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a b s t r a c t

Recently, sparse coding has been successfully applied in visual tracking. The goal of this paper is to

review the state-of-the-art tracking methods based on sparse coding. We first analyze the benefits of

using sparse coding in visual tracking and then categorize these methods into appearance modeling

based on sparse coding (AMSC) and target searching based on sparse representation (TSSR) as well as

their combination. For each categorization, we introduce the basic framework and subsequent

improvements with emphasis on their advantages and disadvantages. Finally, we conduct extensive

experiments to compare the representative methods on a total of 20 test sequences. The experimental

results indicate that: (1) AMSC methods significantly outperform TSSR methods. (2) For AMSC methods,

both discriminative dictionary and spatial order reserved pooling operators are important for achieving

high tracking accuracy. (3) For TSSR methods, the widely used identity pixel basis will degrade the

performance when the target or candidate images are not aligned well or severe occlusion occurs.

(4) For TSSR methods, ‘1 norm minimization is not necessary. In contrast, ‘2 norm minimization can

obtain comparable performance but with lower computational cost. The open questions and future

research topics are also discussed.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Visual tracking is the process that continuously infers the state
of a target from an image sequence. Usually, it is formulated as a
search problem that aims at finding the candidate most matching
to the target template as the tracking result. A typical tracking
process contains several stages as shown in Fig. 1. A target
template is maintained over time and may be updated online
once the tracking result is available. Before starting tracking at the
current time, a set of candidates are sampled around the state of
the target at the last time. Both the target template and candi-
dates are represented using an appearance model. Then, a target
searching strategy is used to find the candidate most matching to
the template appearance as the tracking result.

Although visual tracking has been studied for more than 30
years, it is still a very overwhelming research topic due to some
unsolved challenging issues arising from both the appearance
modeling and target searching. From the point of view
of appearance modeling, discriminating the target from the back-
ground is a very basic ability and plays a key role in complex
scenes where the contrast between the target and background is
low. To achieve reliable tracking performance, it is also very
important to handle target appearance variations during tracking,
ll rights reserved.
which contain both the intrinsic variations such as pose changes
and shape deformation and extrinsic variations such as illumina-
tion and occlusion. To handle these variations, a good appearance
model is desired to meet two requirements: adaptivity that
adapts to the intrinsic appearance variations and robustness that
is invariant to the extrinsic appearance variations. From the point
of view of target searching, computation complexity is an very
important issue since the real-time tracking speed is a practical
requirement of most subsequent high-level applications such as
action recognition and retrieval. In addition, it is also possible to
handle appearance variations in target searching stage, which is
ignored by most existing methods.

In the literature, a number of tracking algorithms have been
proposed (for example [1–6]; see [7,8] for detailed reviews).
The methods most related to those discussed in this paper are
learning based methods. Jepson et al. [9] proposed a framework to
learn an adaptive appearance model, which adapts to the chan-
ging appearance over time. In Collins et al. [10], an online feature
selection method was proposed to select features that are able to
discriminate the target from the background. Since the feature
selection is online when new observations are available, the
selected features adapt to environment changes very well.
In Ross et al. [4], a tracking method was proposed to incremen-
tally learn a low-dimensional subspace representation, which
efficiently adapts to target appearance variations. Discriminative
methods that formulate tracking as a classification problem have
also been attracting much attention. For example, Grabner and
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Fig. 1. A typical tracking flowchart. This paper mainly focuses on the use of sparse coding in appearance modeling and target searching.
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Bischof [11] proposed an online boosting method to update
discriminative features to distinguish the target from the back-
ground. However, the update process may introduce errors due to
inaccurate tracking results, which can finally lead to tracking failure
(drifting). To overcome the drifting problem, Grabner and Leistner
[12] further proposed a semi-supervised boosting method to
combine decisions of a given prior and an on-line classifier.
In Babenko et al. [13], multiple instance learning (MIL) was used
to treat ambiguous positive and negative samples into bags to learn
a discriminative classifier which can further overcome the drifting
problem. Kuo et al. [14] proposed an AdaBoost based algorithm to
learn a discriminative appearance model for multi-target tracking,
which allows the model to adapt to target appearance variations
over time. The common property of these complex appearance
models is that they try to achieve both the discriminative ability
and robustness in a single appearance representation. However, it is
difficult to find a good tradeoff between the discriminative ability
and robustness. Usually, the good robustness is achieved while the
discriminative ability is lost in some extent.

Recently, motivated by the popularity of compressive sensing in
signal processing [15,16], an elegant and working model, named
sparse coding [17], has been attracting much attention in computer
vision. Very recently, inspired by the success of sparse representa-
tion in face recognition [18], some researchers also tried to use
sparse representation in visual tracking and reported state-of-the-
art performance [19]. On the other hand, motivated by the
biologically inspired object representation model [20,21] proposed
to use the responses of sparse coding to model target appearance
for visual tracking. For the past several years, increasing attention
has been paid along these directions and some improvements have
also been proposed to further enhance the tracking performance.

Although a variety of tracking methods based on sparse
representation or sparse coding have been proposed, there is no
work reviewing these methods and answering several important
questions: (1) What is the connection and difference between
these methods? In this work, we classify these methods according
to which stage (appearance modeling or target searching) sparse
coding is used in. Particularly, we emphasize the difference
between sparse representation and sparse coding. Sparse repre-
sentation, in fact, a sub-process of sparse coding, can be used to
perform target searching (TSSR), which is the motivation of the
pioneering work [19]. On the other hand, sparse coding learns
local representations of image patches, which can be used to
model target appearance (AMSC). Classifying different tracking
methods into TSSR and AMSC as well as their combination
facilitates the understanding of the connection and difference
among these methods. (2) Why sparse coding would be useful for
visual tracking? Although a huge number of tracking methods
based on sparse coding has been proposed, there is no work trying
to analyze the rationales behind these methods. In this work, we
try to answer this question by analyzing the roles of sparse
representation from the point of view of signal processing and
the roles of sparse coding from the point of view of biologically
inspired representation mechanism of simple cells in visual
cortex. (3) Does sparse coding really benefit visual tracking?
Although previous publications reported state-of-the-art tracking
performance, the limited number of test sequences and
comparison methods as well as different implementation frame-
works restrict the fair comparison to reveal the benefits of using
sparse coding in visual tracking. In this work, we collected a total of
11 trackers based on sparse coding and four widely used baseline
trackers to perform a comprehensive experimental comparison on a
total of 20 test sequences. The comparison results indicate:
(1) AMSC methods significantly outperform TSSR methods. (2) For
AMSC methods, both discriminative dictionary and spatial order
reserved pooling operators are important for achieving high track-
ing accuracy. (3) For TSSR methods, the widely used identity pixel
basis will degrade the performance when the target or candidate
images are not aligned well or severe occlusion occurs. (4) For TSSR
methods, ‘1 norm minimization is not necessary. In contrast, ‘2

norm minimization can obtain comparable performance but with
lower computational cost.

The rest of the paper is organized as follows. In Section 2, we
give brief introduction to sparse coding and its roles in visual
tracking. In Section 3, we review the tracking methods based on
sparse coding in the literature. We conduct experiment compar-
ison and analysis in Section 4. Finally, conclusion and future work
are summarized in Section 5.
2. Sparse coding and visual tracking

2.1. Overview of sparse coding

Let xARD be an vector obtained by stacking all pixel inten-
sities of an image into a column vector. Sparse coding represents
x as a linear combination of a set of basis functions
V¼ ½v1, . . . ,vK �ARD�K

x¼
XK

k ¼ 1

ukvkþn ð1Þ

where uk is the coefficient of the kth basis function and nARD is
the noise. Basis function set V is also called as dictionary and each
basis function is called as an atom. Let u¼ ½u1, . . . ,uK �

T ARK be the
coefficient vector. In general, there are many solutions of u that
satisfy Eq. (1) when the dictionary V is overcomplete where
DoK. In order to compute a reasonable solution, a sparse
constrain is usually placed on u as suggested in Field [22]. In this
case, u can be solved by the following ‘0-norm minimization

u¼ arg min
u

JuJ0 s:t: Jx�VuJ2
2re, ð2Þ

where J � J0 denotes the ‘0-norm that counts the number of
nonzero entries in a vector, J � J2 denotes the ‘2 norm of a vector,
and e is the noise level. This optimization problem is NP-hard and
there is no known procedure that can find the sparsest solution
more efficiently than exhausting all possible u. As the closest
convex function to the ‘0-norm minimization, the ‘1-norm mini-
mization is widely used to replace the ‘0-norm minimization

u¼ arg min
u

JuJ1 s:t: Jx�VuJ2
2re ð3Þ

It was shown that the ‘0-norm and ‘1-norm minimizations are
equivalent if the coefficients are sufficiently sparse [23].
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Using the Lagrangian method, the ‘1-norm minimization
problem can be rewritten as

u¼ arg min
u

1

2
Jx�VuJ2

2þlJuJ1 ð4Þ

where l is the Lagrangian multiplier, which controls the relative
importance of the sparseness to the reconstruction error.

