
ct

ro
ch

em
ic

al
pe

rf
or

m
an

ce
of

ru
th

en
iu

m
(I

I)
tr

is
-h

et
er

ol
ep

ti
c

co
m

po
un

ds
ha

vi
ng

am
ph

ip
hi

li
c

de
ri

va
ti

ve
s

of
2,

20
-

bi
py

ri
di

ne

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/V

J S
C
/m

A
cm

-
2

IP
C

E
M

A
X

(%
)

(k
/n

m
)

ff
g c

el
l

(%
)

Z
90

7

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

E
th

an
ol

29
5

(4
.2

4)
;

31
2

(3
.0

1)
;

38
5

(1
.0

9)
;

52
6

(1
.1

6)
0.

73
12

.5
80

(5
40

)
0.

67
6.

2
[5

7]

C
S

9

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

D
M

F
29

6
(4

.1
7)

;
36

6
(1

.0
3)

;
51

8
(0

.7
)

0.
63

14
.5

9
60

(5
40

)
0.

62
5.

68
[5

8]

W
P

-1
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N

1:
1

ac
et

on
it

ri
le

:
te

rt
-b

ut
an

ol

42
6;

52
6

(8
.7

)
0.

75
6

15
.5

80
(5

30
)

0.
7

8.
2

[3
4]

N
M

K
-2

a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

E
th

an
ol

29
5

(4
.5

4)
;

31
2

(3
.3

5)
;

38
3

(1
.1

3)
;

52
4

(1
.1

6)
0.

7
14

.7
–

–
6.

8
[5

9]

(c
on

ti
nu

ed
)

58 J. d. S. de Souza et al.

habib
Strikeout



T
ab

le
1

(c
on

ti
nu

ed
)

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/V

J S
C
/m

A
cm

-
2

IP
C

E
M

A
X

(%
)

(k
/n

m
)

ff
g c

el
l

(%
)

N
M

K
-3

a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

E
th

an
ol

29
6

(4
.2

6)
;

31
2

(3
.2

);
38

4
(1

.0
1)

;
52

5
(1

.1
1)

0.
7

15
.5

–
–

7.
4

[5
9]

N
M

K
-5

a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

E
th

an
ol

29
6

(4
.2

1)
;

31
2

(3
.0

2)
;

38
4

(1
.0

8)
;

52
5

(1
.1

5)
0.

75
16

.2
90

–
8.

6
[5

9]

K
C

-8
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

O
H

O
H

D
M

F
29

7
(4

.5
4)

;
30

9
(2

.7
4)

;
37

0
(1

.2
5)

;
52

2
(1

.2
6)

0.
67

3
17

.1
3

86
0.

72
8.

3
[6

0]

a
T

he
se

co
m

po
un

ds
w

er
e

na
m

ed
af

te
r

th
e

in
it

ia
ls

of
th

e
fi

rs
t

au
th

or
of

th
e

re
fe

re
nc

e
ci

te
d

Nanomaterials for Solar Energy Conversion 59

habib
Strikeout



T
ab

le
2

A
bs

or
pt

io
n

pr
op

er
ti

es
an

d
ph

ot
oe

le
ct

ro
ch

em
ic

al
pe

rf
or

m
an

ce
of

ru
th

en
iu

m
(I

I)
tr

is
-h

et
er

ol
ep

ti
c

co
m

po
un

ds
ha

vi
ng

do
no

r-
an

te
nn

a
de

ri
va

ti
ve

s
of

2,
20

-b
ip

yr
id

in
e

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/

V
J S

C
/

m
A

cm
-

2
IP

C
E

M
A

X

(%
)

(k
/

nm
)

ff
g c

el
l

(%
)

L
X

J1

N N

N N
C

S

N

S
C

N
R

u

O
O

-

O

O
H

O O

S S

C
H

3

C
H

3

C
H

3

C
H

3

+
N

(C
4H

9)
4

D
M

F
30

9
(4

.7
),

35
3

(3
.3

),
54

9
(1

.8
4)

0.
71

5
16

.5
0

83
.7

(5
50

)
0.

