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a b s t r a c t

In the database retrieval and nearest neighbor classification tasks, the two basic problems are to represent
the query and database objects, and to learn the ranking scores of the database objects to the query. Many
studies have been conducted for the representation learning and the ranking score learning problems,
however, they are always learned independently from each other. In this paper, we argue that there are some
inner relationships between the representation and ranking of database objects, and try to investigate their
relationships by learning them in a unified way. To this end, we proposed the Unified framework for
Representation and Ranking (UR2) of objects for the database retrieval and nearest neighbor classification
tasks. The learning of representation parameter and the ranking scores are modeled within one single unified
objective function. The objective function is optimized alternately with regard to representation parameter
and the ranking scores. Based on the optimization results, iterative algorithms are developed to learn the
representation parameter and the ranking scores on a unified way. Moreover, with two different formulas of
representation (feature selection and subspace learning), we give two versions of UR2. The proposed
algorithms are tested on two challenging tasks – MRI image based brain tumor retrieval and nearest
neighbor classification based protein identification. The experiments show the advantage of the proposed
unified framework over the state-of-the-art independent representation and ranking methods.

& 2014 Published by Elsevier Ltd.

1. Introduction

In the database retrieval and nearest neighbor classification
tasks, given a query object, we try to find some relevant objects
from a database [1,2]. The relevant objects here are defined as the
objects of the same semantical class. For example, in the brain
tumors diagnosis problem, given a tumor region in a Magnetic
Resonance Imaging (MRI), it could be very helpful for the diagnosis
to retrieve tumors of the same pathological category from a brain
MRI scans database [3]. While in drug discovery problem, given a
query protein, it could also be useful to find the proteins sharing
the same specific chemical properties or similar structure as the
query protein from a protein database, so that they can be used as
sources for the treatment [4]. To this end, in a typical database
retrieval system, the feature vectors are usually first extracted
from both the query and database objects, and then the query is
compared against each database object to compute the similarities
or dissimilarities using their feature vectors. Finally, all the
database objects will be ranked according to their similarities to
the queries in the descending order, and a few number of them

with the largest similarities will be returned to the user, or used to
make a classification decision. Because the similarity is used for
ranking the database objects, it is also called ranking score [5].

The two fundamental problems that have been widely inves-
tigated are the learning of the representations of the objects
feature vectors, and the learning of the ranking scores of the
database objects to the query, as listed as follows:

� Representation: The original features extracted from the objects
are usually very high-dimensional, redundant, sometimes
noisy, and only occupying a part of the input space. Thus the
original features may not capture the semantical information
and could not be used directly to retrieve the relevant objects
very well. In this case, it is necessary to represent the feature
vectors to another data space so that they could be represented
better for the retrieval task. Many representation methods can
be considered, such as feature selection [6,7], subspace learning
[8], sparse coding [9], nonnegative matrix factorization [10],
hashing [11,12]. In this paper, we will focus on the feature
selection and subspace learning problem.
○ To handle the redundant and noisy features, feature selection

is desired. Feature selection assigns different feature
weights to different features, so that the useful features will
be emphasized while the redundant and noisy features will
be restrained [6,7,13].
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○ To handle the high-dimension problem of the feature
vectors, the subspace learning could be employed for dimen-
sionality reduction. Subspace learning maps the input fea-
ture vectors into a lower dimensional space, by using an
optimal linear mapping matrix [11,12,8].

The feature selection and subspace learning methods could be
classified into two types – supervised and unsupervised repre-
sentation methods. The supervised method uses the class labels
to guide the learning procedure, however, in database retrieval
problems, the objects are usually not annotated, thus unsuper-
vised representation is more suitable in this task. Many
unsupervised feature selection and subspace learning methods
have been proposed to refine the original features. For example,
He et al. [14] proposed a manifold based feature selection
method by assuming that the data samples from the same class
are often close to each other. Roweis and Saul [15] proposed the
unsupervised subspace learning method by computing low-
dimensional, neighborhood-preserving embeddings of high-
dimensional inputs.