The linear system defined by Eq. (1) and its solution Eq. (4) are
called sparse representation, which was widely used in computer
vision, especially in face recognition. In the literature, there are
two slightly different methods to cast Eq. (4) as a quadratic
programming problem, namely, gradient projection sparse repre-
sentation (GPSR) [24] and truncated Newton interior-point
method (TNIPM) [25]. The interested readers can refer to related
papers for the algorithm details.

In addition to compute coefficients of sparse representation,
the other important issue in sparse coding is dictionary learning

which learns a dictionary V from a collection of natural images
X¼ ½x1, . . . ,xN�ARD�N such that any image xi can be sparsely
represented by the learned dictionary. Let U¼ ½u1, . . . ,uN�ARK�N

be the matrix consisting of coefficient vectors of all training
images. The dictionary V can be learned by solving the following
optimization problem:

min
U,V

XN

i ¼ 1

Jxi�VuiJ
2
2þlJuiJ1 ð5Þ

After being assigned initial values, the dictionary V can be
learned by alternating two phases: (1) given the dictionary V, the
coefficients U are computed using Eq. (4) for all training images
and (2) given the coefficients U, the dictionary V is updated using
gradient descent. There are many efficient dictionary learning
methods such as MOD [26] and K-SVD [27].

From the introduction of sparse coding above, we can see that
sparse coding, in fact, contains two processes: sparse representation
and dictionary learning as shown in the left of Fig. 2. To clearly
understand the difference between sparse coding and sparse repre-
sentation, in this work, we emphasize that sparse representation
focuses on representing an input signal (maybe not natural image)
using a given dictionary with sparsity constrain on the representa-
tion coefficients. However, sparse coding focuses on learning a
dictionary from natural images to represent the underling structure
primitives in images. After representing an image using the learned
dictionary, the representation coefficients can be used as features to
describe the appearance of the image, which is inspired by the
properties of the receptive fields of simple cells in visual cortex.
2.2. Motivations of using sparse coding in visual tracking

In this section, we introduce the motivations of using sparse
coding in visual tracking. The relationship between sparse coding
and visual tracking is shown in Fig. 2.
Sparse
Representation

Target
Searching

Dictionary
Learning

Appearance
Modeling

Fig. 2. Relationship between sparse coding and visual tracking. Sparse represen-

tation can be used to perform target searching. Sparse coding including both

sparse representation and dictionary learning can be used to model the target

appearance for visual tracking.
2.2.1. Local appearance representation

The sparse coding model was initially proposed to model natural
image statistics. Given the dictionary learned from a collection of
natural image patches, different image patches can be represented
by the dictionary with different coefficients. Therefore, the repre-
sentation coefficients can be used as features to describe the
appearance of image patches. We call this ability of sparse coding
as local appearance representation (LAR). In this section, we explain
why LAR is useful to model target appearance from the point of
view of biologically inspired object representation.

Motivated by object recognition models in cortex [28,29],
Riesenhuber and Poggio proposed an biologically inspired repre-
sentation model called HMAX [20] which starts with a grayscale
image layer and alternates between ‘‘S’’ and ‘‘C’’ layers. The ‘‘S’’ layer
uses Gaussians derivative filters to compute higher-order features
by combining different types of units in the previous layers, which
simulates the receptive fields of simple cells in visual cortex.
The ‘‘C’’ layer achieves invariance by pooling units of the same
type in the previous layer over local ranges. The original HMAX
model attracted much attention in object recognition. Several
modified models [30,31] have also been proposed to improve the
recognition performance. The difference between the original
HMAX model and its modified versions mainly focuses on the
filters used in the ‘‘S’’ layer. Although the responses of the Gaussians
derivative filters used in the original HMAX model have similar
properties with the simple cells in striate cortex, it is still non-
biological because it neglects the response saturation of V1 cells.
The modified HMAX models use Gabor filters [32] to replace the
Gaussians derivative filters because Gabor filters have been exten-
sively used to model the receptive fields of simple cells. On the
other hand, Gabor filters have more parameters and allow more
accurate tuning than the Gaussians derivative filters. However,
Gabor filters still have their disadvantages. First, it is difficult and
time-consuming to set a large number of parameters to effectively
simulate the response properties of receptive fields of simple cells
in visual cortex. Second, Gabor filters are hand-designed with fixed
formulation for any image datasets. However, the structure primi-
tives underling in different image datasets are different. Therefore,
it is not reasonable to use the hand-designed Gabor filters to
compute the responses of images from different datasets.

In contrast to Gabor filters with fixed formulation, sparse coding
basis functions are directly learned from natural images and are
capable of adapting to different image datasets. In addition, there is
only a few parameters needed to be tuned and the learned basis
functions captured the structure primitives underling in the image
datasets. Most importantly, the responses of sparse coding are
localized, oriented and bandpass, which are more similar with the
receptive fields of simple cells in visual cortex than Gabor filters [33].
Therefore, sparse coding is more suitable for biologically inspired
appearance modeling for visual tasks. Although sparse coding was
used in object recognition [34], it was only used to replace the
K-means procedure in the bag of words models [35], which maps the
low dimensional SIFT descriptors [36] into high dimensional space to
increase the discriminative ability. There is a little work that used the
responses of sparse coding on natural images as features to model
image appearance. Motivated by the successes of hand-designed
Gabor filters in biologically inspired object representation and sparse
coding’s advantages compared with Gabor filters, it is possible to
believe that the responses of sparse coding are more suitable to
model target appearance for visual tracking.
2.2.2. Minimal subspace searching

Assume that there are a total of M subspaces and the
mth subspace is spanned by Nm D-dimensional vectors
Xm ¼ ½xm,1, . . . ,xm,Nm

�ARD�Nm . If a signal yARD belongs to the
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mth subspace, it should be approximately represented by Xm as

y�Xmum ð6Þ

where um ¼ ½um,1, . . . ,um,Nm
�T is the coefficient vector.

If we do not know which subspace the signal y belongs to, we
can linearly represent y using all subspaces

y�X1u1þX2u2þ � � �XMuM ¼Xu ð7Þ

where X¼ ½X1, . . . ,XM� and uT ¼ ½uT
1 , . . . ,uT

M �. The coefficient vector
u is sparse as long as y belongs to one of the M subspaces.
Therefore, we can compute u using the ‘1-norm minimization
(Eq. (4)). The index of the subspace that y belongs to can be
determined by searching which subspace can reconstruct y with
minimal error

arg min
m

Jy�XmumJ
2
2 ð8Þ

Therefore, sparse representation can be used to find the minimal
subspace the input signal belongs to from all subspaces. We call
this ability as minimal subspace searching (MSS). In the context of
face recognition, when the mth subspace is spanned by the
training face images from the mth class and the input signal is a
test face image, MSS can be used to recognize which class the test
face image belongs to Wright et al. [18].

The MSS ability of sparse representation can be easily simpli-
fied to perform target searching for visual tracking. For example,
considering two subspaces, one consists of target template
images. The other consists of background images. Given a set of
target candidates, the aim of visual tracking is to find which
candidate is the target. This can be solved by recognizing each
candidate as the target or background. If one candidate is
recognized as the target, it can be treated as the tracking result.
This idea motivates the pioneering work [19]. In addition to
casting visual tracking as such a supervised classification
problem, the other manner is to search the target template from
all target candidates. It is easy to modify the MSS to perform such
a target search task. For example, the target template can be
linearly represented by all target candidates. A reasonable
assumption is that at least one candidate is similar enough with
the target. Therefore, the representation coefficients are sparse
and can be computed using Eq. (4). The coefficients can be
directly used to measure the similarities between the target
template and candidates. The candidate with the largest coeffi-
cient can be chosen as the tracking result.

