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The electro- and magneto-optic effects in a LiNbO3 crystal are characterized. In particular, we set up an
amplitude modulator with a half-wave voltage of 1005V and confirmed the Bessel function dependence of the
modulated sideband amplitudes when the device is operated as a phase modulator. We’ve observed the Faraday
effect with a net polarization rotation of up to 50o and measured a Verdet coefficient of 9.6x10−5 rad/G cm.
We also investigate the performance of a commercial acousto-optic modulator(AOM) that uses a dense flint
glass as the optical medium. The AOM is used to deflect a beam through an angle of 14mrad (∼106 resolvable
spots) across its 100MHz bandwidth. The periodic exchange of power between the undeflected and diffracted
beam as the acoustic intensity increases is also observed. c© 2010 Optical Society of America

1. Introduction

The ability to modify a material’s dielectric tensor by
means of applied heat, electric, magnetic or acoustic
fields provides a convenient way to control the phase
or intensity of the light propagating through the ma-
terial. This modulation has many useful applications
such as impression of information onto optical beams
for telecommunications, Q-switching of lasers or optical
beam deflection.

It was shown in a previous paper [1] that an
anisotropic material can have non-equal permittivity
eigenvalues which can lead to different field polarization
components experiencing different indices of refraction,
thus accruing a different phase and rotating the state of
polarization, depending on the propagation direction.

The effect of an applied field can be treated as a per-
turbation to the dielectric tensor, ε = εo + ∆ε, where the
relationship between ∆ε and the applied field depends on
the interaction taking place. In the following sections,
we examine the specifics of the electro-, magneto-, and
acousto-optic interactions and compare our experimen-
tal data with theory.

2. Electro-Optic Modulation

The case of an applied electric field is usually treated
using the impermeability tensor instead, b = ε−1, with
the interaction characterized by:

∆bij =
∑

k=x,y,z

rijkEk, (1)

where r is the second order, electro-optic tensor which
can be written as a 2D (6x3) matrix in contracted nota-
tion1 due to the symmetry of b for a lossless crystal.

For LiNbO3 for example [2],

∆b =


0 −r22 r13
0 r22 r13
0 0 r33
0 r42 0
r42 0 0
−r22 0 0


[

Ex

Ey

Ez

]
=


−r22Ey + r13Ez

r22Ey + r13Ez

r33Ez

r42Ey

r42Ex

−r22Ex

 ,

1rijk → rlk, where l = 1− 6 for ij = 11, 22, 33, 23, 13, 23.

and choosing the applied field as E = Eaẑ, one has:

b =

(
1/n2

o + r13Ea 0 0
0 1/n2

o + r13Ea 0
0 0 1/n2

e + r33Ea

)
(2)

which leaves the principal axes unchanged. The mate-
rial remains uniaxial but now the indices have a linear
dependence on the applied field:

no(Ea) ≈ no −
1

2
n3or13Ea

ne(Ea) ≈ ne −
1

2
n3er33Ea (3)

One can build an amplitude modulator if the propa-
gating field is polarized at some angle to the eigenpo-
larizations. The two polarization components pick up
different phases, rotate the polarization state, and a
polarizer after the crystal attenuates the field by an
amount proportional to the applied field. A field prop-
agating in LiNbO3 along the x- or y-axis, polarized at
45o to z-axis picks up a relative phase shift of ∆φ =
2π[(ne − no) − 1

2 (n3er33 − n3or13)Ea]L/λ. If the crystal
dimension along the z-axis is d, then the applied field is
Ea = Va/d, and the voltage required to incur a phase of
π (half-wave) is

V1/2 =
λ

n3er33 − n3or13
d

L
(4)

.
We setup an amplitude modulator with a LiNbO3

crystal between crossed polarizers and measured the
transmitted power from a He-Ne laser as a voltage was
applied across the crystal’s x-axis. The data illustrated
in figure 1 shows the expected sinusoidal output as the
beam’s linear polarization is rotated about the propa-
gation axis. The measured half-wave voltage from this
modulator arrangement was 1004.6 V, which is within
the expected range of values given by equation 4 for
LiNbO3 at 633nm: V1/2 = 2810.6(d/L). Unfortunately
we only measured the cyrstal’s length (1cm) so a theo-
retical value cannot be calculated, however, a required
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crystal height of 3.6 mm is certainly likely given the mod-
ulator’s 2mm aperture.

Fig. 1. Transmission through amplitude modulator ver-
sus modulator voltage.

