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Lossless Data Embedding Using Generalized
Statistical Quantity Histogram
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Abstract—Histogram-based lossless data embedding (LDE) has
been recognized as an effective and efficient way for copyright
protection of multimedia. Recently, a LDE method using the
statistical quantity histogram has achieved good performance,
which utilizes the similarity of the arithmetic average of differ-
ence histogram (AADH) to reduce the diversity of images and
ensure the stable performance of LDE. However, this method
is strongly dependent on some assumptions, which limits its
applications in practice. In addition, the capacities of the images
with the flat AADH, e.g., texture images, are a little bit low.
For this purpose, we develop a novel framework for LDE
by incorporating the merits from the generalized statistical
quantity histogram (GSQH) and the histogram-based embedding.
Algorithmically, we design the GSQH driven LDE framework
carefully so that it: 1) utilizes the similarity and sparsity of GSQH
to construct an efficient embedding carrier, leading to a general
and stable framework; 2) is widely adaptable for different kinds
of images, due to the usage of the divide-and-conquer strategy;
3) is scalable for different capacity requirements and avoids the
capacity problems caused by the flat histogram distribution;
4) is conditionally robust against JPEG compression under a
suitable scale factor; and 5) is secure for copyright protection
because of the safe storage and transmission of side information.
Thorough experiments over three kinds of images demonstrate
the effectiveness of the proposed framework.

Index Terms—Generalized statistical quantity histogram,
lossless data embedding, reversibility, video and image water-
marking.
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I. Introduction

THE OBJECTIVE of lossless data embedding (LDE) [10],
[12] is to design a embedding strategy to hide the

messages into the multimedia losslessly. That is to say, the
host multimedia can be recovered without any distortion after
the hidden messages are extracted. The advantage has been
widely demonstrated in many sensitive scenarios, e.g., medical
diagnosis, remote sensing, and law enforcement.

Beginning with Barton’s work [4], researchers have tried to
obtain effective lossless embedding with different embedding
strategies, e.g., modulo arithmetic addition [18], compression
[11], difference expansion [25], and histogram [2], [3], [5].
Recently, a number of efforts [1], [19], [21] have been made
for histogram-based methods and we can classify them into
two categories: grayscale histogram (GH)-based and statistical
quantity histogram (SQH)-based ones. Although the GH-based
methods have achieved the advantages, e.g., low computational
complexity and high visual quality, they fail to consider the di-
versity of grayscale histograms for various images. This makes
their performance unstable. Moreover, the pure capacity of the
GH-based methods is still a little bit low. As a consequence,
our previous work [1] explored the statistical characteristics
of images and shifted a SQH, i.e., arithmetic average of
difference histogram (AADH), toward left and right to embed
the messages. Experimental results have demonstrated that this
method achieves promising performance for image quality and
capacity. However, it strongly relies on the assumptions, e.g.,
the two peak points in AADH are regarded as −1 and 0,
leading to a gap between it and real scenarios. Moreover, the
capacities for texture images are a little bit lower than that
for smooth images, which is caused by the flat distribution
of AADH in texture images. Therefore, there is still a big
room to further improve the performance of AADH-based
LDE method.

In this paper, to target the aforementioned problems, to
further improve the performance of SQH-based LDE, and to
broaden the SQH related applications, a novel generalized
SQH (GSQH) driven framework is proposed for LDE. This
framework is constructed by GSQH, embedding zone selec-
tion, prevention of overflow and underflow, side information
storage, and embedding and extraction procedures together.
The GSQH extracts a couple of histograms as the embedding
carrier, e.g., prediction error histogram (PEH) [9], differ-
ence histogram (DH) [24], AADH [1], to embed messages.
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Fig. 1. LDE framework using GSQHH. (a) Construction of GSQH. (b) Embedding zone selection. (c) Prevention of overflow and underflow. (d) Side
information storage. (e) Embedding and extraction procedures.

Following the embedding zone selection as well as the pre-
vention of overflow and underflow, the lossless embedding is
done. Meanwhile, to improve the security of the framework,
the encryption and lossless compression techniques are utilized
to store and transmit the side information efficiently and safely.
Extensive experiments based on smooth images, texture im-
ages, and medical images, have been conducted to demonstrate
the effectiveness of the proposed framework.