� Ranking score learning: To compute the ranking score of a
database object to a query, a distance or similarity measure could
be employed to compare them, such as Euclidean distance, cosine
similarity. This type of method is called pairwise similarity, and
they only consider the query and objects to compare, while
neglecting the manifold structure of the database. To handle this
problem, the manifold ranking (MR) has been proposed by Zhou
et al. [16], so that the ranking score could be learned with respect
to the manifold structure of the database, which is characterized
by a nearest neighbor graph constructed from the database.
Moreover, Yang et al. [5] proposed the Local Regression and
Global Alignment (LRGA) based ranking method to further
improve the manifold ranking by using the local linear regression
model for the ranking score learning problem.

The representation parameter is usually learned first, and then
used to represent both the query and database objects. Based on
the new representation, some ranking score learning algorithm
will be applied for the ranking problem. Thus the representation
and the ranking are conducted sequentially and independently. An
important assumption behind this strategy is that the representa-
tion and the ranking are independent from each other, thus the
possible inner relationships between them, which is not clear yet,
have been ignored. It is very interesting to notice that in [5], Yang
et al. have applied the same LRGA model for both ranking and
subspace learning. However, this model has been applied to the
ranking and subspace learning. In this paper, we argue that the
representation and ranking should be considered in a unified way,
so that we could investigate the possible relationships between
them. Given a representation method, the ranking should be
adjusted to the representation parameter. Moreover, given the
ranking scores, the representation parameters should also be
refined according to the ranking results.

To this end, we try to propose a unified framework for both the
representation parameter learning and the ranking score learning,
by constructing a unified objective function. The object representa-
tions parameterized by representation parameters will be used to
compute the ground distances between query and database objects,
and the ground distances will be further used to regularize the
ranking scores. At the same time, the ranking score will also be
regularized by the manifold structure of the database. In this way, a
unified objective function is built. The objective function will be
optimized with regard to representation parameter and the ranking
score alternately in an iterative algorithm. When the representation
parameter is optimized, ranking score will be fixed, and then their
role will be switched. Once the representation parameter is learned

in the training procedure, it will be used to represent the new query
object and rank the database objects. The contribution of this paper
is listed as follows:

1. A unified framework for representation and ranking is pro-
posed. Though we only discuss the feature selection and sub-
space learning as examples of representation, it could be
extended to other representation methods easily, such as
sparse coding, nonnegative matrix factorization.

2. An iterative algorithm is proposed for the learning of repre-
sentation parameters and ranking scores.

The remaining of this paper is organized as follows: in Section
2, we present the unified framework for representing and ranking.
In Section 3, we apply the proposed framework to the brain tumor
retrieval and nearest neighbor protein classification applications
and show the experimental results. The conclusions and future
works are given in Section 4.

2. Unified framework for representing and ranking

In this section, we will introduce the novel framework for data
object representation and ranking in database retrieval and
nearest neighbor classification tasks.

2.1. Objective function

Suppose we have a database with N database objects, we denote it
as D¼ fx1;…; xNgARP , where xi ¼ ½xi1;…; xiP �> ARP is the P dimen-
sional feature vector of the i-th database object. Given a query object,
we denote it as yARP , where y¼ ½y1;…; yP �> ARP is the P dimen-
sional feature vector of the query object. The task of database retrieval
is to rank the database objects in D according to the similarity
between y and each xiAD, and then return few top ranked ones as
retrieval results. To this end, we need to learn the nonnegative ranking
score for each xi, denoted as fi, as the similarity measure between y
and xi. The ranking scores of all the database objects are further
organized as a ranking score vector f ¼ ½f 1;…; f N �> ARN

þ . Moreover,
instead of using the original features of query object y and the
database object xi, we also consider to represent them by feature
selection or subspace learning. The represented query and database
objects are denoted as yΘARP0

and xΘi ARP0
, where Θ is the

representation parameter, and P0oP is the dimension of the feature
space of the new representation.