One of the most challenging issues in visual tracking is how to
handle target appearance variations during tracking. From the
analysis above, the MSS ability of sparse representation can be
used to solve this problem. For example, appearance variations
can be treated as the representation error n in Eq. (1), which can
also be represented by a dictionary O and the corresponding
coefficients z

y¼Xuþn¼XuþOz¼ ½X,O�
u

z

� �
¼ ~X ~u ð9Þ

When the suitable dictionary O is chosen, the representation
coefficient vector ~u is also sparse and can be computed using
Eq. (4). Then the target searching can be finished as like in the
case without appearance variations discussed previously.
3. Visual tracking based on sparse coding

According to the motivations of using sparse coding in visual
tracking and the stages of a general tracking system as shown in
Fig. 1, visual tracking methods based on sparse coding can be
roughly classified into three classes: (1) appearance modeling
based on sparse coding (AMSC), (2) target searching based on
sparse representation (TSSR) and (3) combination of both AMSC
and TSSR. In this section, we first introduce the basic tracking
framework in each class and then review some improvement
work to overcome their disadvantages.
3.1. Appearance modeling bases on sparse coding

3.1.1. Milestone work

Zhang et al. [21] proposed an appearance model based on the
response distribution of basis functions learned using indepen-
dent component analysis (ICA) [37]. It should be noted that ICA is
a special case of sparse coding and also has similar properties
with receptive fields of simple cells in visual cortex. In particular,
after collecting a set of 8�8 color image patches randomly
sampled from a training image set, a set of 192 basis functions
and the corresponding filters were learned using ICA. The learned
basis functions are called ‘‘general basis functions’’ because the
training images are not from the tracking sequence but from any
natural images. To make the general basis functions adapt to the
tracking task, a basis selection strategy based on entropy gain was
further used to select those basis functions which code the
dominant features in the target. The rational behind this strategy
is that the selected dominant features are more robust to local
appearance variations. Finally, the appearance model of the
tracked target was represented by the response distribution of
the selected basis functions. The response ratio of the kth basis
function can be computed as

zk ¼
1

C

XN

i ¼ 1

u2
ik ð10Þ

where uik is the response of the ith patch to the kth basis function
and C ¼

PK
k ¼ 1 u2

ik is the normalization constant to make response
energies of one patch to all basis functions sum to one.

The appearance model of the target was represented by the
distribution z¼ ½z1, . . . ,zK �, which can be analogous to the well-
known color histogram [38]. The difference is that color histo-
gram is obtained by computing the activation frequencies of the
hand-designed one-dimensional basis functions when coding
each single pixel. However, the response distribution computes
the activation frequencies of the learned basis functions, which is
used to code each image patch. The reported experiment results
in Zhang et al. [21] show that the proposed appearance model is
robust to appearance variations especially to partial occlusion due
to the feature selection strategy. However, this model is not
discriminative enough to distinguish the target from the back-
ground because the learned basis functions are too general to
code the difference between the target and background patches.

Motivated by this work, we can abstract a basic framework of
the appearance model based on sparse coding as shown in Fig. 3,
which contains three main layers: image layer, coding layer and
pooling layer. The image layer provides input to the coding layer,
which can be a gray image or color image or a set of feature
descriptors such as SIFT [36] extracted from the color or gray
image. The coding layer uses sparse coding (or its special cases,
such as, ICA or K-means) to compute the coefficients of repre-
senting each image patch using the learned dictionary.
The pooling layer computes the statistics of all coefficients to
obtain a final feature representation of the input image. In the
literature, several related work was proposed, which are consis-
tent with this framework. In the following subsection, we will
introduce some recent developments based on this framework
from two aspects: dictionary learning methods in the coding layer
and pooling operators in the pooling layer.
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Fig. 3. A basic framework of appearance modeling based on sparse coding.

The image layer x is sampled to get a collection of patches. Each patch is sparsely

coded to produce a set of codes, which are further pooled in the pooling layer to

form the final feature vector z to describe the appearance of the input image.
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3.1.2. Recent developments

Dictionary learning: the goal of dictionary learning is to learn a
dictionary with which the coding coefficients of the target or
background patches can be used as features to distinguish the
target from the background well. The difference between differ-
ent dictionary learning methods in visual tracking is mainly the
collection procedure of the training data. Wang et al. [39] learned
the dictionary from a set of SIFT descriptors [36] extracted from
the VOC20101 and Caltech1012 datasets. Because these two
datasets contain similar structures with the tracked target, for
example, human shape and car contour, the learned dictionary
can be used to sparsely represent the target patches.

To further increase the discriminative ability, a more discri-
minative appearance model based on sparse coding was proposed
in Liu et al. [40] where the dictionary was directly learned using
the patches sampled from the target image. Compared with the
general basis functions used in [21,39], the learned basis func-
tions are more specific to represent the patches sampled from the
target. On the other hand, the learned dictionary will result in a
more non-sparse representation for the background patches.
Therefore, the representation coefficients are easier to distinguish
the target from the background compared with the learned
dictionary in Zhang et al. [21], Wang et al. [39]. Wang et al. [41]
also used the patches sampled from the target image to learning
the dictionary.

Feature pooling: in the pooling layer, the role of pooling
operator is to compute the final feature vector z based on some
statistics of the local codes ui,k obtained in the coding layer to
model the appearance of the target. In Wang et al. [41] the
authors obtained the final feature vector by concatenating all
local codes, zT ¼ ½uT

1 , . . . ,uT
N �. We called this pooling operator as

concatenating pooling. The advantage of the concatenating pooling
is that the spatial order of local codes is preserved, which
significantly increases the discriminative ability of the resulting
feature vector. However, there are two drawbacks: one is that it is
very sensitive to image noise because each local code is an
element of the concatenated feature vector. Once noise appears
in the image, the resulting feature vector will be directly affected
by the noise. The other one is that the dimensionality of the final
feature vector is extremely high. For example, if the size of the
1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html
2 http://www.vision.caltech.edu/Image Datasets/Caltech101/
dictionary is 64 and the number of sampled patches from the
target image is 100, the dimensionality of the obtained feature
vector is 6400. This will cause hight computation complexity,
especially when the feature vectors are further used to learn a
classifier.

In [39], a max pooling operator is used to compute the final
feature vector, zk ¼max f9u1,k9, . . . ,9uN,k9g. This max pooling
operator is motivated by the biophysical evidence in visual cortex
[30]. Although it is successfully used in object recognition [34]
due to its invariant properties, such as position and scale
invariances, it is not suitable for visual tracking due to the lose
of discriminative ability because each dimension of the resulting
feature vector is the maximum coefficients of its corresponding
basis function over all patches, which ignores other non-
maximum coefficients.

The histogram-like feature vector computed using Eq. (10) in
Zhang et al. [21] exploits an average pooling on local codes after
first normalizing them using a square function. Similar to Zhang
et al. [21], Liu et al. [40] also use the average pooling to compute
the final feature vector except that they normalize the local codes
using an absolute function. Although the average pooling operator
uses all local codes to compute the final feature vector, which
increases the discriminative ability compared with the max
pooling, it loses the spatial order of local codes, which is similar
to the disadvantage of the widely used color histogram
representation.

In Jia et al. [42], a structural local sparse coding model was
proposed, which uses a set of target templates. Each template
image was divided into a set of overlapped local image patches.
The patches sampled from all target images were used as the
dictionary to sparsely represent the patches sampled from the
candidate using the same way. Because each patch represents one
part of the target, therefore, all local patches from the target with
a fixed spatial relationship can reflect the target structure. To
compute a final feature vector which captures the possible
structure from the candidate image, all local codes computed
from the candidate image were then pooled by an alignment
pooling operator, which computes the feature element for each
patch as the sum of the codes corresponding to the basis
functions at the same position with the patch. With this strategy,
the feature element reflects the similarity between the candidate
and the target template. Although the reported experimental
results are appealing, there is still large space to improve this
structural sparse coding model. For example, the dictionary
should also include patches from the background image to
describe the structure of the background, which should be useful
to discriminate the target from the background.

