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a b s t r a c t

The numerical simulation of liquefaction phenomena in fluid-saturated porous materials within a
continuum-mechanical framework is the aim of this contribution. This is achieved by exploiting the
Theory of Porous Media (TPM) together with thermodynamically consistent elasto-viscoplastic constitu-
tive laws. Additionally, the Finite Element Method (FEM) besides monolithic time-stepping schemes is
used for the numerical treatment of the arising coupled multi-field problem. Within an isothermal and
geometrically linear framework, the focus is on fully saturated biphasic materials with incompressible and
immiscible phases. Thus, one is concerned with the class of volumetrically coupled problems involving
a potentially strong coupling of the solid and fluid momentum balance equations and the algebraic
incompressibility constraint. Applying the suggested material model, two important liquefaction-related
incidents in porous media dynamics, namely the flow liquefaction and the cyclic mobility, are addressed,
and a seismic soil–structure interaction problem to reveal the aforementioned two behaviors in saturated
soils is introduced.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The tendency of saturated porous materials to liquefy under the
impact of dynamic loading is of a great importance especially in
the fields of geomechanics, coastal engineering and seismology.
As examples, consider the hazardous impacts of the seismically-
induced liquefaction in offshore areas and near bodies of water or
the wave-induced soil liquefaction under and around marine
structures.

For the theoretical description of different physical phenomena in
porous materials, the use of multiphasic continuum mechanics is a
standard practice. In this regard, when biphasic porous media like
water-saturated soils are concerned, the Theory of Porous Media
(TPM) is proven to provide a comprehensive and elaborated macro-
scopic modeling framework. Thereby, fluid-saturated materials
are treated as multiphasic aggregates consisting of solid and fluid
constituents, which, independent of their usually unknown micro-
topology, are assumed to be in a state of ideal disarrangement over a
representative elementary volume (REV). Applying a homogenization
process to the REV yields a smeared-out averaged continuum model
with overlapped, statistically distributed and interacting solid–fluid

aggregates. This way of treating multiphasic porous materials can be
traced back to the Theory of Mixtures (TM), cf. Bowen [8] or
Truesdell and Toupin [76], where the TM was extended later by
the concept of volume fractions to additionally incorporate informa-
tion about the local composition of the homogenized continuum (cf.
Goodman and Cowin [39]), which is fundamental to the TPM. This
approach has been employed by Drumheller [24] to describe an
empty porous solid. Bowen [9,10] extended this study to fluid-
saturated porous media considering compressible as well as incom-
pressible constituents. Subsequent developments of the TPM are
mainly related to geomechanical investigations and have substan-
tially been contributed by the works of de Boer and Ehlers, see
[16,31,30] for detailed references.

Another popular macroscopic approach to model porous mate-
rials, which is based on a generalization of the theory of elasticity,
is Biot's Theory (BT) introduced in the early works of Biot [5,6]. In
fact, the BT and the TPM share a number of important features and
yield the same results in particular cases. However, two intrinsic
differences between them are important to be mentioned: first,
unlike the TPM, the BT does not require that the constitutive laws
fulfill the thermodynamic constraints. Second, BT treats sealed
pores as a part of the solid phase, whereas the TPM assumes that
all pores are interconnected. This leads to differences in the
definition of constituent volume fractions and the partial densities,
see, e.g., Schanz and Diebels [71] or Steeb [74] for quantitative and
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detailed comparisons between the two mentioned approaches. In
the literature, BT, the TM, and the TPM are considered as the bases
of many works in the modeling of porous media dynamics,
see Zienkiewicz et al. [78,79], Diebels and Ehlers [22], Lewis and
Schrefler [54], Breuer [11] and Coussy [14] among others.

In the current treatment of fluid-saturated biphasic aggregates,
the compressibility of the solid constituent is neglected in favor of
the solid matrix compressibility. The pore fluid is also considered
materially incompressible and the degree of saturation is 100%.
This choice helps to concentrate on the aim of this paper in
showing the ability of the considered constitutive model to
capture different liquefaction-conjugate soil behaviors, such as
the shear strength reduction, the development of the plastic
volumetric strain and the accumulation of the pore pressure, and
not to simulating a particular soil taken from a construction site.
For real problems, choosing an incompressible pore fluid could
overestimate the accumulated pore pressure as given in, e.g.,
Magda [56] or Okamura and Soga [66]. Moreover, this choice has
impacts on the structure of the governing balance relations of
biphasic porous materials. Considering a compressible pore fluid, a
constitutive evolution equation for the pressure variable exists
yielding a coupled system of ordinary differential equations (ODE).
For a materially incompressible pore fluid, the time derivative of
the pore pressure vanishes and the governing equations turn to be
differential-algebraic equations (DAE) with singular generalized
mass matrix, which can only be solved using special time integra-
tion schemes, see Markert et al. [61] or Zienkiewicz et al. [79] for a
detailed discussion.

In talking about the response of structures founded on satu-
rated soils, foundation soil affects the structural behavior during
dynamic excitation (e.g., due to earthquakes) in two significant
ways: by transmitting the ground motion in a form of applied
dynamic loadings (a wave propagation problem), and by imposing
permanent deformations caused by collapse of the underlying
soils (a soil liquefaction problem). The response of the soil skeleton
for the modeling of dynamic wave propagation is usually con-
sidered linear elastic and is governed by the Hookean elasticity
law. In this regard, three apparent types of bulk waves are
generally expected to propagate in a saturated porous medium:
(1) The fast and weakly damped compressional waves (p1) with an
in-phase motion of the solid and fluid constituents. The appear-
ance of this type of waves is mainly governed by the compressi-
bility of the constituents, which in the case of the materially
incompressible two-phase model yields a theoretically infinite
propagation speed. (2) The slow (p2 or Biot) longitudinal waves
with out-of-phase motion of solid and fluid. In the case of
a materially incompressible pore fluid, the appearance of the
p2-wave is mainly governed by the deformability of the solid
skeleton. (3) The transverse shear waves (s) are transmitted only
in the solid skeleton and are mainly governed by its shear stiffness.
For more details, we refer to the works of Biot [6,7], Heider et al.
[47], Markert et al. [61] and Steeb et al. [75] among others.

For simulation of liquefaction events in saturated porous
materials, the solid constituent response is treated in this work
within an elasto-viscoplastic framework. This comprises the
implementation of a hyperelastic model for the nonlinear elastic
solid behavior (cf. Ehlers and Avci [32], Müllerschon̈ [63] and
Scholz [73]), and also the application of the single-surface yield
function of Ehlers [28,29] for capturing the plastic response. The
viscosity in this model is mainly added to the elasto-plasticity
treatment in order to improve the numerical stability of strain-
localization problems and to reduce the mesh-dependency of the
solution. In this, the viscosity parameters of sandy soils, which
could be obtained from evaluation of experimental tests, are
usually not sufficient to attain the aim of regularized solutions,
and thus, higher viscosity parameters are used in the numerical

simulations, see, e.g. di Prisco and Imposimato [21] and Scholz
[73] for more details.

The definitions and terminology of liquefaction-related phe-
nomena are based on important publications in the fields of
computational geomechanics and earthquake engineering such
as the works by Castro [13], Ishihara et al. [49], Verdugo and
Ishihara [77], Zienkiewicz et al. [79], Kramer and Elgamal [52] and
de Groot et al. [20]. In this connection, liquefaction in saturated
biphasic media is characterized by accumulation of the pore-fluid
pressure and softening of the solid granular structure. Such
behavior comprises a number of physical events such as the ‘flow
liquefaction’ that appears in loose cohesionless soils and the ‘cyclic
mobility’ that usually occurs in medium-dense to dense cohesion-
less soils, see Section 5 for details.

In the literature, a number of constitutive models have been
devoted to simulate the response of granular materials under shear
stress, which leads to volumetric strains under drained conditions and
a build-up of the pore-fluid pressure under undrained conditions. In
the realm of the plasticity theory and within the critical state frame-
work, the Cam-Clay model [70] and the modified version of it are
eligible to capture different liquefaction-conjugate soil behaviors.
The complex and eventually anisotropic response of porous materials
under dynamic loading required the development of more advanced
material models. As examples, consider the bounding surface model
(see, [55]) and the two-surface plasticity model as discussed in
Manzari and Dafalias [58].

Another approach to soil liquefaction modeling, which is
mainly based on phenomenological observations, is the densifica-
tion model, cf., e.g. Zienkiewicz et al. [80,79] and Pastor et al. [67].
With this model and its modifications the densification of soil
under cyclic loading, which leads to build-up of the pore-water
pressure under undrained conditions, can be simulated. In this
case, it is necessary to distinguish between the loading and
the unloading stages, as well as to define a damage parameter to
capture the dilatancy of soil. Besides the densification model, the
relatively recent theory of hypoplasticity shows an increase in
popularity in the field of soil dynamics modeling among other
fields of geomechanics. The hypoplasticity is an incrementally
nonlinear material model, which does not require the existence of
a yield surface or the distinction between elastic and plastic strain
increments. For details about this theory and its empirical exten-
sions, see, e.g., Kolymbas [51] and Niemunis [64].