To learn the representation parameter Θ and the ranking score
vector f in a unified way, we will formulate the learning problem
by a unified objective function. We will consider the following two
regularization terms when constructing the objective function:

Ground distance regularization: Given a query object represented as
yΘ, and a database object represented as xΘi , parameterized
by Θ, we could compute the squared Euclidean distance
between them as the ground distance: ‖yΘ�xΘi ‖

2
2. If the

ground distance of query to the i-th database object is short,
it is natural to expect the ranking score of i-th database
objective is large, and vice versa. We model the regulariza-
tion of ground distance with the following weighted scores
minimization problem:

min
fARN

þ ;Θ
∑
N

i ¼ 1
‖yΘ�xΘi ‖

2
2f i ð1Þ

Manifold regularization: Based on the manifold assumption [17],
which assumes that all the database objects lie on a low-
dimensional manifold, we also try to regularize the ranking
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scores by manifold information. The manifold can be
approximated linearly in a local area of the feature space
of the database objects. Therefore, we assume that a
database object xi can be approximated by linearly recon-
structing from its K nearest neighbors xjAN i, as
xi �∑j:xj AN i

Aijxj, where Aij is the reconstruction coefficient
which summarizes the contribution of xj to the reconstruc-
tion of xi. Following Locally Linear Reconstruction (LLR)
[18], the coefficients Aij; j¼ 1;…;N could be obtained by
minimizing the squared reconstruction error as

min
Ai1 ;…;AiN

xi� ∑
N

j ¼ 1
Aijxj

�����
�����
2

2

s:t: ∑
N

j ¼ 1
Aij ¼ 1; AijZ0; j¼ 1;…;N;

Aij ¼ 0 if xj =2N i ð2Þ
This problem could be solved as a Quadratic programming
(QP) problem. The solved reconstruction coefficients are
organized in a matrix A¼ ½Aij�ARN�N

þ . With the reconstruc-
tion coefficient matrix, we could formulate the manifold
assumption to ranking scores by

min
fARN

þ
∑
N

i ¼ 1
f i� ∑

N

j ¼ 1
Aijf j

�����
�����
2

2

ð3Þ

By solving this problem, we imply that a ranking score fi
could also be reconstructed from the ranking scores fj of its
neighbors xjAN i. The manifold assumption is imposed to
the ranking score by sharing the same local linear recon-
struction coefficients Aij between the feature space and the
ranking score space.

By combining the two regularization terms in (1) and (3), we
could have the following objective function for the learning of f
and Θ:

min
fARN

þ ;Θ
∑
N

i ¼ 1
‖yΘ�xΘi ‖

2
2f iþα ∑

N

i ¼ 1
f i� ∑

N

j ¼ 1
Aijf j

�����
�����
2

2

ð4Þ

where α is a trade-off parameter, which is selected by cross-
validation on the training set in the experiment.

We also assume that we have a query set with M query objects
for the training procedure, denoted as Q¼ fy1;…; yMgARP , where
yk ¼ ½yk;1;…; yk;P �> ARP is the P dimensional feature vector of the
k-th data object. When k-th query yk is available in the training
query set Q, we denote the ranking score vector for the k-th query
object as fk ¼ ½f 1k;…; f Nk�> ARN

þ , where yik is the ranking score of
the i-th database object against k-th query object. We define the
ranking score matrix as F ¼ ½f1;…; fM � ¼ ½f ik�ARN�M

þ , with its k-th
column as the ranking score vector of k-th query. Then the objective
function could be extended to the following one by applying the
objective function to each query and summing them up:

min
FARN�M

þ ;Θ
∑
M

k ¼ 1
∑
N

i ¼ 1
‖yΘk �xΘi ‖

2
2f ikþα ∑

N

i ¼ 1
f ik� ∑

N

j ¼ 1
Aijf jk

�����
�����
2

2

2
4

3
5 ð5Þ

By minimizing the objective function in (5), we try to find the
optimal ranking scores for the queries in Q, and the representation
parameter Θ for both the query and databases objects in Q and D
simultaneously.

2.2. Optimization

To optimize the objective function (5), we adopt the alternate
optimization strategy. F and Θ will be optimized alternatively in
an iterative algorithm, and in each iteration, one of them will be

solved or updated, while the other fixed, then their role will be
switched.