Alternatively, if one propagates a field polarized along
one of the crystal’s eigenpolarizations, then one can mod-
ulate the phase without altering the polarization (and
possibly the amplitude if any polarizers are present). The
accrued phase is given by ∆φi = 2πni(Ea)L/λ, where L
is the crystal length. If the applied field is sinusoidal,
Ea(t) = Ea sinwmt, then the resulting phase-modulated
field has the form E = Eoe

i(wt+φo−δi sinwmt), which can
be written as:

E = Eoe
iφo

∑
n

Jn(δi)e
i(w+nwm)t, (5)

with a modulation index is given by

δi = (πn3i ri3/λ)(L/d)Va (6)

This expression shows that the energy is distributed in
sidebands with Bessel function amplitudes that vary as
a function of the modulation index δi(Va).

We adjusted the polarizer before the crystal to en-
sure the input polarization was along one of the crystal’s
eigenpolarizations and drove the modulator with an RF-
amplified signal at 100MHz from a function generator.
We then filtered the output to reject the fundamental
and measured the sideband amplitude as a function of
modulator voltage. The result is shown in figure 2 and
shows good agreement with a fit to the square of the
sideband Bessel amplitudes of equation 5. The fit results
in a modulation index of .0027 Va, which doesn’t exactly
match the expected .0046 Va from equation 6 for polar-
ization along ẑ, but is at least between this value and
that for modulation of a beam polarized along ŷ of .0014
Va. This indicates that the input polarization wasn’t ex-
actly along one of the eigenpolarizations.

3. Magneto-Optic Modulation

In the case of an applied magnetic field, the interaction
can be described as:

∆εij =
∑

k=x,y,z

gijkBk, (7)

Fig. 2. Sideband amplitude of a phase-modulated beam
versus modulator voltage.

where gijk = ieijkgk is the magneto-optic tensor, and
eijk is the Levi-Cevita symbol. For an applied field B =
Baẑ on a uniaxial crystal one then has:

ε =

 n2o igzBa 0
−igzBa n2o 0

0 0 n2e

 (8)

which has a principal axes system that consists of the
right and left circular polarization eigenvectors ĉ± =
1√
2
(1,∓i, 0), and ẑ. A field that propagates along ẑ de-

composes into this basis, and the two polarization com-
ponents experience different indices of refraction:

n±(Ba) ≈ no ∓
gzBa
2no

(9)

which results in a relative phase difference between
the two polarization components and thus a polariza-
tion rotation. The amount of rotation can be quantified
by considering a field that is initially polarized along
x̂ = 1√

2
(ĉ+ + ĉ−). After some crystal length L, the field

exits polarized along

1√
2
eiφo [ĉ+e

−iφ(Ba)+ĉ−e
+iφ(Ba)] = eiφo

 cosφ(Ba)
− sinφ(Ba)

0

 ,
where it is evident the polarization rotates by an angle

φ(Ba) =
πgzBaL

noλ
→ ρ =

dφ

dL
= V Ba, (10)

with V = πgz/noλ as the Verdet constant. To measure
this effect we aligned a LiNbO3 to be centered on a large
cylindrical permanent magnet and moved the magnet
away from the crystal to vary the longitudinal magnetic
field while monitoring the transmitted power after a po-
larizer. The magnetic field at the crystal was measured
using a Tesla meter. The calculated polarization rota-
tion as a function of applied magnetic field is shown in
figure 3 to follow the expected linear relationship from

2



equation 10. The slope of the line yields a Verdet coeffi-
cient of V=55.24 deg/T cm=9.6x10−5 rad/G cm, and a
corresponding value of gz=4.4x10−5 1/T, which justifies
the approximation for equation 9.

Fig. 3. Faraday Effect: polarization rotation as a result
of applied magnetic field.

4. Acousto-Optic Modulation

In the case of an applied acoustic field, the interaction
can be described as:

∆bij =
∑

k=x,y,z

pijklSkl, (11)

where pijkl is the photo-elastic (4th rank) tensor and
Skl is the elastic strain. For LiNbO3, pijkl in reduced
subscript notation is [2]:

p =

!

p11 p12 p13 p14 0 0
p12 p11 p13 −p14 0 0
p31 p31 p33 0 0 0
p41 −p41 0 p44 0 0
0 0 0 0 p44 p41
0 0 0 0 p14 p44


The elastic strain is related to the displacement gradients
as:

Skl =
1

2

(
∂µi
∂xj

+
∂µj
∂xi

)
,

so considering an acoustic wave along the z-axis, µ =
uei(wat−kaz)ẑ, we see that the only nonzero term is
S3 = Szz = Sae

i(wat−kaz), with Sa = −ikau and the
resulting impermeability tensor from equation 11 takes
on the same form as that of equation 2 but with pi3S3

instead of ri3Ea. Inverting, we get

∆εii ≈ −pi3n4iSaei(wat−kaz), (12)

which, from the slowly varying envelope approximation
to the wave equation:

ik
∂A

∂ρ
ei(wt−k·r) =

w2

c2
(∆ε ·E), (13)

we see can cause propagation at different frequencies and
along different wavevectors. These new waves are essen-
tially diffracted from the grating setup by the acoustic
wave. Combining equations 12 and 13 we can calculate
how these fields evolve:

∂Ai
∂ρi

= iγAde
i(wd±wa−wi)te−i(kd±ka−ki)·r, (14)

∂Ad
∂ρd

= iγAie
i(wd±wa−wi)te+i(kd±ka−ki)·r,

with a coupling coefficient γ = −πpl3n3l Sa/2λ, for an
l-axis polarized incident wave. If the argument in the
exponentials is non-zero, the average of these derivatives
vanishes and no diffracted waves are generated. We must
then have kd = ki ± ka, which is the Bragg condition, as
well as wd = wi±wa which is simply energy conservation.
Since wi >> wa, wd ≈ wi = w and kd ≈ ki = k, the
Bragg condition gives 2k sin θB = ka, where θB is the
Bragg angle between the incident wave and the acoustic
wavefronts. The deflection angle between the two waves
is then 2θB , and since λafa = va, where fa is the acoustic
frequency and va is the acoustic speed in the material,
we have:

θdef = λfa/nva (15)

To verify this, we used a commercial AOM (IntraAc-
tion AOM-80) which uses a dense flint glass as the op-
tical medium and measured the deflection of a He-Ne
laser beam a few meters away as a function of driv-
ing frequency. The results are plotted in figure 4 which
shows the expected linear dependence with a slope of
.147 mrad/MHz, which is close to the calculated value
of .11 mrad/MHz from equation 15.

Fig. 4. Deflection of first order diffracted beam versus
modulator frequency.

The absolute deflection in going from 30 to 130 MHz
was 14 mrad and an estimate of the diffraction angle
gives θdif = λ/nD ≈ .131 mrad, using an estimated
beam diameter of D=3mm. This results in a total of 106
resolvable spots that can be observed over this frequency
range.

We also measured the transmitted power of the 0th
order (non-diffracted) beam as a function of modulator
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voltage at a constant modulation frequency of 40MHz.
The results are shown in figure 5.

Fig. 5. Transmitted power of the 0th order beam as func-
tion modulator voltage.

The transmitted power exhibits a sinusoidal variation
which is what we expect since the power oscillates be-
tween the undeflected and diffracted waves as the acous-
tic intensity increases. This can be seen with the help of
equation 14, which when the Bragg condition is met,can
be solved to give

Ad(ρ) = iAi(0) sin(γ cos θBρ) (16)

Ai(ρ) = Ai(0) cos(γ cos θBρ)

From this measurement we can calculate a diffraction
efficiency of at most 40% which is considerably lower
than the spec value of 70%. A possible reason for this
is that the all other light sources, in particular the first
order diffracted beam, weren’t properly blocked from the
detector, resulting in higher values of the transmission
at higher voltages.

As a last experiment, we measured the diffraction effi-
ciency of the modulator as a function of frequency. This
was done by spatially filtering the output so that only
the first order diffraction could be measured and shifting
the detector to the new diffracted spot position as the
modulator frequency is increased. This measurement was
performed first without altering the orientation of the
modulator, and repeated with the modulator realigned
to obtain the proper Bragg angle at each frequency. The
results are shown in figure 6.

It is evident that it is important to align the laser and
acoustic beam as the modulator frequency is changed
in order to phase-match properly (achieve Bragg con-
dition) and maximize efficiency. The measured FWHM
bandwidth in this case was ∼70 MHz.

5. Conclusion

We have investigated a number of optical modulator ar-
rangements. Applying a voltage across a LiNbO3 crys-
tal we setup an amplitude modulator with a half-wave

Fig. 6. Diffraction Efficiency as a function of modulator
driving frequency.

voltage of 1005V and confirmed the bessel function de-
pendence of the modulated sideband amplitudes when
the device is operated as a phase modulator. We’ve also
observed the Faraday effect in LiNbO3 with a net polar-
ization rotation of up to 50o (limited by our setup but
enough to allow operation as an isolator) and measured
the Verdet coefficient to be 9.6x10−5 rad/G cm.Lastly,
we used a commercial acoustooptic modulator to deflect
a beam through 14mrad, ∼106 resolvable spots, across
the modulator’s frequency range of 30 to 130 MHz and
verified the expected periodic exchange of power between
the undeflected and diffracted beam.
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