To give a brief overview of the topics in this paper, Section 2
describes the basics of the Theory of Porous Media, the concept of
volume fractions, the kinematics of multiphasic continua as well
as the governing balance relations. In Section 3, thermodynami-
cally consistent constitutive laws, which are able to describe
various behaviors of the biphasic porous material, are presented.
This includes the introduction of the nonlinear hyperelastic and
the viscoplastic material models. Section 4 is concerned with the
numerical treatment of the coupled problem, including the deri-
vation of the weak formulation as well as the spatial and temporal
discretization. Section 5 focuses on the investigation of liquefac-
tion phenomena in saturated granular materials. In this, the basic
features of liquefaction events like the pore-pressure build-up and
the softening of the granular structure are figured out using a
well-formulated elasto-viscoplastic constitutive model with iso-
tropic hardening. A number of important factors that affect the
response of saturated porous media, such as the loading rate and
the boundary drainage, are discussed on the basis of a canonical
initial-boundary-value problem (IBVP) in Section 6. The discussed
constitutive formulations and schemes are applied in Section 7 to
solve a realistic soil–structure interaction problem, which helps to
illustrate the occurrence of seismically induced liquefaction events.
Finally, Section 8 gives a brief summary and conclusions of the
presented research work.
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2. Theoretical basics

This section briefly introduces some of the fundamentals of
multiphasic continuum theories. This includes the basic concepts
of the TPM, the kinematics of multiphasic media and the balance
relations in a specific form. The mathematical modeling is com-
pleted in Section 3 by introducing thermodynamically consistent
constitutive relations, which are able to capture the material
responses under different loading conditions. For a detailed dis-
cussion, the interested reader is referred to, e.g., [18,30,46,61].

2.1. Theory of porous media (TPM)

The TPM provides a comprehensive and excellent framework
for the macroscopic modeling of a biphasic porous body consisting
of an immiscible solid skeleton saturated by a single interstitial
fluid. In this regard, the heterogeneous solid aggregate with a
random granular geometry is assumed to be in a state of ideal
disarrangement over a representative elementary volume (REV).
Applying a homogenization process to the REV yields a smeared-
out continuum φ with overlapped, interacting and statistically
distributed solid and fluid aggregates φα (α¼ S for solid phase and
α¼ F for pore-fluid phase). Thus, at any given macroscopic point,
the relation φ¼φS [ φF holds (see, Fig. 1).

Under the assumption of immiscible aggregates, the concept of
volume fractions is introduced in order to integrate constituent
microscopic information. Thus, a volumetric averaging process of
all constituents is prescribed over the REV, and the incorporated
physical fields of the micro-structure are represented by their local
volume proportions. In particular, the volume fraction nα≔dvα=dv
of φα is defined as the ratio of the partial volume element dvα to
the total volume element dv of φ. The saturation constraint for the
case of a fully saturated medium is given by

∑
α
nα ¼ nSþnF ¼ 1 with

nS : solidity;
nF : porosity;

(
ð1Þ

and is assumed to be satisfied during the whole deformation
process. The introduction of nα is furthermore associated with two
density functions, namely a material (effective or intrinsic) density
ραR≔dmα=dvα and a partial density ρα≔dmα=dv, with dmα being
the local mass of φα. It is easily concluded that ρα ¼ nαραR under-
lines the general compressibility of porous solids under drained
conditions through possible changes of the volume fractions,
although the solid phase is materially incompressible.

2.2. Kinematics of multi-phase continua

In this work, the finite deformation kinematics is merely intro-
duced as bases for the derivation of the small-strain relations, whereas
the numerical modeling is restricted to the geometrically linear
framework. In the multiphasic continuum mechanics (cf. [8]), one
makes use of the concept of superimposed continua with internal
interactions and individual states of motion. In this, the motion of a
two-phase solid-fluid body is studied on the continuum level, where

each of the constituents φα is supposed to occupy a considerable
physical space of the overall homogenized body B. Moreover, each
constituent φα is represented by material points Pα , which have
unique positions Xα in the reference configuration. In the actual
configuration, each spatial position x is occupied by one material point
of each constituent, where the idea of superimposed and interacting
continua with an exclusive motion function χ α for each φα should be
maintained, see Fig. 2 for illustration.

Following this, the Lagrangian (material) description of the
current position, the velocity, and the acceleration of each con-
stituent, respectively, is given in terms of unique motion (map-
ping) functions χ α as

x¼ χ αðXα; tÞ3Xα ¼ χ �1
α ðx; tÞ

vα≔x0
α ¼

dαx
dt

; ðvαÞ0α≔x″
α ¼

d2
αx
dt2

: ð2Þ

Therein, χ �1
α represents the unique inverse (Eulerian or spatial)

motion function and

ð�Þ0α≔
dαð�Þ
dt

¼ ∂ð�Þ
∂t

þgradð�Þvα ð3Þ

indicates the material time derivative of a vector-valued quantity
ð�Þ following the motion of φα . Herein, gradð�Þ≔∂ð�Þ=∂x is the
gradient operator, which is defined as the partial derivative of ð�Þ
with respect to the local position x. In the treatment of porous
media dynamics, it is convenient to proceed from a Lagrangian
description of the solid matrix via the solid displacement uS and
the velocity vS as the kinematic variables. Moreover, the pore-fluid
flow can be expressed either in a modified Eulerian setting via the
seepage velocity vector wF describing the fluid motion relative to
the deforming skeleton, or by an Eulerian description using the
fluid velocity vF itself. In particular,

uS ¼ x�XS; vS ¼ ðuSÞ0S ¼ x0
S;

vF ¼ x0
F ; wF ¼ vF�vS: ð4Þ

Noting that in the governing balance relations used for the
numerical treatment in Section 2.3, vF is adopted as the primary
unknown for describing the pore-fluid motion and wF as a
secondary variable. This choice has positive impacts on the
numerical stability of the pore-pressure field in the case of a mono-
lithic implicit time integration treatment, see [61] for detailed discus-
sions. Back to Eq. (3), the material time derivative with respect to the
fluid motion can be written as

ð�Þ0F ¼ ð�Þ0Sþgradð�Þ �wF ; ð5Þ

where in the geometrically linear case, the nonlinear convective term
can be omitted by magnitude arguments as gradð�Þ� wF5 ð�Þ0S
yielding ð�Þ0F � ð�Þ0S .1

Following this, Eqs. (2) lead to the definition of the material
deformation gradient Fα and its inverse F�1

α as fundamental

homogenized modelREV

macro-scalemicro-structure

nF

nSdv dvS dvF

Fig. 1. REV of saturated sand showing the granular micro-structure and the
biphasic TPM macro model with φ¼ φS [ φF . Fig. 2. Motion of a biphasic solid-fluid aggregate.
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kinematic quantities in continuum mechanics. In particular,

Fα ¼ ∂x
∂Xα

≕Gradα x; F�1
α ¼ ∂Xα

∂x
≕grad Xα ð6Þ

with Gradαð�Þ≔∂ð�Þ=∂Xα denoting the gradient with respect to the
reference position. In the finite deformation treatment of elasto-
plasticity,2 see, e.g., [26,27,44], a multiplicative split of the solid
deformation gradient FS into an elastic FSe and a plastic FSp part is
introduced as

FS ¼ FSeFSp: ð7Þ
This property of FS will be used afterwards to split the solid
volume fraction into an elastic and a plastic part. Moreover, similar
to the additive decomposition of finite strain measures, such as the
Green–Lagrangian strain ES of the reference configuration into
an elastic (ESe) and a plastic (ESp) term (ES ¼ ESeþESp), an additive
split of the small (linearized) strain tensor εS is adopted, viz.:

ES lin≔εS ¼ 1
2 ðgrad uSþgradT uSÞ ¼ εSeþεSp ð8Þ

with εSe and εSp being the elastic and the plastic small strain
tensors, respectively.

2.3. Governing balance relations

The considered biphasic model excludes thermal effects as well
as any mass exchanges (inert φα) and proceeds from intrinsically
incompressible constituents (ραR ¼ const:). In particular, the aris-
ing purely mechanical binary model with α¼ fS; Fg is governed by
the following constituent balance equations:

� Partial mass balance⟶partial volume balance:

ðραÞ0αþρα div vα ¼ 0⟶ðnαÞ0αþnα div vα ¼ 0 ð9Þ

� Partial momentum balance:

ραðvαÞ0α ¼ div Tαþραbþ p̂α ð10Þ

Herein, divð�Þ is the divergence operator related to gradð�Þ,
Tα ¼ ðTαÞT is the symmetric partial Cauchy stress assuming non-
polar constituents, b is the mass-specific body force acting on the
overall aggregate, and p̂α denotes the direct momentum produc-
tion, which can be interpreted as the volume-specific local
interaction force between the percolating pore fluid and the
solid skeleton. Due to the overall conservation of momentum,
p̂Sþ p̂F ¼ 0 must hold for any closed multiphasic system. From Eq.
(9) with α¼ S and ðnSρSRÞ0S ¼ ðnSÞ0SρSR, one directly obtains the
solidity as a secondary variable by analytical integration:

ðnSÞ0S ¼ �nS div vS⟶nS ¼ nS
0Sðdet FSÞ�1 ð11Þ

with nS
0S being the initial volume fraction of φS at time t0.