The remainder of this paper is organized as follows.
In Section II, the proposed GSQH driven framework and
the details of the LDE are elaborated. Experimental results
and performance analysis are presented in Section III, and
Section IV is our conclusion.

II. Proposed Scheme

As aforementioned, the AADH-based method [1] has two
particular drawbacks: assumptions associated with SQHs of
input images, low capacity especially for the images with
flat AADH. In this section we describe our solutions to
these drawbacks, the GSQH driven LDE framework. This
framework responds to these problems by constructing the
GSQH, utilizing the scale factor for embedding zone selection,
designing the efficient strategies to handle the overflow and

underflow of pixels as well as side information, and proposing
a generalized additive spread spectrum technique to model the
embedding and extraction, as shown in Fig. 1.

A. The Generalized Statistical Quantity Histogram

For histogram-based LDE methods, the distribution of his-
togram has an important influence on the performance. In
the proposed framework, a couple of histograms observing
Laplacian-like distribution, including PEH, DH, and AADH,
are contained in GSQH, as shown in Fig. 2. The similar
distributions can reduce the diversity of various images and
guarantee the stability of the LDE methods. Among these
SQHs, AADH is block based, which means the capacity can
be adjusted flexibly [1]. Moreover, this blocking scheme can
provide possibility for achieving robustness. Therefore, we
focus on AADH and introduce the generation of it in detail.

Consider a given n-bit image with size of M × N, we first
divided it into non-overlapping blocks denoted as

� =

{
Bi, i = 1, 2, · · ·

⌊
M

mb

⌋
×

⌊
N

nb

⌋}
(1)

in which mb × nb is the block size, nb is even number, and i

indicates the index of each block. For Bi =
{

B
(p)
i

}mb×nb

p=1
, the
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Fig. 2. Examples of Laplace distribution and GSQHs, in which the first one
is the Laplace distribution with μ = 0 and λ = 1 and others are the SQHs, i.e.,
PEH [9], DH [24], and AADH [1]. For clearness, all SQHs are normalized
into the range from 0 to 0.5 and shifted toward right.

sets A and Ā are defined as a partition of it and |A| =
∣∣Ā∣∣ = k.

| · | is the cardinality of a set, i.e., the number of elements of
a set. For the ith block, the arithmetic average of difference
(AAD), si, is

si =
1

k

k∑
j=1

(
aj − bj

)
(2)

where
(
aj, bj

)
is called a pair, aj ∈ A, bj ∈ Ā, and 1 ≤ j ≤ k.

In order to obtain a high capacity, si is expected to be very
close to zero according to [20]. Therefore, an optimization
problem is formulated as

A∗ = arg max
A

P (abs (si) < ε |A ) (3)

where ε is any positive integer. Then, how to find a suitable
A is a key issue to solve this optimization problem. Inspired
by the work in [20], we choose A with

A =

{
B

(j)
i

∣∣∣∣ j = 1
2 [1 + cos (πr) cos (πc)] [(r − 1) · nb + c]

j > 0

}

(4)
in which (r, c) denotes the location of an arbitrary element in
Bi and 1 ≤ r ≤ mb and 1 ≤ c ≤ nb. Based on this, the AADH
of an image can be generated by applying (2) to all blocks,
which will act as the embedding carrier in the next subsection.
For convenience, hx and num(hx) denote the horizontal and
vertical coordinates of the xth value in AADH, respectively,
and H is the set of hx.

B. Embedding Zone Selection

For a given GSQH, e.g., AADH, the embedding zone
selection determines where the messages will be embedded.
In this framework, the embedding zone EZ is defined as

EZ =
[
EZL − δ, EZL

]⋃ [
EZR, EZR + δ

]
(5)

where δ ≥ 0 is a scale factor

EZR = arg max
hxεH

num (hx) (6)

and

EZL = arg max
hxεH,hx �=EZR

num (hx) . (7)

Without loss of generality, we suppose EZL ≤ EZR. In this
case, the capacity is equal to

δ∑
κ=0

(
num

(
EZL − κ

)
+ num

(
EZR + κ

))
. (8)

From (8), it can be seen the capacity is influenced by three
factors: δ, EZL, and EZR. Given EZL and EZR, we can
flexibly adjust the capacity by setting suitable δ. Note that
the definition of EZ in [1] can be regarded as a special case
of (5) when δ = 0, EZL = −1 and EZR = 0.