74
5

8.
80

[4
3]

IJ
-1

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N

C
H

3

C
H

3

N

C
H

3

C
H

3
E

th
an

ol
21

8;
30

8
(5

.0
);

43
2

(4
.3

),
53

6
(1

.9
)

0.
74

8
19

.2
87

0.
72

10
.3

[5
5]

K
W

-2
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

D
M

F
31

0
(4

.8
6)

;
37

3
(7

.9
5)

;
55

0
(2

.2
2)

0.
68

5
3.

42
–

0.
42

0.
99

[5
6]

(c
on

ti
nu

ed
)

60 J. d. S. de Souza et al.

habib
Strikeout



T
ab

le
2

(c
on

ti
nu

ed
)

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/

V
J S

C
/

m
A

cm
-

2
IP

C
E

M
A

X

(%
)

(k
/

nm
)

ff
g c

el
l

(%
)

K
W

-3
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N

O

O

O
O

N

O

O

O
O

M
et

O
H

?
1

w
t

%
K

O
H

30
7

(8
.1

3)
;

42
9

(5
.3

4)
;

52
4

(3
.0

9)
0.

73
5

4.
03

–
0.

46
1.

37
[5

6]

K
W

-4
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N
C

H
3

C
H

3

N
C

H
3

C
H

3

1:
1

H
2
O

:D
M

F
?

1w
t

%
K

O
H

30
7

(3
.8

8)
;

38
1

(1
.2

8)
;

52
6

(1
.1

3)
0.

63
5

2.
15

–
0.

42
0.

58
[5

6]

K
W

-5
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N

N

1:
1

H
2
O

:D
M

F
?

1w
t

%
K

O
H

30
4

(6
.2

5)
;

42
3

(5
.4

7)
;

54
4(

2.
27

)
0.

71
5

4.
30

–
0.

43
1.

31
[5

6]

(c
on

ti
nu

ed
)

Nanomaterials for Solar Energy Conversion 61

habib
Strikeout



T
ab

le
2

(c
on

ti
nu

ed
)

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/

V
J S

C
/

m
A

cm
-

2
IP

C
E

M
A

X

(%
)

(k
/

nm
)

ff
g c

el
l

(%
)

C
10

5

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

S
e

S
e

C
H

3

C
H

3

D
M

F
30

9
(3

.9
0)

;
35

3
(3

.2
);

42
0(

1.
84

);
55

0
(1

.8
4)

0.
74

7
18

.9
95

(5
20

)
0.

74
4

10
.0

6
[6

4]

H
R

D
-1

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

D
M

F
54

3
(1

.9
3)

0.
59

10
.9

60
0.

78
4.

93
[6

2]

H
R

D
-2

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

D
M

F
53

2
(1

.6
1)

0.
60

10
.5

64
0.

78
4.

91
[6

2]

H
R

S
-2

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N N

E
th

an
ol

43
1

(5
.9

3)
;

54
2

(2
.8

1)
0.

69
7

17
.4

7
85

(5
52

)
0.

71
1

8.
65

[6
3]

(c
on

ti
nu

ed
)

62 J. d. S. de Souza et al.

habib
Strikeout



T
ab

le
2

(c
on

ti
nu

ed
)

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/

V
J S

C
/

m
A

cm
-

2
IP

C
E

M
A

X

(%
)

(k
/

nm
)

ff
g c

el
l

(%
)

C
10

2

N N

N N
C

S

N

S
C

N
R

u

O
O

-

O

O
H

O O

N
a+

D
M

F
30

5;
34

1;
40

7;
54

7(
1.

68
)

0.
74

0
17

.8
0

82
(5

50
)

–
9.

5
[4

4]

A
B

-1
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

S

O
O

S

O
O

E
th

an
ol

31
4;

38
8;

53
8

(1
.6

)
0.

66
3

19
.1

87
0.

72
9.

1
[5

4]

N
94

5

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

O

O O

O

1:
1

ac
et

on
it

ri
le

:
te

rt
-

bu
ta

no
l

40
0

(3
.4

);
55

0
(1

.9
)

0.
72

8
17

.9
6

61
0.

71
9.

29
[7

6]

(c
on

ti
nu

ed
)

Nanomaterials for Solar Energy Conversion 63

habib
Strikeout



T
ab

le
2

(c
on

ti
nu

ed
)

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/

V
J S

C
/

m
A

cm
-

2
IP

C
E

M
A

X

(%
)

(k
/

nm
)

ff
g c

el
l

(%
)

K
C

S
-1

a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N N

D
M

F
31

0
(8

.4
9)

;
44

0
(5

.3
4)

;
54

0
(2

.6
7)

0.
75

7
9.