Proceeding from the multiplicative geometric concept in (7), one
introduces a plastic volume fraction nS

p such that

nS ¼ nS
pðdet FSeÞ�1 with nS

p≔nS
0Sðdet FSpÞ�1 ð12Þ

In the realm of the small strain theory, where

ðdet FSÞ�1 � 1�div uS and div uS ¼ εS � I≕εVS ð13Þ

with εS according to Eq. (8), the linearized solidity reads

nS ¼ nS
pð1�εVSeÞ with nS

p≔nS
0Sð1�εVSpÞ ð14Þ

Herein, εVS ¼ εVSeþεVSp are the total, elastic and plastic volumetric
strains, and nS

p describes the permanent local solid volume
changes associated with the evolution of the plastic intermediate
configuration, see [57].

According to the principle of effective stresses, Tα and p̂F can be
split into effective field quantities, the so-called extra terms
indicated by the subscript ð�ÞE , and terms that are governed by
the pore-fluid pressure p (see [19]):

Tα ¼ TαE �nαpI; p̂F ¼ p̂F
Eþp grad nF ð15Þ

with I being the 2nd-order identity tensor. With regard to a
thermodynamically consistent model, admissible constitutive
equations for the response functions TαE and p̂F

E must be provided.
It follows from a dimensional analysis that in a macroscopic

porous media approach div TF
E{p̂F

E (cf. [23,43]), which yields in a
good approximation that TF � �nFpI. The solid effective stress TS

E
within the geometrically linear treatment will be referred to as rS

E .
Furthermore, under the assumption of isotropic lingering flow
conditions at low Reynolds numbers, the percolation process is
appropriately described by a linear Darcy-type filter law, which can
be traced back to the simple but thermodynamically consistent
relation

p̂F
E ¼ �ðnF Þ2γFR

kF
wF ; ð16Þ

where kF40 denotes the conventional hydraulic conductivity (Darcy
permeability) in length/time and γFR ¼ ρFRg is the effective fluid
weight with g ¼ jbj ¼ const: as the scalar gravitational acceleration.

In summary, the constituent balance equations (9) and (10)
together with the constitutive and the kinematic relations yield
the ‘convectiveless’ governing set of coupled partial differential
equations (PDE):

� Momentum balance of the overall aggregate:

ρSðvSÞ0SþρF ðvF Þ0S ¼ divðrS
E�pIÞþðρSþρF Þ b: ð17Þ

� Momentum balance of the pore fluid:

ρF ðvF Þ0S ¼ �nF grad pþρF b�ðnF Þ2 γFR
kF

wF : ð18Þ

� Volume balance of the overall aggregate:

div vSþ
kF

g
ðb�ðvF Þ0SÞ�

kF

γFR
grad p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

nFwF

0
BBB@

1
CCCA¼ 0: ð19Þ

Note that the chosen primary unknowns for this set of PDE are uS,
vF , and p. Hence, vSðuSÞ as well as rS

EðuSÞ, nSðuSÞ, nF ðuSÞ, and wF

represent secondary variables of the problem. Moreover, the fluid
momentum balance (18) is solved with respect to the filter
velocity nFwF and inserted into the volume balance of the overall
aggregate (19). This modification guarantees that Eqs. (17)–(19)
after spatial semi-discretization will yield a system of DAE with
differential index 1, which is desirable for a smooth numerical
solution. For particulars on index reduction methods, see, e.g.,
[3,42,60,61] among others. Additionally, a reduction in the order of
the PDE to order one in time is achieved using

ðuSÞ0S ¼ vS; ð20Þ

1 The time derivatives within the small-strain framework are written with
respect to the solid-phase motion (ð�Þ0S). However, as the convection term is
neglected in the geometrically linear treatment, it is also possible to write them
as partial time derivatives.

2 The viscosity in the current treatment is added to the elasto-plastic model
mainly due to numerical stability reasons and, thus, it is introduced as a
constitutive approach in Section 3.2.
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which eliminates the second time derivative of the solid displace-
ment from Eq. (17) and allows the applicability of a wide range of
time-stepping algorithms such as diagonal-implicit Runge Kutta
(DIRK) methods, cf. [61].

3. Constitutive elasto-viscoplastic material modeling

In the following section, an elasto-viscoplastic material model for
porous media within the framework of small deformations is dis-
cussed. Herein, the elastic behavior of the solid matrix is described via
a nonlinear hyperelastic material model, see [32,37,73] for more
details. The plastic behavior is captured using a single-surface yield
function, see [28,29]. Additionally, this section briefly presents the
non-associative flow rule and the isotropic hardening modeling.

3.1. Elastic material response

The elastic material behavior of sand is highly nonlinear during
hydrostatic loading. This nonlinear elastic behavior is captured
in this work using a hyperelastic material model, cf. [4,32,36,
37,63,73]. The proposed elasticity model fulfills the thermodyna-
mical restrictions and shows a very good performance in describ-
ing the elastic deformation of isotropic porous materials. Under
the assumption of uncrushable solid particles, a maximum solid
volume fraction (nS

max) is defined as a point of compaction (cf.
[25,32]). The value of nS

max depends on the granular geometry and
adds a restriction to the elastic volumetric strain. Here, the critical
elastic volumetric strain εVSe;crit, associated with nS

max, is defined as

εVSe;crit ¼ 1�nS
max

nS
p

with nSrnS
maxo1: ð21Þ

Within a thermodynamical framework, the Helmholtz free-
energy function ψ S can be additively split into a purely elastic ψ Se

and an inelastic (plastic) ψ Sp term. For the hyperelastic material
model, the following expression can be used for the elastic free-
energy density function, cf. [4,36]:

ρS
0Sψ

Se ¼ μSεDSe � εDSeþ1
2 ðk

S
0�kS1ÞðεVSeÞ2

�kS1ðεVSe;critÞ2 ln
εVSe;crit�εVSe
εVSe;crit

 !
þ εVSe
εVSe;crit

" #
: ð22Þ

Herein, ρS
0S is the initial solid density, kS0 and kS1 govern the initial

and the nonlinear bulk modulus of the solid skeleton, respectively,
εDSe is the elastic deviatoric strain,3 and μS is the macroscopic solid
shear modulus (1st Lamé constant). Following this, the solid
effective stress reads

rS
E ¼ ρS

0S
∂ψ Se

εSe

¼ 2μSεDSeþ kS0þkS1
εVSe;crit

εVSe;crit�εVSe
�1

 !" #
εVSeI: ð23Þ

In Eq. (23), the elastic deviatoric stress is considered to be linear
and governed by a constant shear modulus μS, whereas the
hydrostatic part of rS

E has been chosen to simulate the highly
nonlinear unloading–reloading hydrostatic response.4

3.2. Plastic material response

In the following, a single-surface plasticity model within the elasto-
viscoplasticity framework together with an isotropic hardening law is

applied to simulate different behaviors of saturated soils under
dynamic loading. The components of the considered plasticity treat-
ment can be distinguished as follows: (1) the yield function that
encompasses the elastic domain, (2) the non-associative flow rule that
describes the evolution of the plastic strain and the loading/unloading
criterion in order to differentiate between the elastic and the plastic
steps, and (3) the hardening/softening and failure states, where an
isotropic hardening model is introduced to describe the expansion/
contraction of the yield surface. The considered yield surface is defined
in the principal stress space as shown in Fig. 3.

As granular materials exhibit volumetric as well as deviatoric
plastic deformations, the yield surface should have a closed shape
and be a function of the first stress invariant Is that represents the
hydrostatic confining stress. In particular, the yield function is
given in terms of the first principal stress invariant Is as well as the
second and the third deviatoric stress invariants IIDs ; III

D
s as

FðrS
EÞ ¼

ffiffiffiffiffi
Φ

p
þβIsþϵI2s�κ ¼ 0

with

Φ¼ IIDs 1þγ
IIIDs

ðIIDsÞ3=2

 !m

þ1
2
αI2sþδ2I4s: ð24Þ

Therein, the stress invariants are defined as

Is ¼rS
E � I;

IIDs ¼ 1
2 ðrS

EÞD � ðrS
EÞD;

IIIDs ¼ 1
3
ðrS

EÞD � ðrS
EÞDðrS

EÞD: ð25Þ

The yield surface is also a function of two sets of material
parameters, namely, the hydrostatic parameters Sh ¼ fα;β; δ; ϵ; κg,
which control the shape of the yield surface in the hydrostatic
plane, and the deviatoric variables Sd ¼ fγ;mg, which define the
shape of F in the deviatoric plane, see [29,32,36] for details.