C. Prevention of Overflow and Underflow

In LDE, how to prevent overflow and underflow of pixels
is essential. In this paper, a novel divide-and-conquer strategy
is proposed to solve this problem. First, we classify the
image blocks into three types via a discriminative function
F : � → D, in which D =

{
Rg, Sg, U

}
denotes the three

types of blocks: regular, singular, and unavailable. Given a
block with si ≥ EZR and the scale factor δ, the discriminative
function is defined as

F =

⎧⎨
⎩

Rg, if
(
aj < T

)
Sg, if

(
aj ≥ T

)
and

(
bj > δ

)
U, if

(
aj ≥ T

)
and

(
bj ≤ δ

) (9)

in which T = 2n − δ − 1. Thereafter, different strategies are
adopted to modify si according to (2). For regular blocks,
aj ← aj+δ; and bj ← bj−δ for singular blocks. When a block
is unavailable, it will be discarded and si keeps intact. Because
the AADH is symmetric, F is easily extended to the case when
si ≤ EZL. With the strategy, the proposed framework can be
applied to various images. In order to recover the host image,
the locations of singular and unavailable blocks are necessary
in the receiver side. How to store and transmit side information
to the receiver side is another key problem in LDE, which will
be discussed in the next subsection.

D. Side Information Storage

As known, the side information is important for the receiver
side to extract the hidden messages, so it is valuable to
store and transmit side information efficiently and safely. In
our framework, both the encryption and lossless compression
techniques are adopted to solve this problem. On one hand,
the location information of unavailable blocks, and several
parameters, e.g., the scale factor and block size, are encrypted
and transmitted to the receiver side via the ancillary channel.
They served as a cryptographic key in the extraction process
of the hidden messages. On the other hand, the location
information of singular blocks is embedded into the host
image as well as watermarks. To be specific, a flag matrix
Mf , which indicates where the singular blocks are, is first
compressed with a lossless compression algorithm, e.g., run-
length encoding (RLE). Following this, the compressed matrix
Mc is concatenated with watermarks to form the final binary
message stream BS, which will be embedded into the host
image in the next subsection.
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Fig. 3. Example of the stego AADH.

E. Embedding and Extraction Procedures

Consider a given block with AAD si and a message bit bsi,
we define the embedding rule as a generalized additive spread
spectrum technique in this framework, denoted by

s̃i = si + t (δ) g (si, bsi) (10)

in which the weight function t (δ) determines the embedding
strength, and the feature function g (si, bsi) indicates the
changes of si in different cases. These two functions are
defined as

t (δ) = δ + 1 (11)

and

g (si, bsi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, si < EZL − δ

−bsi, EZL − δ ≤ si ≤ EZL

0, EZL < si < EZR

bsi, EZR ≤ si ≤ EZR + δ

1, si > EZR + δ

(12)

respectively. Fig. 3 shows an example of the stego AADH,
in which the binary bits “0” are embedded into the central
part of the histogram, denoted as Z0 = EZ; and bits “1” are
embedded into the side parts, denoted as

Z1 =
[
EZL − 2δ − 1, EZL − δ − 1

]
⋃ [

EZR + δ + 1, EZR + 2δ + 1
]
.

(13)

Corresponding to the embedding process, we can deduce
the extraction rules as

s′
i = s̃i − t (δ) g

(
s̃i, bs′

i

)
(14)

and

bs′
i =

{
1, s̃i ∈ Z1

0, s̃i ∈ Z0
(15)

in which s′
i represents the AAD of the recovered block and bs′

i

means the extracted message bit. Because the embedding and
extraction rules are reversible, both the host images and the
hidden messages can be recovered losslessly when the stego
images are not attacked.

III. Experimental Results

In this section, we evaluate the performance of the proposed
framework based on the following experiments: the capacity
experiment, invisibility experiment, robustness experiment,
and comparison experiment, which are conducted on 300 test
images, including smooth images, texture images, and medical
images. At the beginning of this section, we first brief the
image databases for evaluation.