6
–

0.
35

3.
4

[7
7]

K
-1

9

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

O O

D
M

F
31

0
(5

.0
);

35
0

(4
.8

);
41

0
(1

.8
);

54
5

(1
.8

)
0.

71
8

13
.2

–
0.

74
5

7.
1

[3
2]

K
-7

3

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
-

O O

N
(C

4
H

9
) 4

+

D
M

F
31

0;
35

0;
41

0;
54

5
0.

74
8

17
.2

2
85

(5
40

)
0.

64
9

9.
5

[3
2]

Z
-9

10

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

O O

A
ce

to
ni

tr
il

e
41

0
(1

.7
);

54
3

(1
.6

9)
0.

77
7

17
.2

87
(5

20
)

0.
76

4
10

.2
[3

3]

(c
on

ti
nu

ed
)

64 J. d. S. de Souza et al.

habib
Strikeout



T
ab

le
2

(c
on

ti
nu

ed
)

A
bb

re
vi

at
io

n
S

tr
uc

tu
re

A
bs

or
pt

io
n

pr
op

er
ti

es
P

ho
to

el
ec

tr
oc

he
m

ic
al

pe
rf

or
m

an
ce

R
ef

er
en

ce
s

S
ol

ve
nt

k M
A

X
/n

m
(e

M
A

X
/1

04
L

m
ol

-
1
cm

-
1
)

V
O

C
/

V
J S

C
/

m
A

cm
-

2
IP

C
E

M
A

X

(%
)

(k
/

nm
)

ff
g c

el
l

(%
)

K
C

-5
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N
H

O

N
H

O

D
M

F
31

3
(3

.8
8)

;
39

2
(1

.1
7)

;
53

7
(1

.1
9)

0.
69

5
15

.8
75

0.
66

7.
01

[6
0]

K
C

-6
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N
H

O O

N
H

N
H

O

O

C
H

3

C
H

3

C
H

3

N
H

O

O
C

H
3

C
H

3C
H

3

C
H

3

D
M

F
31

4
(3

.3
6)

;
39

0
(1

.1
1)

;
53

1
(1

.1
2)

0.
67

6
15

.4
7

63
0.

71
7.

42
[6

0]

K
C

-7
a

N N

N N
C

S

N

S
C

N
R

u

O
O

H

O

O
H

N
H

O

N
H

O

O

C
H

3

C
H

3

C
H

3

O

N
H

N
H

O

O
C

H
3

C
H

3C
H

3

D
M

F
31

2
(3

.3
9)

;
39

3
(1

.1
2)

;
53

3
(1

.2
1)

0.
67

6
16

.1
1

79
0.

7
7.

62
[6

0]

a
T

he
se

co
m

po
un

ds
w

er
e

na
m

ed
af

te
r

th
e

in
it

ia
ls

of
th

e
fi

rs
t

au
th

or
of

th
e

re
fe

re
nc

e
ci

te
d

Nanomaterials for Solar Energy Conversion 65

habib
Strikeout



3.1.3 Thiophene Compounds

Ruthenium(II) sensitizers having 2,20-bipyridine with thiophene substituents have
higher molar absorptivity than observed for the previous classes of compounds.
For instance, the compound KW-1 has e515 = 3.56 L mol-1 cm-1 [56], much
higher than the ones determined for N3 or N719 dyes. As it is observed for the
donor-antenna class of compounds, the higher light harvesting efficiency results in
higher IPCE values and consequently improve overall performance of the solar
cell, Table 3.

Ruthenium(II) thiophene compounds gained special attention after C101 dye
has set a new DSSC efficiency record of 11.3–11.5 % and became the first sen-
sitizer to triumph over the well-known N3 dye [44]. In comparison to its analogues
C102 or C105, in which the thiophene is replaced by furan, or selenophene,
respectively, the molar absorptivity increases in the order of Se [ S [ O. This
sequence it is consistent with the electropositivity trend and the size of the het-
eroatoms of five-member conjugated units. The LUMO energy sequence of the
spectator ligand is O [ S [ Se, which explain this behavior [64].