Adoption of an associative flow rule with plastic flow direction
perpendicular to the yield surface obviously leads to an over-
estimation of the plastic dilation behavior. Therefore, a non-
associative flow rule needs to be formulated by introducing a
plastic potential function different from the yield function. In this
connection, the following potential relation as a function of the
first principal stress invariant Is and the second deviatoric stress
invariant IIDs is suggested (cf. [57]):

GðrS
EÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ1II

D
sþ1

2αI
2
sþδ2I4s

q
þψ2βIsþϵI2s�κ ð26Þ

with ψ1;ψ2 being additional parameters for adjusting the plastic
dilation angle.

Following this, a constitutive equation for the temporal evolu-
tion of εSp needs to be specified. Therefore, based on the Principle

1.0

2.0

1.01.0 2.0 3.0

-σ S
E1

-σ S
E2

-σ S
E3 -Iσ

Fig. 3. Single-surface yield function in the principal stress space, cf. [28].

3 For a 2nd-order tensor A, the deviatoric part reads AD ¼A�1
3ðA � IÞI.

4 Comparing the introduced nonlinear elasticity law with the Hookean elasti-
city law (rS

E ¼ 2μSεSþλSðεS � IÞI), both have a linear deviatoric stress part and the
2nd Lamé constant λS is associated with kS0.
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of Maximum Dissipation (PMD), a dissipative optimization pro-
blem is formulated within the potential surface leading to a
canonical formulation for ðεSpÞ0S. In particular, the flow rule can
be expressed as

ðεSpÞ0S ¼Λ
∂G
∂rS

E

ð27Þ

with Λ being the plastic multiplier. A necessary condition for the
solution of the problem in Eq. (27) is the Karush–Kuhn–Tucker
(KKT) optimality condition, which can be expressed for the case of
rate-independent elasto-plasticity as

Fr0; ΛZ0; Λ F ¼ 0: ð28Þ
In the numerical implementation of rate-independent elasto-

plasticity, instability and ill-posedness might be encountered
during, e.g., shear band localization problems (mesh-dependent
solution), cf. [34,65]. A possible method to overcome such a
difficulty is to introduce an artificial rate-dependency by adding
viscosity to the elasto-plastic model. According to the overstress
concept of Perzyn [68], the following viscosity approach can be
used:

Λ¼ 1
ηr

F
s0

� �r

: ð29Þ

Here, 〈 � 〉 are the Macauley brackets defined as 〈 � 〉≔1
2 ½ð�Þþ ð�Þ �

���� , s0

is a reference overstress, r is the viscoplastic exponent and ηr is the
viscoplastic relaxation time. As the aim of the viscosity in this case
is merely to improve the numerical stability, choosing a small
value for ηr together with s040 and r¼ 1 allows for an elasto-
viscoplastic model, which behaves very much similar to the elasto-
plastic model but with better stability properties, see, e.g., [45,73]
for more details.

Experiments on dry sand show that isotropic hardening effects
appear instantly after loading in triaxial compression tests,
whereas a softening behavior might be obtained for dense sand
after reaching a certain stress peak. Such isotropic hardening and
softening tendencies are related to the plastic deformations and
can be well captured with the suggested constitutive model by
introducing suitable evolution relations for a subset of the material
parameters piAfβ;δ; ϵ; γg in the yield function. Hence, the para-
meters pi are chosen as functions of the dissipative plastic work
(cf. [17]). According to [36], the evolution relations for the para-
meters pi are split into volumetric (pVi ) and deviatoric (pDi ) parts,
viz.:

ðpiÞ0S ¼ ðpVi Þ0SþðpDi Þ0S
¼ ðp⋆i�piÞðCV

piðεVSpÞ0SþCD
pi J ðεDSpÞ0S J Þ: ð30Þ

In this, p
⋆
i and pi0 ¼ piðt0Þ are the maximum and the initial values

of pi, and CV
pi, C

D
pi are material constants. The suggested relation

(30) allows us to distinguish between a deviatoric, positive term
J ðεDSpÞ0S J yielding a plastic hardening behavior, and a volumetric
part that results in positive (hardening) or negative (softening)
values. Thus, both the densification and the loosening behaviors of
the granular structure are represented.

4. Numerical treatment of the coupled problem

For the numerical solution of an initial-boundary value pro-
blem, the FEM treatment is carried out in two steps: firstly,
deriving the weak or variational statements of the governing
balance equations and, secondly, using the finite element discre-
tization for the approximate solution of the variational equations.
In what follows, the governing set of partial differential balance
equations (17)–(19) with primary unknowns uS, vF , p is treated in
a fully coupled manner and referred to as uvp�formulation.

Additionally, the secondary variable vSðuSÞ given in (20) is con-
sidered together with the primary variables to reduce the order of
the coupled equations into order one in time. Therefore, the vector
of unknowns u of the three-field problem can be written (in
analogous to [47,61]) as

u¼ uðx; tÞ with u¼ ½uS vS vF p�T : ð31Þ

4.1. Governing weak formulation

Following the common FEM procedure for deriving the weak
formulation (cf. [81]), Eqs. (17)–(19) are weighted by independent
test functions and integrated over the spatial domain Ω occupied
by the overall aggregate body B. Moreover, the boundary Γ ¼ ∂Ω is
split into Dirichlet (essential) and Neumann (natural) boundaries,
respectively, yielding Γ ¼Γu [ Γt for the momentum balance
of the overall aggregate, Γ ¼ΓvF [ ΓtF for the fluid momentum
balance and Γ ¼Γp [ Γv for the volume balance of the overall
aggregate. Next, applying the product rule and the Gaussian
integral theorem, one obtains the weak forms of the uvp-formula-
tion. In particular, the overall aggregate momentum balance in a
weak form reads

Z
Ω
grad δuS � ðrS

E�pIÞ dv�
Z
Γt

δuS � t da

þ
Z
Ω
δuS � fρSðvSÞ0SþρF ðvF Þ0S�ρbg dv¼ 0 ð32Þ

with δuS being the test function corresponding to the primary
variable uS or vS. Moreover, t ¼ ðrS

E�pIÞn is the external load vector
acting on the Neumann boundary Γt of the overall aggregate with
outward-oriented unit surface normal n.

The weak form of the fluid momentum balance can be
expressed as

�
Z
Ω
divðδvF ÞnFp dv�

Z
ΓtF

δvF � tF da

þ
Z
Ω
δvF �

�
ρF
�
ðvF Þ0S�b:

þ grad vFþ
nFg

kF
I

	 

ðvF�vSÞ

��
dv¼ 0; ð33Þ

where δvF is the test function corresponding to the primary
variable vF . Moreover, tF ¼ �nFpn is the external fluid load vector
acting on ΓtF . The overall aggregate volume balance in a weak
form reads

Z
Ω
δp div vS dv�

Z
Ω
grad δp � nF ðvF�vSÞ dv

þ
Z
Γv

δp v da¼ 0 ð34Þ

with δp being the test function related to the primary variable p
and v ¼ nF wF � n denotes the volume efflux of the incompressible
fluid draining through the Neumann boundary Γv.

4.2. Spatial and temporal discretization

For the spatial semi-discretization, the continuous control
space Ω occupied by the overall aggregate B is subdivided into
Ne finite elements yielding an approximate discrete domain Ωh.
This treatment yields a FE mesh with Nx nodes for the geometry
approximation, on which the following discrete trial and test
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functions are defined:

uhðx; tÞ ¼ uhðx; tÞþ ∑
Nu

i ¼ 1
NuðiÞðxÞuðiÞðtÞASh

uðtÞ

δuhðxÞ ¼ ∑
Mu

i ¼ 1
MuðiÞðxÞδuðiÞAT h

u: ð35Þ

Therein, uh are the approximated Dirichlet boundary condi-
tions of the considered problem, Nu denotes the number of FE
nodes used for the approximation of the respective fields in u, and
NuðiÞ represents the global basis functions at node i which depend
only on the spatial position x, whereas the degrees of freedom uðiÞ
are the time-dependent nodal coefficients. Moreover, Mu is the
number of FE nodes used for the test functions δuS, δvF , and δp,
respectively, MuðiÞ denotes the global basis functions, and δuðiÞ
represents the corresponding nodal values of the test functions.
Furthermore, Sh

uðtÞ and T h
u are the discrete, finite-dimensional trial

and test spaces. In the current contribution, the Bubnov–Galerkin
procedure is applied using the same basis functions NuðiÞ �MuðiÞ
for the approximation of u and δu. For more details, the interested
reader is referred to, e.g., [2,12,33,40,46,61].