The CVG-UGR image database [28] has been recognized as
an important standard database for measuring the performance
of data hiding methods, from which we select 100 images to
constitute the smooth images. Also, we pick up 100 texture
images from Brodatz textures database [29], which has been
widely used by many popular databases, e.g., USC-SIPI image
database. As for 100 medical images, we choose 30 MR and
MRI images from DICOM sample image sets [30], 35 CT and
35 PET CT images from OsiriX website [31], respectively. To
facilitate experimental comparison, all test images have a fixed
size of 512 × 512 × 8.

A. Capacity Experiment

In the proposed framework, the capacity is mainly influ-
enced by the two factors: the block size and the scale factor.
Given the block size, the larger the scale factor is, the more the
capacity is. Given the scale factor, the smaller the block size is,
the more the capacity is. Taking the image D2 as an example,
we first make a qualitative analysis of this relationship, as
shown in Fig. 4, herein, ξ is the block size, EZL and EZR are
assumed to be equal to the origin of coordinate. According to
(8), the capacity can be approximately regarded as the area
of the region formed by the AADH envelope and δ, shown
as the shadow region. On one hand, suppose ξ = ξ2, with the
increase of δ, i.e., δ1 → δ2, the area becomes larger, namely,
the capacity is increased. On the other hand, suppose δ = δ1,
the capacity is also increased with the decrease of ξ from ξ1

to ξ2. To further show this relationship, we conducted capacity
experiment over 300 test images. The partial experimental
results are presented in Fig. 5 and Table I. Fig. 5 shows the
trend of capacity with the changes of ξ and δ for the image
Lena. As shown, the capacity is increased sharply with δ when
the block is small. For the bigger blocks, the increase becomes
slow. Correspondingly, the influence of the block size on the
capacity is more significant for the large scale factors than for
the small ones. Table I shows the pure capacities for three
kinds of images at different block sizes from 2 × 2 to 6 × 6
(by column), and different scale factors from 0 to 4 (by row).

To further illustrate how the block size and scale factor
influence the pure capacity, we investigate the effects from
two aspects in the following parts.

1) Effects of the Block Size ξ on Pure Capacity: Given the
scale factor δ. the pure capacity is denoted as

PC =

(⌊

ξ

⌋
− NU

)
· 
 (16)

where 
 is the image size, �·� means rounding down, NU is
the number of unavailable blocks, and 
 is a value roughly
representing the range of EZ determined by δ. In practical
scenario, statistical experimental results show NU is always
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Fig. 4. Qualitative analysis of the effects of the scale factor and block size
on capacity.

Fig. 5. Trend of capacity with the changes of the block size ξ and scale
factor δ for Lena.

Fig. 6. Effects of the block size ξ on the pure capacity over 300 test images.

small, so the pure capacity depends on the block size ξ mainly.
The larger ξ is, the lower the pure capacity is; and vice versa.
Fig. 6 shows the statistical average of the pure capacities for
block size ξ from 2 × 2 to 12 × 12 with step 2, herein, the
scale factor δ is 0. Also observe that the pure capacity of the
medical images is the highest at the same block size.

2) Effects of the Scale Factor δ on Pure Capacity: In this
part, we will examine the effects of the scale factor δ on pure

capacity. As discussed in Section II, the flag matrix together
with watermarks is embedded into the host image. So the pure
capacity is determined by the two parts: the capacity, C, and
the compressed flag matrix, Mc, denoted as

PC = C − OMc

=
δ∑

k=0

(
num(EZL − κ) + num

(
EZR + κ

)) − OMc
(17)

where OMc
is the size of Mc. Apart from C, Mc is also

influenced by the scale factor δ. To explore the effects of δ

on them, Fig. 7 compares the sizes of C and Mc for different
kinds of images when the block size is set to be 1 × 2. In this
experiment, we conduct 3000 statistical experiments over the
aforementioned databases, and the scale factor δ changes from
0 to 9 with step 1. The statistical average shows the sizes of
C and Mc increase with the increase of δ, and the change of
C is more significant than that of Mc. This is the reason why
the pure capacity can be improved by increasing δ. Based on
this, Fig. 8 shows statistical average of the changes of the pure
capacity with the increase of δ from 0 to 9 for three kinds of
images, which further demonstrates the effectiveness of δ on
improving the pure capacity. An exception is when δ > 4 is
applied to medical images. In this case, the pure capacity gets
decreasing because the increment of Mc is larger than that
of C.