2.2.1. Optimizing F while fixing Θ
By fixing the representation parameter Θ, and defining the

ground distance matrix D¼ ½dΘik �ARN�M with dΘik ¼ ‖yΘk �xΘi ‖
2
2, the

problem (5) could be rewritten in matrix formula as

min
FARN�M

þ
∑
M

k ¼ 1
∑
N

i ¼ 1
dΘik f ikþα ∑

M

k ¼ 1
∑
N

i ¼ 1
f ik� ∑

N

j ¼ 1
Aijf jk

�����
�����
2

2

¼ TrðF >DÞþα Tr F > ðI�AÞ> ðI�AÞF� �
¼ TrðF >DÞþα TrðF > LFÞ ð6Þ

where L¼ I�2AþA>AARN�N . We introduce the Lagrange multi-
plier matrix Φ¼ ½ϕik�ARN�N for the constrain of FARN�M

þ , where
ϕik is the Lagrange multiplier for constraint f ikZ0. The Lagrange
function L of the optimization problem is

L¼ TrðF >DÞþα TrðF > LFÞþTrðF >ΦÞ ð7Þ
By setting the derivative of L (with respect to F) to zero, we have

∂L
∂F

¼Dþ2αLFþΦ

¼Dþ2αðI�2AþA>AÞFþΦ¼ 0 ð8Þ
Using the KKT condition ½Φ�○½F� ¼ 0, where ½��○½�� denotes the
element-wise matrix product, we get the following equation:

½Dþ2αðIþA>AÞF�4αAF�○½F� ¼ 0
) ½Dþ2αðIþA>AÞF�○½F� ¼ ½4αAF�○½F� ð9Þ

which leads to the following update rule for F:

F’
½4αAF�

½Dþ2αðIþA>AÞF�
○½F� ð10Þ

where ½��
½�� denotes the element-wise matrix division.

2.2.2. Optimizing Θ while fixing F
To optimize Θ, we first need to specify the form of data

representation which transfer the original feature vector xARP to
its newly represented feature vector xΘARP0

, which is parameterized
by Θ. Here we consider the feature selection and subspace learning
as data representation methods, which are introduced as follows:

Feature selection: Given a P dimensional feature vector
x¼ ½x1;…; xP �> of an object, not all the features are
relevant to the task in hand, and many of them might
be noisy features. We try to assign each feature with
different feature weight, so that the important features
will be emphasized and the noisy features will be
restrained. To this end, we introduce the nonnegative
feature weight vector t¼ ½t1;…; tP �> ARP

þ to parameter-
ize the feature selection, where tp is the weight for the
p-th feature. The constrains tZ0 are introduced to t to
prevent the negative weight. The feature vector could
then be represented as

xΘ ¼ ½t1x1;…; tPxP �> ¼ diagðtÞx;
s:t: tZ0: ð11Þ
In this case, the representation parameter Θ is t. We
apply the feature selection to both the query and the
database objects, and then the ground distance between
the k-th query object yk and the i-th database object xi
will be computed as

‖yΘk �xΘi ‖
2
2 ¼ ‖diagðtÞyk�diagðtÞxi‖22 ¼ ∑

P

p ¼ 1
t2pðykp�xipÞ2

ð12Þ

J.J.-Y. Wang, H. Bensmail / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: J.J.-Y. Wang, H. Bensmail, Unified framework for representing and ranking, Pattern Recognition (2014), http:
//dx.doi.org/10.1016/j.patcog.2013.12.003i

http://dx.doi.org/10.1016/j.patcog.2013.12.003
http://dx.doi.org/10.1016/j.patcog.2013.12.003
http://dx.doi.org/10.1016/j.patcog.2013.12.003
http://dx.doi.org/10.1016/j.patcog.2013.12.003


We also consider regularising t by L1 norm regularisation
in high dimensional data to seek the sparsity of feature
weight, by adding a L1 norm constrain on t, ‖t‖1 ¼ c to
the optimization problem, where c is a sparsity para-
meter. The L1 norm constrain ‖t‖1 ¼ c could be rewritten
as ∑P

p ¼ 1 ¼ 1> t¼ c since tZ0, where 1¼ ½1;…;1�> is an
all-one vector of the same size as t By replacing t by Θ,
substituting (12) to (5), introducing L1 constrain to t,
fixing F and removing the irrelevant term, (5) could be
turned to the following optimization problem,

min
t

∑
M

k ¼ 1
∑
N

i ¼ 1
∑
P

p ¼ 1
t2pðykp�xipÞ2

 !
f ik

(

¼ ∑
P

p ¼ 1
t2pep ¼ t>diagðe1;…; epÞt

)

s:t: tZ0; 1> t¼ c: ð13Þ
where ep ¼∑M

k ¼ 1∑
N
i ¼ 1ðykp�xipÞ2f ik, and diagðe1;…; ePÞ is

a P� P diagonal matrix with e1;…; eP as its diagonal
elements. This problem could be efficiently solved as a
standard QP problem as well.