The spatial discretization is applied to the weak formulations
(32)–(34) and Eq. (20), which are collected in a function vector Gh

u.
The plasticity evolution relations (27) and (30) are also collected
after spatial discretization in a function vector Lh

q. Thus, let y¼
yðtÞ ¼ ½uSvSvFp�T ARm with m¼ dimðyÞ represent all nodal degrees
of freedom uðiÞðtÞ of the FE mesh, and q¼ qðtÞ ¼ ½ε11Sp ;…; pi�T ARn

with n¼ dimðqÞ represent all internal variables at the integration
points. Then, assembling the unknowns in one vector z≔½y;q�T A
Rmþn, one obtains an initial-value problem of differential-
algebraic equations (DAE) in time in an abstract form as

Fðt; z; ðzÞ0SÞ �
Gh
uðt; y; ðyÞ0S;qÞÞ

Lh
qðt;q; ðqÞ0S; yÞ

2
4

3
5

�
MðyÞ0Sþkðy;qÞ� f
AðqÞ0S� lðq; yÞ

" #
¼! 0: ð36Þ

Therein, M denotes a generalized mass matrix, k is a generalized
stiffness vector, and f is a generalized external force vector. The
evolution relations Lh

q in (36) represent ordinary differential
equations (ODE), which are solved at every integration point of
the finite element mesh. Herein, A is an identity matrix and the
vector l contains the semi-discrete right-hand sides of the evolu-
tion equations, cf. [36,38,59].

For the considered case of materially incompressible solid and
fluid aggregates, the global mass matrix is singular as it has
no entry corresponding to the pore-pressure time derivative ðpÞ0S
(algebraic coupling), which implies that explicit monolithic
schemes are not applicable. Hence, proceeding from a strongly
coupled problem governed by realistic permeabilities 0okF51,
monolithic implicit time-integration schemes can conveniently be
applied, cf. [61]. In the case of monolithic solutions, Taylor-Hood-
like elements are chosen for the FE treatment with quadratic
approximations of uS and vS and linear approximations of vF and
p, which fulfill the inf-sup or Ladyszenskaya–Babuška–Brezzi (LBB)
stability condition (cf. [40] for references). In this paper, the
resulting system of DAE is discretized in time using the monolithic
implicit (Backward) Euler (BE) time-integration scheme, which is
appropriate for first-order DAE systems and requires reasonable
computational capacity. Choosing a sufficiently small time-step
size in the solution of the dynamic problem helps to reduce the
artificial numerical damping of the BE scheme, improves the
accuracy in the case of a plastic strain evolution and guarantees
that the dynamic excitation is accurately described, see [46].

5. Simulation of sand behavior under deviatoric stress

In the following, the elasto-viscoplastic constitutive model, as
introduced in Section 3, is used to capture the basic behavior of
saturated granular materials under shear stress, such as the pore-
fluid pressure accumulation accompanied by a reduction of the
effective stress. Thus, a number of liquefaction-related definitions
and terminologies are briefly given, which are commonly used in
the fields of soil modeling and earthquake engineering, see, e.g.,
[13,48,49,52,77,79] for more details. In this, Liquefaction is a
general term used to describe the response of saturated soils,
which is characterized by build-up of the pore pressure and
softening of the granular structure. This comprises a number of
physical phenomena such as the ‘flow liquefaction’ and the ‘cyclic
mobility’. Flow liquefaction is an instability phenomenon that
frequently happens in loose soils with low shear strength. Under
undrained conditions the applied load results in an increase of the
pore pressure and an incredible reduction of the mean effective
stress until the residual shear strength cannot sustain the static
equilibrium. Consequently, saturated soil looses its nature as a
solid and flows like a viscous fluid. Cyclic mobility is a kind of
permanent but limited plastic deformation of saturated soil under
cyclic shear loading. Herein, an accumulation of the pore pressure
takes place after each applied cycle, however, the mean effective
stress can never reach a zero value, and the residual shear strength
can always maintain the static equilibrium.

5.1. Capturing the contractive and dilative behaviors

The initial density of sand plays a key role in the response to shear
stress, cf. [20,52]. Under deviatoric stress in consolidated drained
triaxial tests (CD), a dense granular assemblage is expected to compact
and then to dilate, whereas a very loose assemblage tends more likely
to compact until collapse. In consolidated undrained triaxial tests (CU),
it is assumed that the samples are 100% saturated with a materially
incompressible fluid and no drainage occurs. Therefore, the contrac-
tion tendency leads to a build-up of the pore pressure, whereas the
dilation tendency causes an opposing response.

In the current modeling, a non-associative flow rule for the
plastic material behavior is applied, cf. Section 3. In this, the plastic
potential function in Eq. (26) and its parameters ψ1;ψ2 play a
decisive role in the realization of the contractive and dilative
behaviors. In the following, a sand with four different initial
densities (Table 1) is investigated, whereas the values of ψ1 and
ψ2 for the numerical applications are given in Table A3.

As a measure for the flow direction, the dilatancy angle ν is
introduced, cf. [28,29,63]

tan ν≔
IðεSpÞ0S

J ðεDSpÞ0S J
¼ ðεSpÞ0S � Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðεDSpÞ0S � ðεDSpÞ0S
q : ð37Þ

If ðεDSpÞ0S � I40, the behavior is dilative and the volumetric strain
increases, whereas if ðεDSpÞ0S � Io0, the volumetric strain decreases

Table 1
A sand with different initial densities, where the classifications are based on the
relative density Dr≔ðnS

0S�nS
minÞ=ðnS

max�nS
minÞ � 100%.

Initial density Dr ð%Þ Description w:r:t: Dr ð%Þ

Case (1) 95 Very dense 475
Case (2) 56 Dense 50–75
Case (3) 33 Moderate dense 30–50
Case (4) 9.5 Very loose o15
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and the behavior is contractive. If ðεDSpÞ0S � I¼ 0, the material deforms
at a constant volumetric strain.

5.2. Pore-pressure accumulation and dissipation

For the treatment of the pore-pressure accumulation and
dissipation, some basic concepts of soil mechanics are recalled.
Here, the effective stress relations (15)1 for a biphasic material can
be rewritten as

r¼ rS
E�pI ð38Þ

with r as the total stress in the geometric linear treatment.
Eq. (38) can be further reformulated by use of the mean stress
sm≔1

3 tr r and the mean effective stress sS
E;m≔

1
3 tr r

S
E as scalar

quantities yielding

sm ¼ sS
E;m�p; ð39Þ

where the trace of a tensor ð�Þ is defined as trð�Þ ¼ ð�Þ � I. In the
absence of a sudden excitation (or under quasi-static loading),
each grain of the soil particle assemblage is found in contact with a
number of neighboring particles, which allows the solid skeleton
to carry most of the applied external total stress (r� rS

E and p� 0).
Under rapidly applied loading of a loose, saturated granular
material, the applied external stress is mostly carried by the pore
fluid leading to a poor contact between the solid grains, which
causes a softening of the granular deposit (sS

E;m � 0). Thereafter,
the excess pore-fluid pressure starts to dissipate, which causes an
adverse motion of the solid and the pore fluid phases. This process
can be explained based on macroscopic filter law, which results
from the overall momentum balance (18) as

nFwF ¼ � kF

γFR
grad pþkF

g
b�ðvF Þ0S
 �

: ð40Þ

In this, the permeability parameter kF plays an important role in
the rapidity of the excess pore-pressure dissipation.

5.3. Capturing the drained and undrained sand behaviors

The aim of the following numerical benchmark is to show the
ability of the suggested material model (Section 3) to capture the
behavior of sand in triaxial tests under drained and undrained
conditions. The axisymmetric cylindrical triaxial test cell can be
simplified into a two-dimensional (2-d) single-element problem
with boundary conditions and loads illustrated in Fig. 4.

The material response is considered elasto-viscoplastic with
the nonlinear elastic parameters given in Table A2 and the
viscoplastic parameters in Table A4. In this connection, four cases
of initial densities with four sets of dilatancy parameters are
applied as given in Table A3. As a matter of fact, changing the

initial density affects the overall sand behavior, which requires
basically the modification of many parameters of the model to
capture the accurate response. However, this is beyond the scope
of this publication, which concentrates on describing the general
granular behavior without calibrating a certain sand behavior. The
parameters for case (1) have been obtained in the laboratory of the
Institute of Applied Mechanics, University of Stuttgart, based on
consolidated drained triaxial compression tests, cf. [32]. The para-
meters ψ1 and ψ2 for cases (2)–(4) have been chosen appropri-
ately to demonstrate the change of response in accordance to the
initial density.