3.2. Target searching bases on sparse representation

3.2.1. Milestone work

In Wright et al. [18], a sparse representation based face
recognition method was proposed which exploits the minimal
subspace searching (MSS) ability introduced in Section 2.2.2.
Motivated by this work, Mei and Ling [19] considered visual
tracking as a two-subspace searching problem where the first
subspace was spanned by a set of target templates and the second
subspace was spanned by a set of trivial templates. The trivial
templates are column vectors of an identity matrix, also called
identity pixel basis. In particle filter framework, the purpose of
visual tracking is to search which subspace each target candidate
belongs to using Eq. (8). If the search result is the first subspace,
the candidate is considered as the tracking result.

Different from searching each candidate, Zhang et al. [43]
proposed to search the target template from two subspaces.
The first subspace was spanned by a set of candidates similar to

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html
http://www.vision.caltech.edu/Image Datasets/Caltech101/
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the target template. The second subspace was spanned by a set of
candidates corresponding to the background. When representing
the template using all candidates from two subspaces, the candi-
date corresponding to the largest coefficient is considered as
the tracking result. In Mei and Ling [19], the number
of ‘1-norm minimization equals to the number of candidates,
which is very large in most visual tracking applications, e.g., 600
in their experiments. Therefore, the computational cost is very
expensive. In contrast, Zhang et al. [43] use all candidates to
represent the target template. The number of ‘1-norm minimiza-
tion is just one, which significantly reduces the computation
complexity.

Upon these work, we can abstract a general target searching
framework based on sparse representation as shown in Fig. 4.
The dictionary X consists of three parts: target dictionary T,
background dictionary B and variation dictionary V. Given any
candidate y, dictionary X associated with coefficients u will
produce a sparse representation of the candidate. Compared with
the work in Mei and Ling [19], this framework is more general.
First, the dictionary contains background images. When the
candidate is from the background, the background dictionary will
be used to represent it, which will result in the non-zero
coefficients corresponding to the background dictionary. There-
fore, the coefficients are more discriminative. In addition, the
variation dictionary is more general than the identity pixel basis
used in Mei and Ling [19]. In the next subsection, we will review
the related work focusing on how to learn the dictionary as well
as how to reduce the computation complexity.
3.2.2. Further improvement

Dictionary learning: in the tracking framework mentioned above,
the dictionary is the collection of a number of vectorized images.
Most work uses the downsampled gray images to obtain a low
dimensional representation. However, gray images are sensitive to
noises especially in outdoor scenes. On the other hand, a target is
more easy to be discriminated from other targets when some
sophisticated features are used. In Tzimiropoulos et al. [44], gradients
along the horizontal and vertical directions were used to replace the
downsampled intensity features. However, it is difficult to represent
a sample as a linear combination of a subspace in the angle domain.
To use angular data, each angle vector was mapped onto a new
vector by concatenating its cosine and sine values.

Multiple feature descriptors are complementary for searching
the target. Instead of using one kind of feature descriptor to build
the dictionary, Wu et al. [45] proposed to use multiple feature
descriptors in the dictionary. Each dictionary atom is obtained by
concatenating multiple feature descriptors extracted from the
target image. When computing the representation coefficients
using Eq. (4), the sparseness constrain plays an important role to
make the different descriptors compete with each other to
represent the target candidate, which achieves the purpose of
fusing multiple kinds of feature descriptors.

In the methods introduced above, the variation dictionary is
the identity matrix, which served as an identity pixel basis to
model which spatial pixels of the target are occluded. These
methods [19,46] have a assumption that the occluded pixels
occupy only a small part of the entire target region in order to
use the sparse prior to calculate the representation coefficients.
However, such methods have two main drawbacks. First, the size
of the identity pixel basis is the same with the dimension of the
target image, which is usually very large. Therefore, the computa-
tional cost of inferring the representation coefficients with the
identity pixel basis is expensive. On the other hand, the assump-
tion that only a small number of pixels are occluded is always not
true. For example, the target could be occluded severely in many
practical tracking scenes. In addition, when partial occlusion
occurs, the identity pixel basis will be useful to hand occlusion.
However, when there is no occlusion, the identity pixel basis
would be activated to represent any image patches. In Bao et al.
[47], the authors proposed to constrain the identity pixel basis to
be activated when there is no occlusion. These drawbacks also
exist in face recognition [18]. To overcome them, a learned
occlusion dictionary based on Gabor features was proposed for
face recognition [48]. Motivated by this work, Zhang et al. [49]
proposed to learn the variation dictionary online for visual
tracking. At each time, after the tracking result is available, the
reconstruction errors between the tracking result and all candi-
dates are collected as samples to learn the variation dictionary
using an online dictionary learning method [50]. The learned
dictionary is more compact and representative than the identity
pixel basis.

A fixed dictionary cannot capture the appearance variation,
therefore, the subspace have to been updated over time when the
tracking result is available. In Mei and Ling [19], a template
update scheme was used to online update the target dictionary.
First, each target template is assigned a weight to specify its
importance in the linear representation. The weights are assigned
with equal values at the first time and then updated online based
on their coefficients of representing the current tracking result.
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If a template update is necessary, the template with the least
weight will be replaced by the current tracking result. Updating of
a template is based on the distance between the current tracking
result and the template with the largest coefficient, which can be
a cosine angle between two vectors. In Ling et al. [51], the authors
found such an update scheme is vulnerable to drift problems
when track vehicle on infrared videos where both the image
quality and contrast between target and background are low. To
overcome this problem, they proposed a probabilistic template
update scheme where the weight update occurs only when the
observation likelihood of the current tracking result is greater
than a threshold.

Reducing computation complexity: to reduce the computation
complexity, two kinds of methods can be adopted. One of them is to
reduce the computational cost of each ‘1-norm minimization.
The other one is to reduce the number of ‘1-norm minimizations.
Instead of reducing the dimension of ‘1-norm minimization by
downsampling the cropped images for both the target and candi-
dates, Liu et al. [52] proposed a feature selection method to choose
low dimensional but more discriminative features. In Wu et al. [53],
to reduce the dimension of the linear representation, the authors
proposed to use covariance matrix to represent the target or
candidate. The covariance matrix has several significant advantages.
For example, it enables efficient fusion of different types of features,
where the spatial and statistical properties as well as their correla-
tion are characterized, and its dimension is small. In Li et al. [54],
a real-time tracking algorithm was proposed, which exploits the
restricted isometry property (RIP) [16] in compressive sensing to
reduce the dimension of the dictionary by multiplying a hashing
matrix that guarantees the RIP in the two sides of Eq. (1). It should
be noted that the latest CT tracker [55] also exploits RIP to reduce
the dimension of the target representation and achieves real-time
tracking. However, in this paper, we did not classify CT tracker into
one of the three categorizations reviewed in this paper. The main
reason is that all the trackers reviewed in this paper are based on a
generative model, e.g., the image patch is modeled as a linear
superposition of basis functions in AMSC. However, CT tracker is
based on a linear transformation model, which compresses the high
dimensional feature vector into a low dimensional space while
preserve some kind of distance metric. From the point of view of
coding, CT tracker is significantly different with the reviewed
methods.

In addition to reduce the dimension of dictionary, other
methods that can be used to reduce the computation complexity
is to reduce the size of the dictionary, especially the size of the
occlusion dictionary. Recently, a robust sparse representation
model was proposed in Yang et al. [56], which removes the
occlusion dictionary from the sparse representation and uses a
weighted LASSO algorithm to handle occlusion. In Yan and Tong
[57], the authors proposed to use this robust sparse representation
to perform visual tracking. Compared with Mei and Ling [19], their
method does not need to use the identity pixel basis to represent
the errors caused by occlusion, which significantly reduces the size
of the dictionary and therefore reduces the computation time.

In all the methods mentioned above, each target candidate is
represented by the dictionary. Therefore, the number of ‘1 mini-
mization equals to the number of candidates. To reduce the number
of ‘1-norm minimization, in Mei et al. [46], the number of ‘1-norm
minimization is reduced by exploiting the fast computational lower
bound of the reconstruction error to exclude the unimportant
particles. In Liu et al. [58], the authors integrated a motion model
into the sparse representation. Starting from an initial state of the
target, a gradient based optimization procedure is iteratively used
to find the sparse representation coefficients and the corresponding
gradient vector. During each iteration, a new candidate is obtained
based on the calculated gradient vector and the candidate at the
last time. After a small number of iterations, the local minimal
value of the ‘1-norm minimization is obtained. Clearly, the number
of ‘1-norm minimizations is significantly reduced.