B. Invisibility Experiment

In this subsection, invisibility experiments are conducted
to evaluate the distortion of the stego images versus the host
ones. It is universally agreed that the peak signal-to-noise ratio
(PSNR) is used as an evaluation criteria by

PSNR = 10 log

(
2552

MSE

)
(18)

where MSE is the mean squared error between the stego image
and the host one. Based on (10), it can be seen that two factors
influence MSE: the scale factor and changed AADs. Suppose
the size of the host image is 
, and the number of the changed
AADs is λ, MSE can be obtained by

MSE =
1


 · λ · ξ

2
· t2 (δ) (19)

and

λ =
∑

κ≥δ+1

num
(
EZL − κ

)
+ num

(
EZR + κ

)
+ γ (20)

where γ means the number of the bit “1” in the binary message
stream. With (19), the PSNR can be represented by

PSNR = 10 log

(
2552 · 2 · 

λ · ξ · t2 (δ)

)
. (21)

In the worse case, all AADs will be changed, namely, 
 = λ·ξ,
the lower bound of PSNR is

PSNR = 10 log

(
2552 · 2

t2 (δ)

)
. (22)
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TABLE I

Pure Capacities for Smooth Images, Texture Images, and Medical Images

Image δ Pure Capacity (bit) Image δ Pure Capacity (bit) Image δ Pure Capacity (bit)
2 × 2 4 × 4 6 × 6 2 × 2 4 × 4 6 × 6 2 × 2 4 × 4 6 × 6

Lena 0 20 762 9350 5425 D1 0 18 096 9714 5736 M1 0 52 196 15 593 7137
1 36 275 13 734 6814 1 33 466 13 977 6978 1 59 991 16 157 7198
2 46 715 15 247 7121 2 44 243 15 455 7159 2 62 542 16 311 7199
3 53 176 15 820 7194 3 51 858 15 920 7193 3 63 723 16 354 7199
4 57 142 16 084 7208 4 56 661 16 110 7198 4 64 358 16 365 7199

Boat 0 20 162 9635 5894 D25 0 31 610 11 917 5814 M2 0 50 459 15 041 7045
1 36 109 13 729 6924 1 45 129 14 192 6786 1 56 963 15 924 7189
2 46 446 15 178 7145 2 51 162 15 126 7063 2 59 922 16 210 7198
3 52 519 15 762 7201 3 53 969 15 628 7144 3 61 651 16 307 7199
4 56 210 16 067 7210 4 55 974 15 916 7165 4 62 810 16 340 7199

Sailboat 0 11 556 5123 3890 D30 0 24 917 11 295 5981 M3 0 52 488 15 699 7137
1 21 473 8967 5904 1 41 580 14 520 6851 1 59 946 16 205 7204
2 29 889 11 751 6785 2 51 159 15 443 7048 2 62 537 16 317 7210
3 36 726 13 617 7065 3 56 279 15 780 7071 3 63 756 16 355 7211
4 42 623 14 844 7156 4 59 086 15 944 7083 4 64 426 16 360 7211

Blackb 0 23 048 9883 5749 D43 0 26 943 11 131 5397 M4 0 55 826 15 921 7181
1 40 997 14 473 7046 1 42 391 13 224 6173 1 62 325 16 279 7198
2 52 455 15 753 7188 2 50 057 13 834 6605 2 64 054 16 323 7198
3 58 530 16 099 7207 3 53 488 14 220 6891 3 64 747 16 344 7198
4 61 475 16 244 7211 4 55 120 14 590 7050 4 65 088 16 351 7198

Airplane 0 30 101 12 009 6210 D59 0 28 933 12 806 6529 M5 0 50 259 15 191 7067
1 45 722 14 641 6960 1 45 781 15 325 7118 1 57 637 15 977 7184
2 53 232 15 548 7162 2 54 555 15 981 7177 2 60 853 16 195 7197
3 57 281 15 975 7207 3 59 011 16 184 7190 3 62 522 16 278 7198
4 59 483 16 173 7211 4 61 199 16 233 7165 4 63 548 16 318 7199

Crowd 0 30 319 10 580 5564 D70 0 28 363 2915 1525 M6 0 49 061 15 227 7037
1 42 393 13 341 6554 1 28 482 4685 2735 1 57 813 16 017 7194
2 48 685 14 604 6773 2 29 986 6458 3632 2 61 043 16 216 7207
3 52 479 15 169 6789 3 30 077 8138 4421 3 62 678 16 303 7210
4 55 322 15 403 6789 4 39 522 9183 4974 4 63 541 16 331 7211