Subspace learning: Given the feature vector of a data object xARP ,
subspace learning [8] tries to map it into an
P0�dimension data space by a orthometric transforma-
tion matrix WARP�P0

as

xΘ ¼W >x ð14Þ
In this case, the representation parameter is W. By
applying the subspace learning to both query and data-
base objects, we have the ground distance between yk
and xi defined as

‖yΘk �xΘi ‖
2
2 ¼ ‖W >yk�W >xi‖22 ¼ Tr½W > ðyk�xiÞðyk�xiÞ>W �

ð15Þ
Moreover, we consider regularizing W by a L2 norm
constrain, ‖W‖2 ¼W >W ¼ I where I is an identity
matrix of order P0. By replacing Θ by W, substituting
(15) to (5), adding the L2 norm constrain of W to the
optimization problem, fixing F, and removing the term
irrelevant to W, (5) could be turned to the following
optimization problem:

min
W

∑
M

k ¼ 1
∑
N

i ¼ 1
Tr½W > ðyk�xiÞðyk�xiÞ>W �f ik ¼ TrðW >EWÞ

( )

s:t: W >W ¼ I; ð16Þ
where E¼∑M

k ¼ 1∑
N
i ¼ 1ðyk�xiÞðyk�xiÞ> f ik. This problem

could be obtained by solving the generalized eigenvalue
decomposition problem,

Ew¼ λw ð17Þ
where λ is a eigenvalue and wARP is its corresponding
eigenvector. If we assume that the P0 smallest eigenva-
lues are ranked in a ascending order, as λ1;…; λP0 , and the
corresponding eigenvectors are denoted as w1;…;wP0 ,
then the solution of (16) could be obtained as W ¼
½w1;…;wP0 �ARP�P0

.

2.3. Algorithm

Based on the optimization results, we could develop the
iterative algorithm for the training procedure of unified object
representation parameter Θ and the ranking score matrix F. The
algorithm is summarized in Algorithm 1.

Algorithm 1. UR2: off-line learning algorithm.

Input: Database object set D¼ fxi;…; xNg.
Input: Query object set Q¼ fyi;…; yMg.
Construct the nearest neighbor graph for D and compute its

reconstruction coefficient matrix A.
Initialize the ranking score matrix F0.
Initialize the representation parameter Θ0 and compute the

initial ground distance matrix D0.
for t ¼ 1;…; T do
Update the ranking score matrix Ft based on the previous

ground distance matrix Dt� t and ranking score matrix Ft�1,
as in (10).
Update the representation parameter Θt by fixing Ft, as in
(13) or (17).
Update the ground distance matrix Dt based on the newly
updated representation parameter Θt.

end for
Output: The ranking score matrix FT, and the representation

parameter ΘT .

2.4. Ranking new query object

We have introduced the off-line training procedure of Θ given
a set of training query objects. In this subsection, we will discuss
how to represent and rank a new query object y in the on-line
retrieval procedure. In fact, we assume that the new arrived query
will not affect the representation parameter, and we use the
parameter Θ learned using the training query objects to represent
it as yΘ, based on feature selection or subspace learning. To learn
its ranking score vector f, we simply solve the optimization
problem in Eq. (4) while fixing Θ as learned by Algorithm 1. We
define a ground distance vector for yΘ against all the represented
database objects as d¼ ½d1;…; dN�> ARN , where di ¼ ‖yΘ�xΘi ‖

2
2.

(4) then could be rewritten as

min
fARN

þ
f >dþαf> Lf ð18Þ

Its Lagrange function L is

L¼ f>dþαf > Lfþf >ϕ ð19Þ
where ϕARN is the Lagrange multiplier vector for constrain fZ0.
By setting the derivative of L (with respect to f) to zero, we have

∂L
∂f

¼ dþ2αLfþϕ

¼ dþ2αðI�2AþA>AÞfþϕ¼ 0 ð20Þ
Using the KKT condition ½ϕ�○½f� ¼ 0, we get the following equation:

½dþ2αðIþA>AÞf�4αAf�○½f� ¼ 0
) ½dþ2αðIþA>AÞf�○½f� ¼ ½4αAf�○½f� ð21Þ

which leads to the following update rule for f

f’
½4αAf�

½dþ2αðIþA>AÞf�
○½f� ð22Þ

Based on the update rule, we could have the on-line ranking
algorithm for query y, as summarized in Algorithm 2.