3.3. Combining both TSSR and AMSC methods

In Sections 3.1 and 3.2, we review existing tracking methods
based on AMSC and TSSR, respectively. In addition to these
methods, some researchers tried to combine them together to
build a sparsity based collaborative model for visual tracking [59].
The TSSR uses the target dictionary and background dictionary to
represent each candidate. Let u¼ ½uT

uB
� be the coefficients of

representing candidate y using dictionary X¼ ½T,B�, the weight
of the candidate is computed as wTSSR ¼ expð�ðeT�eBÞ=dÞ where
eT ¼ Jy�TuTJ

2
2 is the reconstruction error when represent the

candidate using the target dictionary T with the associated
coefficient uT , eB ¼ Jy�BuBJ

2
2 is the reconstruction error when

represent the candidate using the background dictionary B with
the associated coefficients uB and d is a parameter. The AMSC
method uses the concatenating pooling to obtain a histogram-like
feature vector ~z for the target template and z for the candidate.
The candidate’s weight based on AMSC is computed by histogram
interaction as wAMSC ¼

PN�K
j ¼ 1 minð ~zj,zjÞ. The final weight of the

candidate is computed by a simple fusion w¼wTSSR �wAMSC .
Their work combines the advantages of both TSSR and AMSC

and reported better tracking performance compared with other
state-of-the-art methods. However, as we analyzed in the last
section, the feature vector obtained by the concatenating pooling
is sensitive to noise. In addition, they just adopt a simple method
to fusion the weights of TSSR and AMSC. A more reasonable fusion
method should be used, for example, assign higher confidence on
TSSR or AMSC according to their tracking performance in previous
times.
4. Experimental comparison

In this section, we conducted both quantitative and qualitative
experiments on a total of twenty test sequences to evaluate the
benefits of using sparse coding in visual tracking. In the following
subsections, we first introduce the experimental setup including
comparison methods, parameters, test sequences and evaluation
criteria, and then present the performance comparison in details.
All the MATLAB source codes and datasets are available at http://
www.shengping.us/CSTracking.html.

4.1. Experimental setup

4.1.1. Comparison methods

To demonstrate the effectiveness of using spare coding in
visual tracking, we select several representative trackers in AMSC
or TSSR as well as their combination. In particularly, for TSSR, we
select L1 [19], BL1 [19], T2CL1 [43] and OT2CL1 [49]. For AMSC,
we select BRD [21], OLSR [41], and SLSA [42]. For the combination
of both TSSR and AMSC, we select SCM [59]. To get a more fair
comparison between TSSR and AMSC, we divide the SCM tracker
into SCM_C and SCM_G, which respectively uses TSSR and AMSC
but keep other parts the same. This allows us to focus on the
benefits of using sparse coding in target searching or appearance
modeling. In addition, we also select five baseline trackers, Frag
[60], IVT [4], MIL [13], OAB [11] and CT [55] for comparison.

4.1.2. Parameters

We use the source codes provided by the authors to run
experimental results. For particle filter based trackers L1, BL1,
T2CL1, OT2CL1, OLSR, SLSA, SCM_C, SCM_G, SCM, to fairly

www.shengping.us/CSTracking.html
www.shengping.us/CSTracking.html
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compare their performance, we further modified the source codes
to use the same state parameters and motion model as in Mei and
Ling [19]. In particularly, the state of the tracked target (particle)
is represented by four deformation parameters and two transla-
tion parameters. By applying an affine transformation, each
particle can be used to crop an image region and then normalized
to be a fixed size (32�32 for sequences where the target is
approximate square, otherwise, 16�64 or 64�16 according to
the aspect ratio of the target.) The six parameters of the affine
transformation are assumed to be independent. The particle
motion is modeled by a Gaussian distribution with the particle
in the last time as the mean and an initial covariance matrix.
The covariance matrix used in the motion model is set according
to the motion speed of the tracked target. We initialize the
covariance matrix for each sequence and keep it unchanged for
all particle filter based trackers. The number of particles is set to
be 600 as like in Mei and Ling [19]. For TSSR trackers L1, BL1,
T2CL1 SCM_C, the sizes of the target and background dictionaries
are 50 and 200, respectively. For AMSC trackers BRD, OLSR, SLSA
and SCM_G, the patches with size 6�6 are sampled by sliding
across the images with step 2. l in Eq. (4) is set to 0.01. We use
the SPAM package3 to compute the coefficients in Eq. (4) and
learn the dictionary in Eq. (5). For five baseline trackers, we use
the same parameters as the authors used in their papers for all the
experiments. It should be noted that although we use the source
codes provided by the authors, we cannot exactly reproduce the
results reported in their papers because it is difficult to tune the
parameters for each sequence as like those used in their
experiments.
4.1.3. Test sequences

The experiments were conducted on twenty publicly available
video sequences, which include car4, david_outdoor, david_indoor,
sylv, box, board, liquor, lemming, CAVIAR, faceocc2, PETS, seq_mb,
face, woman, singer, basketball, bird_1, bird_2, running, girl.4 These
video sequences were captured from different scenes, which
contain a variety of object motion events (e.g., human walking
and car running) and appearance variations (e.g., pose change,
partial occlusion and illumination). The resolution, length, target
size and challenges in each sequence were summarized in Table 1.
4.1.4. Evaluation criteria

For quantitative performance comparison, two popular eva-
luation criteria were used, namely, center location error (CLE) and
tracking success rate (TSR). The CLE was computed as the distance
between the predicted center position and the ground truth
center position. The TSR was computed as the ratio of the number
of frames the target was successfully tracked to the number of
frames in the sequence. To define whether the target is success-
fully tracked at a frame, we use the score in the PASCAL VOC
challenge [61], which can be computed as score¼ areaðRn

\RgtÞ=areaðRn [RgtÞ, where Rn is the bounding box obtained by
a tracker,Rgt is the corresponding ground truth bounding box and
areaðRÞ denotes the area of the region R. If the PASCAL score is
3 http://spams-devel.gforge.inria.fr/
4 These sequences can be downloaded from http://www.cs.toronto.edu/dross/

ivt/, http://gpu4vision.icg.tugraz.at/subsites/prost, http://groups.inf.ed.ac.uk/

vision/CAVIAR/CAVIARDATA1/, http://vision.ucsd.edu/bbabenko/project_miltrack.

shtml, http://www.cvg.rdg.ac.uk/PETS2001/, http://www.ces.clemson.edu/�stb/

research/headtracker/, http://www.cs.technion.ac.il/�amita/fragtrack/fragtrack.

htm, http://cv.snu.ac.kr/research/�vtd/index.html, http://ice.dlut.edu.cn/lu/Pro

ject/iccv_spt_webpage/iccv_spt.htm, http://cv.snu.ac.kr/research/�bhmctracker/

index.html, http://www.ece.northwestern.edu/�mya671/VehicleVideo/

cvpr07_testvideo.rar.
larger than 0.5, the target is considered as being successfully
tracked.

4.2. Comparison results and analysis

4.2.1. Overall performance

We first show the overall performance of all trackers on 20 test
sequences. The TSR and average CLE of each tracker on all
sequences are shown in Tables 2 and 3, respectively. Fig. 5 shows
the CLE of each tracker over time on each sequence. From Table 2,
we can see that there is at least one tracker achieving more than
95% TSR on the first 12 sequences. In contrast, on the remaining
eight sequences, all trackers achieve bad performance, especially
on bird_1, board and box sequences. We categorize the first twelve
sequences as simple sequences and the remaining eight
sequences as complex sequences. In Table 2, the highest TSR
values for each sequence are highlighted in red bold font. We
count the numbers of the highest TSR values for baseline trackers,
TSSR trackers, AMSC trackers as well as their combination on
simple sequences and complex sequences, respectively. Similarly,
Table 3 shows the average CLE values of all trackers on all test
sequences. We also highlighted the smallest average CLE in red
bold font and then count the number of the smallest average CLE
for different classes of trackers on simple sequences and complex
sequences, respectively.