By contrast, when all the bits of the binary message stream
are “0,” the upper bound of PSNR is

PSNR = 10 log

(
2552 · 2 · 

λ∗ · ξ · t2 (δ)

)
(23)

where

λ∗ =
∑

κ≥δ+1

num
(
EZL − κ

)
+ num

(
EZR + κ

)
. (24)

Fig. 9 shows the examples of stego images and the host ones
at different δ. It can be seen that PSNR is decreased with the
increase of δ. More importantly, the stego images can hardly
be distinguished from the host ones.

C. Robustness Experiment

In the AADH-based LDE method [1], the hidden messages
are only conveyed through lossless environment. This means
a slight change of the stego images can make the correct
recovery of the messages impossible. For some applications,
however, it is desired that the LDE methods are robust
against some unmalicious image processing, such as JPEG
compression. An example is that the medical images are
transmitted to a family doctor after lossy compression [5].
Fortunately, the proposed GSQH driven LDE framework offers
such ability due to the introduction of the scale factor. To

test the robustness against JPEG compression, we consider
a simple scenario, similar to [5], [20]. That is, a message
of 100 bits is embedded into the image repeatedly. At the
receiver side, we use majority voting to decode the hidden
message bits. Fig. 10 shows the statistical experimental results
of robustness, in which the block size is 8 × 8 and the scale
factor δ is from 0 to 29. By adjusting δ, our framework is
robust against JPEG compression even when the JPEG quality
factor is 30. Meanwhile, we also notice that the robustness
cannot work at some JPEG quality factors for a given δ.
Through the analysis of experimental results, we find that
this is caused by different effects of JPEG compression with
different factors on the AADHs. As shown in Fig. 11(b),
when the quality factor is 80, all elements in AADH are all
constricted to the zone “0,” which is totally different from the
original distribution of the embedding zones. At the receiver
side, this means the hidden bits “1” will be wrongly regarded
as “0” and thus leads to the failure of watermarking recovery.
In future work, we will focus on this problem and improve
the robustness of the proposed framework.

D. Comparison Experiment

In this subsection, some experiments are conducted on three
kinds of images to compare the performance of the proposed
framework with three histogram-based LDE methods, includ-
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Fig. 7. Size comparison between C and Mc for different kinds of images. The x-coordinate represents the scale factor δ, y-coordinate represents the occurrences
of C and Mc, which are used to evaluate the size of them.

Fig. 8. Effects of the scale factor δ on the pure capacity over 300 test images.

ing two methods based on GH [19], [21] and one based on
SQH [1]. First, we select some special images to demonstrate
the better adaptability of the proposed framework than that of
[1]. Then, we compare the aforementioned methods in terms
of the pure capacity versus PSNR.

1) Adaptability: In the proposed LDE framework, we
employ a novel divide-and-conquer strategy to solve the
overflow and underflow problems, which not only removes
the assumption in [1], but also broadens the applications of
our framework. For various images, both the host images
and the hidden messages can be recovered without distortion
when the stego images are not destroyed by the attackers.
Fig. 12 illustrates the recovered images when the proposed
framework and the method in [1] are applied to the medical
image, M8, in which the block size is 6 × 6 and the scale
factor is 0. As shown, some blocks marked by the yellow
squares in Fig. 12(b) cannot be recovered losslessly using the
method in [1]. In practical scenarios, these blocks may disturb
the diagnosis of disease. By contrast, the proposed framework
works well, shown in Fig. 12(c). This advantage has been
further demonstrated by the extensive experiments over other
images.