The obtained CD triaxial test results between the axial strain
ε11 and the deviatoric stress js11�s33j for cases (1)–(4) are
depicted in Fig. 5. Therein, a good agreement between the
experimental and the numerical results can be seen for case (1)
of a very dense sand. In case (1), the deviatoric stress increases to a
certain peak and then decreases as can be seen in Fig. 5, top.
Moreover, Fig. 5, bottom, shows that the first part of the test
undergoes a slight contraction until a minimum void ratio is
attained. Thereafter, the material exposes a dilative behavior until
collapse. For a very loose sand as in case (4), the contraction
tendency is dominant and no peak in the deviatoric stress can be
observed. Following this, it is shown that the tendency of the
granular assemblage to contract increases by decreasing the initial
density. Herein, the influence of the initial density on the behavior
can numerically be encountered by choosing proper ψ1 and ψ2
parameters of the plastic potential function.

The numerical simulation of the consolidated undrained (CU)
triaxial test with four cases of initial densities (cf. Table A3)
is introduced in the following. The CU test for saturated sandy
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σ
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=
σ
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− √2σ 22
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√21
−

−

Fig. 4. Boundary conditions and applied loads of the triaxial test. Simplification of
the axisymmetric 3-d problem into a 2-d problem.
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Fig. 5. Experimental and numerical results of the drained compression triaxial test
for the different parameter cases in Table A3.
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materials is performed in two steps: (i) A drained consolidation
step, where a hydrostatic compression is applied to the specimen.
(ii) An undrained deviatoric step (displacement-controlled in our
case), where a pore-pressure build-up is allowed to occur. Under
monotonic loading, Fig. 6 shows that cases (1) and (2) of very
dense to dense specimens experience a short period of contrac-
tion, which causes a slight increase of the pore-fluid pressure. This
phase is followed by a continuous dilation leading to a decrease of
the pore pressure and an increase of the mean effective stress.

Considering the specimens with moderate density in case (3), the
initial response is contraction leading to an accumulation of the pore
pressure, which is followed by a phase of immense increase of the
axial strain accompanied by a slight change of the shear stress and the
mean effective stress until collapse. This type of behaviors corre-
sponds, according to the aforementioned definitions, to the cyclic
mobility when the applied load is cyclic. Case (4) in Fig. 6 represents
the flow liquefaction behavior. Therein, the very loose sample exhibits
a peak deviatoric stress followed by a serious decrease of the shearing
resistance and a continuous build-up of the pore pressure until the
collapse is attained. According to [52], the latter behavior is reached
due to the collapse of the soil skeleton structure.

The interplay between the mean effective stress and the excess
pore pressure for cases (3) and (4) is governed by Eq. (39) and
depicted in Fig. 7. For case (3) of moderate-dense specimens, Fig. 7,
top, shows a transformation state between the contractive and the
dilative phases, where the excess pore pressure and the effective stress
reverse their behaviors. In the dilative tendency stage, the applied load

is increasingly carried by the effective stress, whereas the pore
pressure dissipates. Fig. 7, bottom, shows how the effective stress
reduces and the pore pressure increases until the flow liquefaction
takes place. When the mean effective stress tends towards zero, the
whole applied stress is only carried by the pore fluid.

Under cyclic loading, saturated sand undergoes liquefaction with
patterns similar to that observed under monotonic loading, cf., e.g.,
[48,49]. Employing the elasto-viscoplastic constitutive model as intro-
duced in Section 3 with isotropic hardening, it is possible to follow
the excess pore-pressure development and the onset of liquefaction
events under cyclic loading. If the unloading–reloading process is
carried out inside the yield surface, the response is governed by the
hyperelastic material law. In this case, the reloading process follows
the same path as the unloading process and only oscillatory but not
accumulative pore-pressure behavior can be detected. When the stress
state is found on the yield surface in both the compression and
the extension sides, then a plastic volumetric strain and with that
accumulation of the pore-pressure takes place, see [46] for more
details and applications.

6. Factors influencing the dynamic response of saturated
granular media

In the following, a number of important factors that affect the
response of saturated porous media under dynamic loading are
discussed. Those factors are tested on an IBVP that leads to a plastic
strain localization under plane strain conditions. All computations
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Fig. 6. Numerical results of undrained triaxial compression tests for the different
cases in Table A3.
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are carried out with the coupled FE solver PANDAS.5 The geometry
and the boundary conditions of this problem are illustrated in Fig. 8,
and the balance relations are the coupled PDE describing a biphasic
medium with materially incompressible constituents.

Moreover, the considered solid skeleton response is elasto-
viscoplastic with isotropic hardening (Section 3). The material para-
meters of the materially incompressible constituents are given in
Tables A2 and A4 and only the case of a very loose sand (case (4)
in Table A3) is taken into account. The first step in the problem is to
apply an isotropic consolidation with s11 ¼s22 ¼ 100 kPa. The con-
solidation is carried out very slowly and with drained top boundary
(p¼ 0) so that no accumulation in the pore pressure can occur.
To examine the effect of the loading rate, a fast (dynamic) or a slow
(quasi-static) displacement, as illustrated in Fig. 9, is applied in the
second step to the top of the domain until abort of the calculation (the
same convergence criterion is used in all cases).

The influence of the boundary drainage is tested by varying the
drainage of the top boundary under dynamic loading conditions.
Additionally, the effect of the microstructure on the response is
examined by using different values of the hydraulic permeability
parameter kF .

In the literature, many publications have discussed numerically
and experimentally strain-localization problems and the factors
affecting the formation of shear bands, such as the boundary
conditions of the problem, the loading rate, the saturation, the
density of sand and the size of the finite element mesh, see, e.g.
[1,41,50,53,65]. Moreover, strain-localization and shear-band occur-
rence in fluid-saturated loose sand under deviatoric stress is a
‘deformation–diffusion problem’, where the effects of the pore-
pressure development and the pore-fluid flow on the contraction/
dilation of the solid matrix have to be taken into account. It has been
shown in [1] that unlike the case of dense sand, where dilative shear
bands appear, compactive shear bands occur in loose sand. Due to
the coupled volumetric deformation–fluid-flow behavior, the com-
pactive shear band initially looks less localized and diffused, which
agrees well with the results of the presented problem. The discussion
of shear bands is, however, a very diverse topic and beyond the scope
of this study.

6.1. Loading rate effect: quasi-static vs. dynamic

Most factors influencing soil behavior are equally important under
both dynamic and quasi-static loading conditions. However, the
significant character of the dynamic behavior is the inertia force,
which cannot be neglected and its importance increases with the
increase of the loading speed. To understand the dependency of
liquefaction occurrence on the rate of the applied displacement
(dynamic or quasi-static), the problem introduced in Fig. 8 is analyzed
considering the displacement loads depicted in Fig. 9. Therein, the
velocity of the applied displacement is va ¼ _uS2 ¼ �1:0� 10�2 m=s
in the dynamic case and vb ¼ _uS2 ¼ �1:0� 10�6 m=s in the quasi-
static case.

Fig. 10 shows exemplary contour plots of the computed vertical
displacement uS2, excess pore-pressure p and plastic volumetric
strain εVSp under dynamic loading and top permeable boundary.
Here, the pore-pressure build-up is accompanied with the plastic
volumetric strain (permanent contraction tendency of loose sand),
which indicates the probable location of the flow liquefaction
event. Under the same boundary conditions except for the applied
loading rate, which is now quasi-static, Fig. 11 shows a similar
plastic volumetric strain distribution as in Fig. 10. However, a
different pore-pressure distribution is obtained. This is because

under quasi-static conditions, the excess pore pressure at a certain
point has the time to dissipate through the drained boundary (top
boundary) or into neighboring regions of less accumulated pore
pressure.

6.2. Boundary drainage effect

Fig. 12 shows contour plots of the computed vertical displacement
uS2, excess pore-pressure distribution p and plastic volumetric strain
εVSp under dynamic loading condition and top impermeable boundary
(vF2 ¼ 0). It is obvious from comparing Fig. 10 with Fig. 12 that the
top impermeable specimen under dynamic loading behaves almost
the same as the top permeable specimen under dynamic conditions.
However, a shift in the volumetric plastic strain and the excess pore-
pressure regions can be observed due to the top boundary drainage.

6.3. Influence of the microstructure

The microstructure of a granular material affects the liquefac-
tion susceptibility in different ways. For instance, grain sizes play
an important role in the response patterns, where fine and uni-
form sands are believed to be more liquefaction prone than coarse
sands, cf. [69]. Another factor, which is related to the microstruc-
ture, is the length of the micro-channels with respect to the pore
diameter. Here, under quickly-applied loading the long drainage
path causes the specimens to behave almost like under perfectly
undrained conditions. In the considered macroscopic modeling,
the microtopology information of the granular material is included
in the permeability parameter. Consequently, the liquefaction
susceptibility increases by decreasing the value of the permeability
parameter.
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σ 22

σ
11

σ
11

−
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− −
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−
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Fig. 8. Geometry and boundary conditions of the strain localization problem. Two
cases for the top boundary are considered: B (1) with permeable top boundary
(p ¼ 0) and B (2) with impermeable top boundary (vF2 ¼ 0).

uS 2(t) =
−1.0 × 10−6 t m quasi-static,

−1.0 × 10−2 t m dynamic.

uS 2(t)

t
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t1 t2

va vb
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↔

↔

−
− −

−−

−

Fig. 9. Applied displacements of the strain localization problem.