As we can see from these two tables, AMSC trackers signifi-
cantly outperform TSSR trackers on twelve simple sequences.
Therefore, we can conclude that sparse coding is more useful to
model target appearance than perform target searching for visual
tracking. This conclusion can be more convincingly supported by
analyzing SMC_C and SMC_G trackers on these sequences. SMC_C
and SMC_G are implemented in the same framework but just
with different target searching and appearance modeling meth-
ods. Therefore, they are much easier and fairer to compare the
benefits of using sparse coding in target searching and appear-
ance modeling. As seen from Table 2, SMC_C tracker achieves the
best performance on three simple sequences and SCM_G trackers
achieves the best performance on eight simple sequences.

For the eight complex sequences, although all trackers do not
achieve perfect tracking performances, AMSC trackers are still
superior to TSSR trackers in terms of the numbers of the largest
TSR values shown in Table 2 and the number of the smallest
average CLE shown in Table 3. Fig. 6 shows some tracking results,
from which we can see that most tracking failures occur when the
target is occluded or there are similar objects around the target.
For example, the girl is occluded by the man in the girl sequence.
There are other runners similar to the tracked runner in the
running sequence. On the other hand, all trackers based on sparse
coding are slightly worse than the baseline trackers on these
complex sequences, which indicates the trackers based on sparse
coding still have large space for further improvements.
4.2.2. Performance of AMSC methods

From Section 4.2.1, we can see that the overall performance of
AMSC methods are better than TSSR methods. One of the most
important reasons is that the dictionary learned by sparse coding
from image patches are capable of describing the underlying
structure primitives (e.g., edge) in the image patches. When an
image patch is represented by the learned dictionary, the repre-
sentation coefficients can be used as local features to represent
the image patch. When a pooling operator is used on the local
codes, the resulting feature vector is effective to model the global
appearance of the image. Compared with global TSSR methods,
local AMSC methods are more stable, which are not sensitive
to misalignment and noise. In this section, we analyze how

http://spams-devel.gforge.inria.fr/
http://www.cs.toronto.edu/dross/ivt/
http://www.cs.toronto.edu/dross/ivt/
http://gpu4vision.icg.tugraz.at/subsites/prost
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://vision.ucsd.edu/bbabenko/project_miltrack.shtml
http://vision.ucsd.edu/bbabenko/project_miltrack.shtml
http://www.cvg.rdg.ac.uk/PETS2001/
http://www.ces.clemson.edu/~stb/research/headtracker/
http://www.ces.clemson.edu/~stb/research/headtracker/
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Table 1
The used test sequences and their challenges as well as the size of the tracked target, frame size and frame length.

Sequences Challenges Target size Frame size Frame length

faceocc2 Pose change, partial occlusion 98�82 320�240 594

woman Severe occlusion 93�31 352�288 333

singer Severe illumination change, pose change 157�59 320�240 351

face Severe occlusion 102�67 352�288 178

car4 Illumination change 88�104 360�240 630

david_outdoor Illumination change, pose change 65�45 320�240 250

david_indoor Illumination change, pose change, scale change, low contrast 79�61 320�240 460

CAVIAR Severe occlusion, distraction from similar objects 115�31 384�288 500

PETS Severe occlusion, pose change, distraction from similar objects 79�24 768�576 412

seq_mb Severe pose change, partial occlusion, distraction from similar objects 45�31 128�96 500

sylv Illumination change, pose change, scale change, cluttered background 61�51 320�240 800

bird_2 Severe pose change, low contrast 73�69 720�400 99

bird_1 Severe pose change, low contrast 37�31 720�400 408

girl Severe pose change, severe occlusion 151�39 640�480 400

running Severe pose change, partial occlusion 61�26 640�360 150

basketball Partial occlusion, pose change, distraction from similar objects 81�34 576�432 725

liquor Severe occlusion, distraction from similar objects 210�73 640�480 1741

lemming Illumination change, partial occlusion 103�61 640�480 1336

board Partial occlusion, distraction from similar objects 153�195 640�480 698

box Partial occlusion, distraction from similar objects 112�86 640�480 500

Table 2
The TSR on 20 test sequences. The best result on each sequence is shown in bold font. The number of best results in each class are also shown in the middle and bottom

rows. Their maximal values are shown in bold fonts.

Baseline tracker Target search based sparse representation Appearance modeling based sparse

coding

Combination

Sequence Frag

(%)

IVT (%) MIL

(%)

OAB

(%)

CT (%) L1 (%) BL1

(%)

T2CL1

(%)

OT2CL1

(%)

SCM_C

(%)

BRD

(%)

OLSR

(%)

SLSA

(%)

SCM_G

(%)

SCM (%)

faceocc2 68.18 96.63 54.04 83.00 87.37 62.63 90.24 59.26 95.79 79.46 94.95 85.86 64.81 64.81 97.14
woman 38.44 14.11 15.02 15.02 14.11 17.12 13.21 44.14 95.50 78.08 15.02 14.71 100.00 100.00 99.40

singer1 24.79 27.35 24.79 24.79 24.79 27.35 22.22 92.59 30.48 100.00 25.93 100.00 65.53 100.00 100.00
face 84.83 78.65 82.02 75.28 58.43 81.46 57.87 72.47 93.82 99.44 100.00 98.31 25.28 100.00 100.00
car4 27.30 97.78 27.62 27.46 27.46 24.60 30.95 68.41 63.17 100.00 32.38 100.00 100.00 55.24 100.00
david_outdoor 24.80 32.00 20.40 13.60 22.80 65.60 62.40 66.80 92.40 20.80 19.60 58.80 79.20 95.20 94.80

david_indoor 20.87 91.09 18.91 11.30 89.13 48.26 24.13 46.09 61.30 27.83 29.35 22.61 71.09 99.57 95.65

CAVIAR 35.40 100.00 38.80 38.60 35.80 38.00 89.20 87.00 97.60 100.00 79.00 39.80 40.40 100.00 100.00
PETS 50.49 99.76 53.16 58.01 46.36 0.24 0.24 59.47 55.34 98.54 10.68 62.62 0.24 83.74 94.90

seq_mb 77.60 32.00 37.00 70.40 16.80 68.20 65.60 73.40 95.20 86.00 30.80 9.60 80.80 64.20 54.60

sylv 91.12 76.12 91.38 79.50 94.38 46.75 48.38 70.50 100.00 55.88 53.50 90.12 97.75 100.00 100.00
bird_2 34.34 14.14 50.51 89.90 59.60 44.44 41.41 45.45 43.43 48.48 62.63 63.64 57.58 95.96 78.79

# 2 # 5 # 13 # 6

bird_1 22.79 2.21 46.57 27.21 25.49 0.25 0.49 0.98 1.23 14.71 3.19 7.35 1.72 21.81 20.34

girl 24.75 26.00 14.75 27.75 22.25 21.00 15.00 44.25 31.25 41.50 65.50 21.50 27.75 45.25 29.50

running 8.67 2.00 4.00 8.67 0.00 2.00 0.67 7.33 15.33 6.00 82.00 5.33 2.00 2.67 58.67

basketball 45.10 44.55 28.14 9.93 82.34 25.66 14.34 23.59 17.93 36.00 35.17 11.72 6.48 8.28 8.41

liquor 27.51 68.52 20.96 20.96 21.19 54.74 45.43 63.01 64.45 22.92 20.28 20.96 23.03 39.17 48.31

lemming 50.07 40.19 38.40 38.40 54.34 38.40 41.84 56.29 89.07 25.00 48.13 3.37 18.11 62.57 48.28

board 11.03 0.86 5.30 4.30 3.72 1.72 0.14 2.15 2.44 1.72 17.77 14.61 19.34 16.05 14.76

box 9.40 11.40 3.40 6.00 18.40 4.60 5.00 9.20 10.60 6.40 10.60 8.80 12.20 15.20 12.60

# 4 # 1 # 3 # 0
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dictionary learning and pooling operator affect the performance
of AMSC methods. We select three dictionary learning methods:
(1) learning dictionary using image patches sampled from target
image, T, (2) learning dictionary using patches sampled from both
target and background images, (TþB) and (3) first learning
dictionary using patches sampled from target image and back-
ground image respectively and then combining them to form the
final dictionary, [T, B]. We chose five pooling operators: (1) con-
catenation, Con; (2) max pooling, Max; (3) average pooling, Ave;
(4) multi-scale max pooling, Mul-Max; (5) multi-scale average
pooling, Mul-Ave. The multi-scale versions of max pooling and
average pooling are based on spatial pyramid representation with
scales ½0,1,2� as in Yang et al. [34].