Algorithm 2. UR2: on-line ranking algorithm.

Input: Database object set D¼ fxi;…; xNg with its Laplacian
matrix L.

Input: Query object y.
Input: The representation parameter Θ.
Initialize the ranking score vector f0.

J.J.-Y. Wang, H. Bensmail / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: J.J.-Y. Wang, H. Bensmail, Unified framework for representing and ranking, Pattern Recognition (2014), http:
//dx.doi.org/10.1016/j.patcog.2013.12.003i

http://dx.doi.org/10.1016/j.patcog.2013.12.003
http://dx.doi.org/10.1016/j.patcog.2013.12.003
http://dx.doi.org/10.1016/j.patcog.2013.12.003
http://dx.doi.org/10.1016/j.patcog.2013.12.003


Compute the ground distance vector d based on Θ.
for t ¼ 1;…; T do

Update the ranking score vector ft based on the ground

distance vector d and previous ranking score vector ft�1 as
in (22).

end for

Output: The ranking score vector fT .

3. Experiments

In this experiment, we will evaluate the proposed methods for
the brain tumor retrieval task and the nearest neighbor protein
identification task.

3.1. Experiment I: brain tumor retrieval

MRI has been one of the most popular means for the diagnosis
of human brain tumors. However, the diagnosis of a brain tumor
relies strongly on the experience of radiologists. In clinical prac-
tice, it would be significantly helpful to have a retrieval system for
brain tumors in MRI image which could return the tumors of the
same pathological category as the query image. The doctors then
can use the relevant MRI images returned by the retrieval system
and the diagnosis information associated to these relevant images
for the diagnosis of the current case [3]. In this experiment, we
will evaluate the proposed method as MRI image representation
and ranking method for the brain tumor retrieval system.

3.1.1. Dataset and setup
Three types of brain tumors have been studied widely due to

their high incidence rate in clinics, which are gliomas, meningio-
mas, and pituitary tumors. In this experiment, we use a dataset of
1014 MRI slices of the three types of brain tumors. There are 220
MRI slices of meningiomas, 475 MRI slices of gliomas, and 319 MRI
slices of pituitary tumors in the dataset. The tumor regions in the
images were manually outlined by drawing the tumor boundaries.
In this experiment, we define two tumor regions as relevant if they
contain tumors of the same type, otherwise, they are defined
irrelevant. Given a query tumor region, the brain tumor retrieval
task is to retrieve relevant tumor regions from the database.
To this end, we extract visual features from the tumor region,
including the following ones:

� Intensity features: To extract the intensity features from the
tumor region, we calculate the mean and variance of the
normalized intensities of the tumor region pixels.

� Texture features: To extract the texture feature from the tumor
region, we first calculate the Gray Level Co-occurrence Matrix
(GLCM) and wavelet coefficients, and then some statistical
parameters including mean, variance, entropy, correlation,
etc, are estimated and used as texture features.

� Shape features: To extract the shape features from the tumor
region, we first calculate the shape signature from the points of
the tumor boundary by using the radial distance, then perform
the wavelet decomposition to the shape signature, and finally
compute the mean and variance of the wavelet coefficients in
each sub-band as shape features.

� Bag-of-words features: We also employ the bag-of-words model
to extract the visual features from the tumor region. The key
points are first detected, then the Scale-Invariant Feature
Transform (SIFT) descriptor of each key points are calculated
as “words”, and finally they are quantized to a dictionary and
the quantization histogram is used as the bag-of-words feature.

All these features will be concatenated to obtain the visual feature
vector of each brain tumor region in the MRI image. Using the
proposed method, we perform the feature selection or subspace
learning to the visual feature vector of query and database tumor
regions to obtain the new representations, and learn the ranking
scores of the database tumor regions according to the query tumor
region for the ranking problem. Based on the ranking scores, the
database tumor regions are ranked in a descending order of the
ranking score, and the top few ones will be returned as relevant ones.

To conduct the experiment, we need a database, a training
query set used to learn the representation, and a test query set to
evaluate the retrieval performance. To this end, we randomly split
the entire dataset into three subsets, one with 50% slices as
database, one with 25% slices as training query set, and another
one with 25% slices as test query set. The database training query
test query set split will be repeated randomly for ten times to
reduce the bias of each split.