5 Porous media Adaptive Nonlinear finite element solver based on Differential
Algebraic Systems, see http://www.get-pandas.com.
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Back to the numerical example in Fig. 8, two cases under the
same applied dynamic loading but different permeability para-
meters are compared. Fig. 13 shows contour plots of the computed
quantities uS2, p and εVSp with top permeable boundary and permea-

bility parameter kF ¼ 10�2 m=s.
Comparing Fig. 13 with the lower permeability case (kF ¼ 10�6

m=s) in Fig. 10, where all the other boundary conditions and
parameters are the same, shows that no significant region for the
accumulated pore pressure can be seen in Fig. 13. This is because
under higher permeability, the pore fluid can easily escape from
the domain.

7. Structure found on stratified liquefiable soil

In the following, a two-dimensional computational model of a
soil–structure system under plane strain conditions is analyzed
using the FE package PANDAS. The seismic excitation appears in
the form of vertically incident shear waves, which is applied at the
bottom of the profile, i.e., along the soil–bedrock interface bound-
ary. The data of the seismic excitation in this example are based
on realistic measurements, which are related to the Kobe earth-
quake,6 FUK station, horizontal north–south (NS) motion. These
data are taken from the strong motion database of the Pacific
Earthquake Engineering Research Center (PEER),7 which are freely
available online for engineering applications. The geometry and
the boundary conditions are illustrated in Fig. 14.

The chosen soil layers of the considered problem provide an
appropriate environment to liquefaction events. Here, the present
layers are illustrated in Fig. 14 and can briefly be demonstrated as
follows: (1) A clayey silt surface layer, which is replaced in the
numerical model by a uniformly distributed load (50.0 kN/m2). This
layer provides permeable upper boundaries during the consolidation
and the excess pore-pressure dissipation phases. (2) A liquefiable sand
layer (10m thick) on which the structure is installed. The expected
behavior of this layer is nonlinear elastoplastic. Therefore, it is modeled

using the elasto-viscoplastic constitutive model with isotropic hard-
ening as introduced in Section 3. Here, in order to capture the two
significant liquefaction events of flow liquefaction and cyclic mobility,
the parameters in Table A3 for very loose and moderate-dense sands
are exploited. (3) A stiff clay layer (10 m thick) under the sand layer,
which is characterized by a low permeability parameter and assumed
to have a linear elastic response. If, instead, an elasto-viscoplastic
material model is used, large plastic strains would occur in this layer as
the seismic load is applied at its bottom, which makes the visualiza-
tion of the plastic strains in the upper sandy layer under the structure
of a difficult task. (4) A bedrock, at which the seismic load is applied,
marks the bottom boundary of the considered IBVP.

In the current treatment, the modeling of soil proceeds from
saturated, materially incompressible solid–fluid aggregates. More-
over, the domain of the boundary-value problem is chosen
sufficiently wide in order to avoid the influence of the lateral
boundaries on the response of the region of interest under the
structure. The loading steps during the whole numerical treatment
are illustrated in Fig. 15. The structure is assumed to be made of a
very stiff material, e.g. concrete with material parameters given in
Table 2, which can be approximated by a single-mass oscillator.
Here, depending on the nature of the foundation soil, the structure
might undergo settlement, uplifting, or overturning as will be
discussed throughout this example. The parameters of the elasto-
viscoplastic sand layer are given in Tables A2 and A4 with
kF ¼ 10�5 m=s, whereas the parameters of the elastic, stiff clay
layer are presented in Table A1 with kF ¼ 10�8 m=s.

As the aim of the following problem is to reveal the flow
liquefaction and the cyclic mobility in saturated soils under extreme
dynamic loadings and not to model a particular seismic event, the
given earthquake excitation (the velocity time history in our case) is
multiplied by amplification factors in order to get a clear and full soil
response. In particular, two cases of the initial density and amplifica-
tion factors are considered for the sand layer under the structure:
firstly, for the case of flow-liquefaction-prone very loose sand, the
seismic excitation is multiplied by a factor of 15. Secondly, for the
case of moderate-dense sand, the earthquake data is magnified by
a factor of 20 to manifest the cyclic mobility behavior. In the IBVP,
the earthquake velocity time history is used as input data, which is
compatible with the structure of the governing balance relations.
Moreover, an implicit monolithic time-stepping algorithm using the
Backward Euler (BE) scheme is exploited to solve the problem.

Fig. 10. Vertical displacement uS2, excess pore pressure p and plastic volumetric strain εVSp for a very loose sand with top permeable boundary at t ¼ 0:34 s. The applied
deformation is dynamic according to Fig. 9 and kF ¼ 10�6 m=s (deformed mesh scaled by a factor of 10).

6 The Kobe earthquake took place in Japan in 1995 with a magnitude of approx.
7.2 on the Richter Scale.

7 The PEER website [http://peer.berkeley.edu/smcat] provides a large variety of
reviewed and processed earthquake records, which are useful for engineering
applications.
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7.1. Flow liquefaction in a very loose sand

Starting with the case of a very loose sand layer, Fig. 16 shows
exemplary contour plots of the solid plastic volumetric strain
evolution εVSp. This type of soil collapse is known as seismic-
induced flow liquefaction, which leads to a punching shear failure
in the loose foundation soil.8 Unlike the perfectly undrained

CU triaxial tests, the behavior in the considered IBVP is partially
undrained with possible excess pore-pressure dissipation during
and after the dynamic loading. Herein, the excess pore pressure
firstly accumulates in certain sand zones with high plastic volu-
metric strain and then migrates due to the pore-pressure gradient
into neighboring zones of lower accumulated pore pressure. In this
regard, Fig. 17 shows exemplary time sequence contour plots of
the excess pore-water pressure p with deformed mesh (scaled by a
factor of 10).

Following this, one distinguishes between the oscillatory pore
pressure that appears in the elastic clay layer and the accumulative
pore pressure in the sand layer under the foundation. In the latter,
it is clear that the development of the plastic volumetric strain
in certain zones coincides with the pore-pressure build-up. The
interplay between the mean effective stress and the pore pressure
at point B (2, 2) in the soil domain is depicted in Fig. 18, top.
Herein, it is shown that the flow liquefaction takes place due to the
reduction of the mean effective stress and build-up of the pore

Fig. 11. Vertical displacement uS2, excess pore-pressure p and plastic volumetric strain εVSp for a very loose sand with top permeable boundary at t ¼ 6000 s. The applied
deformation is quasi-static according to Fig. 9 and kF ¼ 10�6 m=s (deformed mesh scaled by a factor of 10).

Fig. 12. Vertical displacement uS2, excess pore-pressure p and plastic volumetric strain εVSp for a very loose sand with top impermeable boundary at t ¼ 0:42 s. The applied
deformation is dynamic according to Fig. 9 and kF ¼ 10�6 m=s (deformed mesh scaled by a factor of 10).

8 Bearing capacity failure happens when the shear stresses in the soil exceed
its shear strength. Herein, depending on the foundation soil properties, three
modes of bearing capacity failure can be recognized, cf. [15]: (1) Punching shear
failure which usually occurs in loose foundation soils. In this case, no general shear
surface is generated and the main deformations happen in the soil directly below
the structure's footing. (2) Local shear failure which is normally seen in soils of
medium dense nature. This type of failure is an intermediate state between
punching and general shear collapse, where a partial shear surface can be
distinguished immediately below the footing. (3) General shear failure usually
happens in soils of dense or hard state and involves total rupture of the soil with a
continuous and distinct shear surface.
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pressure until most of the applied stress is carried by the pore fluid
(rS

E tends to zero). Moreover, the fast increase of the pore pressure
at a certain stage of the loading is accompanied by a drastic

increase of the plastic volumetric strain in the soil. In parti-
cular, the continuous increase of the pore-water pressure under
deviatoric stress conditions is associated with a contraction

Fig. 13. Vertical displacement uS2, excess pore-pressure p and plastic volumetric strain εVSp for a very loose sand with top permeable boundary at t ¼ 0:6 s. The applied
deformation is dynamic according to Fig. 9 and kF ¼ 10�2 m=s (deformed mesh scaled by a factor of 10).
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tendency of the loose sand layer (εVSpo0), cf. Fig. 18, bottom. Fig. 19
illustrates how the structure undergoes vertical as well as hor-
izontal deformations during the seismic excitation. Shortly before
the collapse, a rapid increase of the horizontal and the vertical
deformations as well as a small inclination of the structure can be
observed.