We conducted experiments on eight complex test sequences. The
TSR measures on these sequences are shown in Table 4, from which
we can see that when use the same pooling operators, the dictionary
method [T, B] achieves the best performance than T and (TþB). On
the other hand, dictionary learning methods T is better than (TþB).
The performance difference between these three dictionary learning
methods is due to the discriminative abilities of the learned dic-
tionary. The [T, b] method is the most discriminative. The dictionary
learning method T just uses the samples from the target image to
learn the dictionary, which can sparsely represent the samples from
the target image with minimal reconstruction error but can not
sparsely represent the samples from the background image. There-
fore, the learned dictionary still has discriminative ability in some
extent. In contrast, the dictionary learning method (TþB) uses
samples from both the target and background images to learn the
dictionary, which can sparsely represent the samples from both the
target and background images. Therefore, the codes have the least



Table 3
Average CLE on 20 test sequences. The best result on each sequence is shown in bold font. The numbers of best results in each class are also shown in the middle and

bottom rows. Their maximal values are shown in bold fonts.

Baseline tracker Target search based sparse representation Appearance modeling based sparse coding Combination

Sequence Frag IVT MIL OAB CT L1 BL1 T2CL1 OT2CL1 SCM_C BRD OLSR SLSA SCM_G SCM

faceocc2 25.15 6.46 19.18 14.72 16.25 35.72 11.85 30.07 5.89 10.63 8.77 9.15 24.95 24.70 8.13

woman 92.26 146.67 117.70 105.42 106.80 94.37 88.42 44.82 2.93 5.40 80.77 140.83 2.49 1.76 1.74
singer1 14.15 7.42 18.59 18.37 15.44 61.26 78.08 4.94 59.66 2.47 18.58 2.59 4.44 2.24 2.10
face 9.26 12.30 14.20 14.82 22.73 23.37 45.80 28.18 7.31 5.68 6.15 4.91 53.61 3.35 3.50

car4 133.35 5.78 90.92 49.93 81.56 92.78 160.22 27.18 26.61 2.67 142.58 3.17 3.18 10.68 3.36

david_outdoor 79.17 89.20 55.35 67.21 66.20 24.49 39.72 25.17 5.78 78.39 74.34 28.99 14.14 6.31 6.28

david_indoor 42.18 3.61 25.85 21.34 6.91 25.23 68.09 44.66 35.58 66.35 82.19 116.28 15.91 4.56 5.48

CAVIAR 57.96 3.06 57.47 23.01 58.99 58.09 7.17 8.52 2.48 2.32 8.85 61.78 45.75 2.02 2.08

PETS 9.30 2.13 4.49 4.26 5.68 332.38 379.08 78.75 39.50 2.19 272.01 32.05 14.07 3.13 2.25

seq_mb 6.30 17.72 13.77 10.14 18.91 11.54 13.02 17.62 3.68 3.15 27.49 20.72 6.91 8.46 11.17

sylv 5.89 28.12 7.74 13.38 7.09 46.81 42.89 29.29 1.36 41.54 41.36 7.67 6.73 4.29 4.09

bird_2 50.24 99.37 21.54 12.13 19.97 51.11 36.72 52.84 66.70 53.36 13.85 15.27 20.42 7.73 11.98

# 2 # 5 # 3 # 2

bird_1 266.54 162.90 19.96 132.27 94.60 182.26 152.18 104.87 169.70 55.23 339.46 67.33 168.61 77.52 72.24

girl 111.87 104.28 154.38 97.54 113.00 198.06 180.80 101.91 181.26 119.54 13.80 135.38 156.12 20.38 91.59

running 90.50 279.80 271.82 254.78 233.26 104.05 101.44 255.48 68.66 273.66 8.43 281.10 260.17 290.91 13.90

basketball 70.61 7.29 66.20 120.09 12.68 98.06 136.30 72.61 100.31 45.83 108.34 132.65 145.34 185.03 198.03

liquor 96.59 61.69 149.86 146.41 137.02 90.39 115.92 72.83 80.59 113.05 191.62 190.20 103.08 70.45 56.10
lemming 93.26 117.98 109.70 84.30 55.59 108.38 106.47 125.48 16.14 121.95 97.50 213.01 162.30 93.23 132.17

board 350.20 330.74 315.44 333.15 289.08 286.65 550.41 333.26 342.34 279.01 356.01 367.88 346.78 350.68 391.86

box 328.17 334.64 459.00 326.64 328.09 296.37 448.04 324.82 369.72 424.50 370.54 265.77 354.89 353.79 368.93

# 2 # 2 # 3 # 1
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discriminative ability. Here, we conducted an experiment to validate
the discriminative abilities of three different dictionary learning
methods. We sample 10,000 8�8 positive patches from one target
image and 10,000 8�8 negative patches from 50 background images
to learn the dictionaries using three dictionary learning methods. The
target image and 50 background images are represented by histo-
grams obtained by average pooling on local codes. The similarity
between the target image and one background image is computed as
the histogram intersection between their histograms. We then
compute the average of similarities between the target image and
50 background images. The smaller the average of similarities is, the
high discriminative ability is. We show the average of similarities
over different sizes of dictionary in Fig. 8. From this figure, we can see
that (1) for all three dictionary learning methods, the discriminative
abilities increase when the size of the dictionary increase except
slight decrease for (TþB) and [T, B] with size 96. (2) for any fixed size
of the dictionary, the dictionary learning method [T, B] achieves the
highest discriminative ability.

From Table 4, we can see that the Con pooling operator is better
than the Sum and Ave pooling operators, which validates that the
Con pooling is more discriminative than the Sum and Ave pooling
operators. The best tracking performance on all test sequences are
achieved when the Mul-Ave pooling is used. The reason is that Mul-
Ave pooling is more discriminative than other pooling operators. The
high discriminative ability comes two aspects: (1) the multiple scale
spatial pyramid representation reserves the spatial order of local
codes. (2) the average pooling used in each bock at each scale is also
more discriminative than the sum pooling.
4.2.3. Performance of TSSR methods

As observed in Section 4.2.1, TSSR methods get worse perfor-
mance than AMSC methods. In this section, we chose BL1 tracker to
further analyze why it does not perform well on most sequences.
The first reason is that the template update is not effective. For
example, on the car4 sequence which contains severe illumination,
especially when the car passes beneath a bridge and under trees, the
target and background occurs severe illumination changes. The
target templates can not be updated immediately to reflect the
appearance changes. Therefore the tracker failed to accurately track
the target. The second reason is that the ‘1-norm minimization is
very sensitive to background cluster. For example, in the box

sequence, similar background regions will affect the tracking per-
formance. When the similar background pixels appear in the
candidate, the identity pixel basis will be activated to capture these
background pixels. We show the first failure of the box sequence in
Fig. 9. In this figure, we can clearly see that the candidate marked by
the red rectangle is significantly different with all templates.
However, the BL1 failed to treat this candidate as the tracking
result. In contrast, the ground truth candidate marked by blue
rectangle is very similar to the template set. However, the tracker
failed to track it. We show the coefficients when represent two
candidates with the ten target templates and 180 trivial templates.
We found that there is only one nonzero coefficient corresponding
to the target templates. For the ground truth candidate, the only one
nonzero coefficient corresponding to the target templates is 1.2713.
For the wrong candidate, the coefficient is 2.0422. The reconstructed
candidates using the 10 target templates and their associated
coefficients are shown above the plots and we can see that they
are very similar just with different intensity levels determined by
the nonzero coefficients. The reconstruction errors of these two
candidates are 0.9864 and 0.8109, respectively. The BL1 tracker
computed the similarity between the candidate and the target
templates based on the reconstruction error; therefore, it failed to
track the right target. We further analyze why the reconstruction
error of the wrong candidate is smaller than the ground truth
candidate. We found the main reason is due to the downsampling
and zero-mean-unit-norm normalization used in Mei et al. [46].
Both the downsampling and normalization reduce the difference
between the reconstructed image and the candidate itself.