To evaluate the retrieval performances, we used the Receiver
Operating Characteristic (ROC) and the recall-recision curves. The
ROC curve is created by plotting True Positive Rates (TPR) against
the False Positive Rates (FPR) of different numbers of returned
tumors. The recall–precision curve is created by plotting precision
against recall of different numbers of returned tumors. The TPR,
FPR, precision and recall are defined as follows:

TPR¼ TP
TPþFN

; FPR¼ FP
FPþTN

;

precision¼ TP
TPþFP

; recall¼ TP
TPþFN

ð23Þ

where TP is the number of returned tumors relevant to the query,
TN is the number non-returned tumors irrelevant to the query, FP
is the number of returned tumors irrelevant to the query, while FN
is the non-returned tumors relevant to the query. Besides the
curves, we also employ the Area Under the ROC Curve (AUC) and
the Mean Average Precision (MAP) as the single measures for the
retrieval task.

3.1.2. Results
In the experiments, we compare our unified framework for

both representation and ranking of tumor region against several
representation and ranking methods. The UR2 method with
Feature Selection is denoted as UR2

FS, and UR2 method with
Subspace Learning is denoted as UR2

SL. Since our methods are
based on manifold learning of ranking score and representation
parameters, we compare them against several manifold-based
ranking and presentation methods, including:

� a feature selection method, Laplacian Score for Feature Selec-
tion (LSFS) [14],

� a subspace learning method, Locally Linear Embedding (LLE)
[15],

� a ranking score learning method, LRGA [19], and
� the naive combinations of LRGA with LSFS and LLE respectively,

denoted as “LRGAþLSFS” and “LRGAþLLE”.

Fig. 1 show the results (average ROC and recall–precision
curves) obtained by applying our methods UR2

FS and UR2
SL to the

tumor region retrieval problem compared to other manifold-based
representation and ranking score methods with tensity, texture,
shape and bag-of-word histogram features. LLE has been chosen as
a baseline since it has been extensively used in previous manifold
learning works. Fig. 1 confirms the advantages of unified repre-
sentation and ranking approaches w.r.t. competing methods. For
example, in the case of ROC our UR2

FS outperforms other methods
consistently with different FPR values, which is followed by UR2

SL.
In the case of recall–precision curve, UR2

FS is more closer to the top
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right corner of the figure than any other methods. We should note
that the proposed unified framework outperforms not only the
independent presentation and ranking methods (LRGA, LSFS
and LLE), but also their naive combinations (LRGAþLSFS and
LRGAþLLE). We explain this with the fact that our approaches,
different from other independent representation and ranking
methods, take into account both representation and ranking
problems simultaneously, so that the representation parameters
and ranking scores could be learned optimally. Moreover, it is
worth noting that the manifold ranking method (LRGA) outper-
forms the feature selection and subspace learning methods (LSFS
and LLE) with pairwise distance as similarities, which highlights
the importance of considering the manifold structure of the
database when ranking. It is also interesting to notice that for this
task in hand, feature selection works better than subspace learn-
ing. The possible reason is that we have extracted many visual
features from the tumor region while only few of them are
relevant to the pathological type of the tumors. Similar conclu-
sions can be made for the AUC and MAP values of the methods
(see error bars of AUC and MAP in Fig. 2). Also in this case
the unified approaches of representation and ranking outperform
independent representation and ranking methods, and from
the error bars, we could see that the differences are statistically
significant.

Moreover, we also conducted experiment to show how the
results are sensitive to choose the α parameter. The average AUC
values of UR2

F S vs. parameter α are given in Fig. 3. As we can see
from this figure, the performance is improved significantly when α
is increased from a small value, indicating that the manifold
regularization plays an important role in this problem. However,
when α value is larger, the performance is stable.