It is worth mentioning that in the case of a very loose
foundation sand layer with magnified seismic excitation by a
factor of 15, the flow liquefaction takes place during the earth-
quake excitation and leads to relatively large deformations, and

thus, the numerical calculation terminates before the post-lique-
faction (dissipation) phase, cf. Fig. 15.

7.2. Cyclic mobility in a moderate-dense sand

For a moderate-dense sand layer under the structure, Fig. 20
shows exemplary contour plots of the solid plastic volumetric

Table 2
Material parameters of the linear elastic concrete.

Parameter Symbol Value SI unit

1st Lamé constant of φS μS 1.25�1010 N/m2

2nd Lamé constant of φS λS 8.3�109 N/m2

Effective solid density ρSR 2800 kg/m3

Initial solidity nS
0S

0.99 –

Darcy permeability kF 10�6 m/s

sand

clay

sand

clay

sand

clay

sand

clay

t = 5007.08 s
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|εV

Sp |

t = 5006.97 s

t = 5006.84 s

t = 5006.70 s

Fig. 16. Time sequence of solid plastic volumetric strain contour plots for the case
of a very loose saturated sand layer under the structure (mesh deformation scaled
by a factor of 10).
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Fig. 17. Time sequence of pore pressure contour plots for the case of a very loose
soil layer under the foundation (mesh deformation scaled by a factor of 10).
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strain evolution εVSp at different times during the earthquake
loading. The behavior in Fig. 20 represents the seismically induced
cyclic mobility, where a limited accumulation of the pore pressure
takes place and the effective stress can never reach a zero value.
In this connection, Fig. 21, top, depicts the interplay between the
effective stress and the pore pressure at point B (2, 2) during the
application of the seismic excitation. Here, a slight build-up of the
pore-water pressure can be seen till t � 5004 s, which is followed
by a decrease of the pore pressure and an increase in the mean
effective stress. Fig. 21, bottom, shows that an immense increase in
the solid plastic volumetric strain (εVSp40-dilative) occurs when
the seismic excitation reaches its peak value at t � 5006:6 s
causing a clear plastic shear strain failure line under the structure
(cf. Fig. 20).

Fig. 22, top, depicts the vertical displacement time history at
points A1 (�2, �4) and A2 (2, �4) at the top of the structure. It is
clear that the vertical settlement in the case of moderate-dense
sand is less than that in the very loose sand layer case. Moreover,
at the end of the earthquake loading, a small inclination of the
structure can be observed. Fig. 22, bottom, shows the horizontal
motion of the structure during the seismic excitation. Here, a
residual horizontal displacement can be detected at the end of the
dynamic loading.

8. Conclusions

In this paper, the modeling of materially incompressible, fluid-
saturated porous media within a continuum-mechanical

framework has been investigated. For this, thermodynamically
consistent material models were used and a special attention has
been paid to the behavior under dynamic loading conditions. This
enabled us to understand and simulate important events in porous
media dynamics, such as liquefaction phenomena.

The macroscopic material modeling was carried out by exploit-
ing the Theory of Porous Media (TPM). Moreover, the treatment
proceeded from saturated biphasic solid-fluid aggregates and
was committed to the isothermal and geometrically linear scope.
Regarding the constitutive modeling, the material response of the
solid skeleton for the simulation of liquefaction-related phenom-
ena was considered elasto-viscoplastically. This entailed the
implementation of a hyperelastic model for the nonlinear elastic
behavior and the exploitation of a single-surface yield function for
modeling the plastic solid response.

The continuum-mechanical treatment of multiphasic materials
yields a volume-coupled formulation with the coupling inherent
in the governing conservation laws. To solve initial-boundary-
value problems of porous media dynamics in this work, the
governing PDE, basically the solid and fluid momentum balances
and the overall mass balance, were firstly discretized in space
using the FEM and secondly in time using the monolithic implicit
(Backward) Euler time-integration strategy. This way of treatment
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led to stable and robust solutions, provided that stable mixed
finite elements are used.

A considerable part of this paper was devoted to the investiga-
tion of liquefaction phenomena, which usually appear in saturated
granular materials after dynamic excitation. This included the
definitions and the description of liquefaction mechanisms, such
as the pore-fluid pressure accumulation and softening of the
granular structure, and factors influencing saturated soil behavior.
Under drained conditions, the volumetric strain is used as an
indicator for the contractive and the dilative behavior. However,
under undrained conditions, the contraction tendency leads to a
pore-pressure accumulation and a change in the mean effective
stress, which is governed by the principle of effective stresses. The
response of granular materials depends very much on the initial
density and leads to two significant physical events, which are the
‘flow liquefaction’ and the ‘cyclic mobility’.

The aforementioned features have been numerically captured by
applying the considered elasto-viscoplastic model to initial-boundary-
value problems of saturated soil dynamics in the two-dimensional
space. Therefore, it is very interesting for future implementations to
consider three-dimensional problems together with parallel computa-
tion using commercial FE codes. In this regard, a powerful scripting
environment for monolithic time integrations can be achieved by

introducing a linking interface between the coupled FE solver PANDAS
and the ABAQUS commercial FE package, see [35,72].

The presented investigation can serve as a base for future
studies and applications in the fields of porous media dynamics
and soil–structure interaction. In this, the methods and constitu-
tive models to describe coupled solid-fluid problems can success-
fully be used to simulate important phenomena in saturated
porous materials, such as different wave propagation and liquefac-
tion events. Furthermore, the discussed numerical strategies and
algorithms provide a good understanding of the solution behavior
and detailed steps for practical applications.

Appendix A. Material parameters

The material parameters that enter the elasto-viscoplastic model
have been identified based on triaxial experiments, conducted at the
Institute of Applied Mechanics, University of Stuttgart. For details
about the different experiments and the parameter identification and
optimization strategies, the reader is referred to the works by, e.g.,
[32,36,63,73] (Tables A1–A4).
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Table A3
Sand with different initial densities (classifications according to the relative density
Dr≔ðnS

0S�nS
minÞ=ðnS

max�nS
minÞ � 100%, cf. [62]), which requires different plastic

potential parameters.

Case nS
0S nS

max nS
min

Dr ð%Þ ψ1 ψ2

(1) 0.585 0.595 0.38 95 1.1 0.64
(2) 0.5 0.595 0.38 56 0.5 0.5
(3) 0.45 0.595 0.38 33 0.5 0.3
(4) 0.4 0.595 0.38 9.5 0.4 0.1

Table A1
Material parameters of the linear elastic solid skeleton response.

Parameter Symbol Value SI unit

1st Lamé constant of φS μS 5.583�106 N/m2

2nd Lamé constant of φS λS 8.375�106 N/m2

Effective solid density ρSR 2000 kg/m3

Effective fluid density ρFR 1000 kg/m3

Initial solidity nS
0S

0.67 –

Darcy permeability kF 10�8 m/s

Table A2
Material parameters of the nonlinear hyperelastic solid matrix.

Parameter Symbol Value SI unit

1st Lamé constant of φS μS 150�106 N/m2

Initial bulk modulus of φS kS0 28�106 N/m2

Nonlinear bulk modulus of φS kS1 43�106 N/m2

Effective solid density ρSR 1550 kg/m3

Effective pore fluid density ρFR 1000 kg/m3

Initial volume fraction of φS nS
0S

0.585 –

Max. volume fraction of φS nS
max 0.595 –

Table A4
Parameters of the viscoplasticity model: basic viscoplasticity parameters P (1),
plastic potential dilatancy parameters P (2), initial values of the hardening/
softening plasticity parameters P (3), the final values P (4), the volumetric isotropic
hardening P (5), and the deviatoric isotropic hardening P (6).

Parameter Symbol Sand (1) Sand (2) SI unit

P (1) α 0.01 0.01 –

κ 0.1�103 2.0�103 m2/N
m 0.5454 0.5454 –

ηr 10�3 10�3 s
r 1.5 1.5 –

s0 0.1�103 2.0�103 N/m2

P (2) ψ1 0.97 0.4/0.5 –

ψ2 0.48 0.1/0.3 –

P (3) δ0 0.01�10�6 0.008�10�6 m2/N
ϵ0 0.081�10�6 0.01�10�6 m2/N
β0 0.105 0.11 –

γ0 0.0 0.0 –

P (4)
δ
⋆ 0.005�10�6 0.005�10�6 m2/N

ϵ
⋆ 0.008�10�6 0.0135�10�6 m2/N

β
⋆ 0.263 0.0 –

γ
⋆ 1.6 1.6 –

P (5) CV
δ

�100�10�6 �90�10�6 –

CV
ϵ

�300�10�6 �300�10�6 –

CV
β

�58 �58 –

CV
γ

�10 �10 –

Table A4 (continued )

Parameter Symbol Sand (1) Sand (2) SI unit

P (6) CD
δ

25�10�6 15.9�10�6 –

CD
ϵ

300�10�6 300�10�6 –

CD
β

350 350 –

CD
γ

35 35 –
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