Another important dye employing thiophene derivatives is CYC-B1, which
exhibts a remarkably high light-harvesting capacity of up to
2.12x104 L mol-1 cm-1 [40]. After the development of the CYC-B1 dye, several
ruthenium dyes were synthesized by incorporating thiophene derivatives into the
ancillary ligand and DSSC cells based on these dyes exhibited excellent photo-
voltaic performances [45, 46, 65, 66].

The extensive use of polythiophene is due to its similarity to a cis-polyacetylene
chain bridged with sulfur atoms. The ‘‘bridging sulfur atoms’’ could effectively
provide aromatic stability to the polyacetylene chain while preserving the desir-
able physical properties, such as high charge transport. The facile functionalization
of thiophene groups also offers relatively efficient synthetic solutions to solubility,
polarity, and energetic tuning. Furthermore, sulfur has greater radial extension in
its bonding than the second-row elements, such as carbon. Therefore, thiophene is
a more electron-rich moiety and incorporation of thiophene onto bipyridine ligands
raises the energy levels of the metal center and the LUMO of the ligands [67]. As a
consequence, the band resulting from charge transfer from the metal center to the
anchoring ligand is redshifted, and upon illumination of the sample, the electrons
on the metal center are transferred to the anchoring dcbH2 ligand, where electrons
can move to the outer circuit through the TiO2 particles more efficiently [40].

3.2 1,10-Phenanthroline Derivative Ligands

Besides 2,20-bipyridine derivatives, 1,10-phenanthroline and its derivatives is
gaining attention to be used in cis-[Ru(dcbH2)(L)(NCS)2] sensitizers. Their sim-
ilarity to 2,20-bipyridine and the advantage of having an extended p-conjugated
structure led to a great potential to be employed as ancillary ligands [68]. This
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class of compounds still having few complexes reported in DSSCs, and their
spectral as well as photoelectrochemical parameters are listed in Table 4.

The use of phenanthroline derivatives in ruthenium(II) sensitizers leads to
properties favorable to the energy conversion processes and can increase on the of
DSSCs, which have shown promising results [48, 69, 70].

The comparison on the properties of the complex NOK-1 [70] with N3 indicates
that the substitution of the 2,20-bipyridine derivative by 1,10-phenanthroline does
not exhibit better performance or absorption properties. On the other hand, the
recently reported complex YS5 exhibits a higher absorbance and also had better
performance than the complex N719 under the same condition [48], indicating that
this is a promising class of compounds to be investigated.

4 Natural Dyes

Faster, cheaper, low-energy way alternative for ruthenium sensitizers are natural
dyes and these compounds has been gaining much attention. Natural dyes can be
obtained from fruits, flowers or leaves and are suitable for educational purposes
[71, 72] or are an environmentally friendly alternative for dye production since a
long-term stability of DSSC using these sensitizers have been demonstrated
recently [73].

The absorption properties and photoelectrochemical performance of natural
dye-sensitized solar cells reported since 2003 are listed in Table 5.

The most investigated class of natural dyes is the anthocyanins, commonly
found in red-purplish fruits or flowers, Fig. 6. These, even other sensitizers have
also been investigated [74].

Betalain from raw beet, Red Turnip and Wild silician prickly pear have also
been used as natural sensitizers and they have been presented a good photo-
electrochemical response, however these cells have low VOC, with overall effi-
ciency up to 1.7 % and reasonable stability [75].

Other classes of natural dyes, such as chlorophyll, polyphenol etc. were also
investigated, but the photoelectrochemical parameters were not as good as those
observed for anthocyanins or betalains.

Fig. 6 Structure of
anthocyanidin, a flavinic ion
of anthocyanin (a) and
betanidin (b), a betalain
compound
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5 Conclusion

The energy needs will be supplied by alternative sources and dye-sensitized solar
cells are one of the most promising ones for this application since it is cheap and
environmentally friendly device. The investigation on dye-sensitizers is funda-
mental issue on the development of these devices and one of the most promising
alternatives is the use of ruthenium tris-heteroleptic dyes sensitizers to modulate or
enhance their photoelectrochemical performance. The investigation on natural
extracts to be employed as dye sensitizers has also been attracting much attention
in the last years. They can be an alternative to further reduction of the production
costs of these revolutionary devices.
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