3.2. Experiment II: protein identification

Identification of the protein sample by using bio-sensor is very
important for biochemical research and disease diagnosis. In this

experiment, we will evaluate the usage of proposed methods for
the nearest neighbor classification based identification using the
bio-sensor array data.
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Fig. 1. The ROC and recall–precision curves on brain tumor retrieval problem.
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Fig. 2. The error bars of AUC and MAP values on brain tumor retrieval problem.
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3.2.1. Dataset and setup
In this experiment, we collect a dataset of 100 protein samples,

belonging to 9 different proteins. The 9 proteins are SubtilisinA
(Sub), Fibrinogen (Fib), Hemoglobin (Hem), Cytochrome C (Cyt),
Lysozyme (Lys), Horseradish peroxidase (Hor), Bovine serum
albumin (Bov), Lipase (Lip) and Casein (Cas). The sample number
of each protein varies from 6 to 16. The distribution of sample
number of different proteins is shown in Fig. 4.

Given an unknown sample, the task of protein identification is
to classify the sample into one of the nine proteins in the training
set. To this end, each sample will be tested against a bio-sensor
array developed by Pei et al. [20], called adaptive ensemble
aptamers (ENSaptamers) which exploit the collective recognition
abilities of a small set of rationally designed, nonspecific DNA
sequences. The seven fluorescence intensities of a sample gener-
ated by seven ENSaptamers of the bio-sensor array are used as the
original features and organized as a seven-dimensional feature
vector. Then the feature vector of the query sample will be
compared against all the feature vectors of the training samples
in the database and the most similar ones will be used for nearest
neighbor classification.

To test the proposed methods, we employ the leave-one-out
protocol to conduct the experiment. Each sample in the dataset
will be used as a query sample in turns, while the remaining ones
as training set. The training set will be further divided into training
query set and database to learn the representation parameter. The
training query set will contain 40% samples of the entire training
set, while the database will contain 60% of the training samples.
Once the representation parameter is learned by using the training
set, it will be used to represent the query and the training samples.
For the nearest neighbor classification of the query, the entire

training set will be used as database. The ranking score of the
database samples will be learned w.r.t. the query, the ones with
largest ranking scores will be returned and the query's class label
will be obtained by major voting of the returned samples.

The classification results are evaluated by the average classifi-
cation accuracies of all the queries, which is defined as

Accuracy¼Number of correctly classified queries
Total Number of queries

ð24Þ

By varying the number of returned samples from the database, we
could have different accuracies. The classification results will be
reported using the curves of the accuracies against the returned
sample numbers.

3.2.2. Results
The accuracies of different methods with different returned

sample numbers are shown in Fig. 5. It can be seen that both UR2
FS

and UR2
SL perform better than the best results of other methods at

most cases, with UR2
SL getting the overall best results. The

combination of LLE/LSFS and LRGA performs better than using
individual representation or ranking methods, but could not beat
the proposed unified framework. It indicates that using presenta-
tion and ranking methods together could boost the nearest
neighbor classification performance, but the way to combine them
is also very important. It is also interesting to notice that UR2

SL
outperforms UR2

FS in this experiment, indicating that all the seven
features of seven ENSaptamers are useful for the protein identifi-
cation problem. This fact could also be verified by the fact that LLE
outperforms LSFS. Moreover, it could be observed that when the
returned sample number is small, the classifications are stable.
However, when the returned sample number is larger than 20, the
classifications decrease significantly. This is because that for each
query, there are at most 15 samples of the same protein in the
database, which is defined as relevant to the query. When more
than 15 samples are returned, the irrelevant samples will increase
significantly and dominate the major voting of the nearest neigh-
bor classification.

4. Conclusion and future works

Representation learning and ranking score learning are two
foundational problems for similar neighbor finding with many
significant applications including database retrieval and nearest
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classification. Most research in the machine learning community
have been focussed on the learning of representation parameters
and ranking score respectively, which ignores the possible rela-
tionships between these two issues at all. In this paper, for the first
time, we propose the unified framework for representation and
ranking objects in database retrieval and nearest classification
problems. It is shown in this work that using the proposed unified
framework to learn the representation and raking parameters
works well in this scenario. A significant advantage of the
proposed method, as compared to methods to represent and rank
objects, is that, with different representation parameter to define
the ground distance, the optimal ranking scores could be learned
according to the representation parameter. Moreover, the repre-
sentation parameter could also be adjusted according to the
ranking scores.

For the future works, we would consider using sparse coding as
the representation method instead of features selection and sub-
space learning, which is the stat-of-the-art representation method.
Moreover, the optimization of the ranking score could possibly
have a close form, which is another direction desired to explore.
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