2) Pure Capacity Versus Image Quality: In this part, we
compare the pure capacity in bit/pixel versus image quality
in PSNR delivered by the proposed framework with three

histogram-based LDE methods. For a fair comparison, we also
apply these methods to the 300 test images. The statistical
average is illustrated in Fig. 13, from which it can be seen
that the SQH-based LDE methods, i.e., the work in [1] and
the proposed GSQH driven framework, give much better
performance than those in [19] and [21] based on GH in
terms of the stability as well as the adaptability. To be specific,
the pure capacity of Ni’s method varies from different kinds
of images greatly. Hwang’s method fails to work for almost
all the medical images because it is difficult to find out the
desired symmetric peaks in the unilateral grayscale histograms
of the medical images. These drawbacks are all caused by
the diversity of the grayscale histograms for different images.
By contrast, the similarity of SQH for different images not
only reduces the diversity but also ensures better stability and
adaptability. Among two SQH-based LDE methods, the GSQH
driven framework has outperformed that in [1] in capacity.
Given the similar PSNR, the proposed framework achieves
much higher capacity. Also it is observed that the more flexible
capacity control is obtained in our framework, which is helpful
to make a tradeoff between the capacity and the image quality
according to the different practical requirements.

E. Summary

As discussed above, extensive experiments are carried out to
evaluate the performance of the proposed GSQH driven LDE
framework and demonstrate that it outperforms the related
histogram-based methods. Advantages of this framework are
listed as follows.

1) General purpose: Some different SQHs, e.g., PEH, DH
and AADH can be applied in the framework for LDE.
All these histograms are used as the embedding carrier,
whose similar statistical characteristics for different im-
ages can reduce the diversity of the grayscale histograms
and achieve stable performance of the LDE methods.

2) Better adaptability: The novel divide-and-conquer strat-
egy is employed to prevent overflow and underflow. With
this strategy, the proposed framework can be applied
to various images, which is also demonstrated by a
large number of experiments. In addition, the proposed
framework is robust against the JPEG compression by
selecting the suitable scale factor. This means the hidden
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Fig. 9. Host and stego images at different δ. (a) Host images. (b)–(e) Stego images with PSNR (dB) below. (b) δ = 0. (c) δ = 1. (d) δ = 2. (e) δ = 3.

Fig. 10. Illustration of robustness against JPEG compression. For each JPEG quality factor, the line and circles represent the values of δ at which the
embedded watermarks can be recovered correctly when the stego images are attacked.

Fig. 11. Examples of AADHs in different cases. (a) Unattacked AADH. (b), (c) Attacked AADHs by JPEG compression with factors of 80 and 50,
respectively.
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Fig. 12. Comparison of the recovered images between the proposed framework and the method in [1]. (a) Host image. (b) Recovered image using the method
in [1]. (c) Recovered image using the proposed framework. The yellow squares in (b) represent the unrecovered blocks.

Fig. 13. Performance comparison between the proposed framework and three existing LDE methods based on histogram, i.e., Ni [21], Hwang [19], and An
[1] for three kinds of images, including smooth images, texture images, and medical images.

messages can be conveyed through the lossy environ-
ment, which further improves the adaptability of our
framework.

3) Flexible capacity control: The proposed framework con-
tains two free parameters, the block size and the scale
factor, for adjusting the capacity. When a lower capacity
is needed, e.g., for content authentication purpose, we
can change the block size while keeping the scale factor
constant, e.g., 0, to satisfy the requirement. In this way, a
higher image quality can be achieved. On the other hand,
when the capacity cannot be increased by decreasing the
block size, we can change the scale factor to achieve a
higher capacity. Although the image quality is degraded
in this case, the differences between the host image and
the stego image are so little that we cannot distinguish
them with our eyes. Moreover, we can use this way to
improve the capacities of texture images, as shown in
experiments.

4) Higher security: In the proposed framework, the lossless
compression and encryption are adopted to handle the
storage and transmission of the side information. At
the receiver side, this information is essential to recover
the hidden messages and the host image. In other
words, the malicious attackers cannot steal the hidden
secrets without it. This mechanism, therefore, is worth-
while for the copyright protection.

IV. Conclusion

In this paper, a generalized LDE framework was proposed
by incorporating merits of the GSQH and the histogram-based
embedding. In comparison with the existing LDE methods, the
proposed one has better utilized the statistical characteristics
of images and achieved better adaptability, flexible capacity
control, and higher security. Thorough experimental studies
show that this framework performs better than the conventional
LDE methods based on the GH, and the method simply using
the AADH. There are several directions for future work includ-
ing the development of new image statistical characteristics to
construct a more efficient embedding carrier. In addition, we
planned to enhance the robustness of the proposed framework
based on the successful experiences of other techniques [8],
[16], [17], [23], e.g, clustering [26], [27], human visual system
[15], [22], feature point [6], [7], [13], [14].
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