In addition, although TSSR methods are motivated by face
recognition work, there are some researchers claimed that face
recognition may be not a sparse representation problem [62,63]
and their experimental results on face recognition indicated that
non-sparse representation based on ‘2 norm minimization (e.g.,
u¼ arg minuJx�VuJ2

2) is more effective than ‘1 norm minimiza-
tion (Eq. (4)). Is target searching in visual tracking a sparse
representation problem? There was initial work [64] that points
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Fig. 5. Quantitative comparison of different trackers in CLE on all 20 sequences. (a) faceocc2. (b) woman. (c) singer. (d) face. (e) car4. (f) david_outdoor. (g) david_indoor.

(h) CAVIAR. (i) PETS. (j) seq_mb. (k) sylv. (l) bird_1. (m) bird_1. (n) girl. (o) running. (p) basketball. (q) liquor. (r) lemming. (s) board. (t) box.
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out this problem but without performing detailed evaluation.
Here, we also conduct some experiments to compare the effec-
tiveness of sparse representation based on ‘1 norm minimization
and non-sparse representation based on ‘2 norm minimization.
We modified the SCM_L1 tracker to obtain a new tracker named
SCM_L2 tracker which computes the representation coefficients
by minimizing the ‘2 norm based reconstruction error instead of
minimizing the sum of ‘2 norm reconstruction error and ‘1 norm
sparsity measure in SCM_L1 tracker. In addition, we also wish to
validate whether the identity pixel basis is necessary when both
target and background images are contained in the dictionary.
Therefore, we modified the SCM_L1 tracker to let the dictionary
contains identity pixel basis. The modified tracker is called
SCM_L1I. For SCM_L1, SCM_L2 and SCM_L1I. The most important
parameters that affect the tracking performance are the sizes of
target and background dictionaries. We set 10 pairs of these two
parameters (10, 40), (20, 80), (30, 120), (40, 160), (50, 200), (60,
240), (70, 280), (80, 320), (90, 360), (100, 400) and compared their
performance on 12 simple sequences. The TSR values on each
sequence and different pairs of dictionary sizes are shown in
Fig. 7. We can see that SCM_L1I is very close to SCM_L1, which
indicates that the identity pixel basis is not necessary for sparse
representation based target searching. On sequences CAVIAR, PETS
and seq_mg, SCM_L2 is slightly worse than SCM_L1. However, on
remaining sequences, they get very close performance, which
indicates that ‘1 norm minimization used in existing TSSR
methods can be replaced by ‘2 norm minimization when both
target and background dictionaries are used to represent target
candidates. Because the ‘2 norm minimization can be more
efficient to be solved than ‘1 norm minimization, therefore, ‘2

norm minimization is more suitable for real-time visual tracking
than the widely used ‘1 norm minimization.
4.2.4. Performance of combination of AMSC and TSSR methods

So far, there is only one work [59] that combines both AMSC and
TSSR methods. As shown in Table 2, the SCM_G tracker that only
uses the AMSC method achieves the best overcome performance in
all trackers. However, the SCM_C trackers achieves worse perfor-
mance than the SCM_G tracker. The SCM tracker that combines both
AMSC and TSSR achieve the performance better than SCM_G tracker
but worse than SCM_G tracker. From this point, we can see that the
combination of both AMSC and TSSR seemly does not improve the
tracking performance compared with using AMSC alone. The one
possible reason is that [59] just use a simple fusion manner to
combine AMSC and TSSR, which results in the final performance of
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Fig. 5. Continued.
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the SCM tracker being between the SCM_C and SCM_G trackers. On
the other hand, this comparison experiment also validates the
effectiveness of the AMSC trackers compared with TSSR trackers.
4.2.5. Complexity comparison

Computation complexity is a very important issue for real-
time visual tracking. As well know, sparse coding is an optimiza-
tion problem, which makes both sparse representation and
dictionary learning computational expensive. As introduced in
the previous sections, for AMSC methods, the dictionary is only
learned at the first time. Therefore, for both AMSC and TSSR
methods, the computational cost is mainly from the solving of
‘1-norm minimization. Both the number of solving ‘1-norm
minimization and the cost of solving each ‘1-norm minimization
significantly affect the running speed of both AMSC and TSSR
trackers. The computation complexity of solving each ‘1-norm
minimization is OðD2K3=2

Þ where D is the dimension of each basis



Fig. 6. Some tracking results on eight complex sequences.
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function and K is the number of basis functions. Let N denote the
number of solving ‘1-norm minimization. For L1 tracker, N¼600
is the number of target candidates. For T2CL1, N¼1 is the number
of target tempts. For SCM_G tracker, N¼729 is the number
of sampled patches from the target template or candidates.
The computation complexity of a tracker is OðND2K3=2

Þ. In our
experiments, for AMSC trackers, D¼36, K¼36. For TSSR trackers,
D¼1024, K¼250.

We compare the running time (seconds/frame) of the selected
trackers on faceocc2 sequence using Matlab 2011b on a laptop
with 2.4 GHz Intel Core i5 processor and 4 GB memory. The
comparison results are shown in Table 5, from which we can see
that: (1) AMSC trackers are significantly faster than TSSR trackers.
(2) For TSSR trackers, T2CL1 and OT2CL1 are faster than L1 and
BL1. (3) SCM_L2 is significantly faster than SCM_L1. SCM_L1I is
more slow than SCM_L1. These quantitative results are consistent
with the analysis in previous sections.
5. Conclusion and future work

In this work, we reviewed the recently proposed tracking
methods based on sparse coding and conducted extensive experi-
ments to analyze the benefits of using sparse coding for visual
tracking. The main contributions of this work are three-folds:
�
 The first contribution of this work is to explain the motivations
of using sparse coding in visual tracking. In particularly, we
emphasized the difference between sparse representation and
sparse coding and analyzed the benefits of using them in
different stages of a typical tracking process.

�
 We proposed to categorize the state-of-the-art tracking meth-

ods based on sparse coding into AMSC and TSSR as well as
their combination, which provides readers a reference about
these methods and also helps them to understand the con-
nections and differences between these methods.
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Fig. 7. The TSR of SCM_L1, SCM_L1I and SCM_L2 trackers on 12 simple sequences. (a) faceocc2. (b) woman. (c) singer. (d) face. (e) car4. (f) david_outdoor. (g) david_indoor.

(h) CAVIAR. (i) PETS. (j) seq_mb. (k) sylv. (l) bird_1.

Table 4
The TSR on eight complex sequences using different dictionary learning methods and pooling operators. The best results are shown in bold fonts.

Sequence T/

Con

(%)

T/

Sum

(%)

T/

Ave

(%)

T/Mul-

Sum (%)

T/Mul-

Ave (%)

(TþB)/

Con (%)

(TþB)/

Sum (%)

(TþB)/

Ave (%)

(TþB)/Mul-

Sum (%)

(TþB)/

Mul-Ave

(%)

[T, B]/

Con (%)

[T, B]/

Sum (%)

[T, B]/

Ave (%)

[T, B]/Mul-

Sum (%)

[T, B]/

Mul-Ave

(%)

bird_1 23.57 7.68 19.13 10.25 28.31 15.98 5.65 10.20 7.18 12.45 30.45 10.11 20.09 15.89 45.62
girl 50.08 32.45 40.07 43.56 59.86 35.28 17.32 26.43 20.87 40.66 65.12 42.78 45.89 50.12 65.46
running 12.33 5.62 8.78 6.84 15.45 7.12 4.87 7.25 6.49 10.28 15.44 12.83 17.65 10.58 19.47
basketball 10.72 4.88 6.32 5.46 11.27 4.02 3.65 5.93 4.77 7.13 14.85 10.30 12.36 11.36 15.65
liquor 40.17 23.53 34.25 27.34 36.89 20.13 11.78 19.79 21.68 27.34 45.98 30.66 40.12 34.58 52.15
leming 65.34 43.25 45.89 45.23 53.08 40.28 29.30 36.58 29.97 36.34 70.34 55.70 60.27 58.90 72.35
board 20.13 9.68 20.45 15.08 30.12 15.75 12.31 15.78 10.29 19.38 35.21 20.08 40.58 30.75 35.82
box 18.96 8.24 15.37 14.72 25.29 11.87 5.96 13.24 11.98 20.63 26.78 12.17 20.98 25.86 34.28
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�
 We conducted extensive experimental comparisons between
eleven trackers based on sparse coding and four baseline
tracker on a total of 20 challenging sequences. In addition to
compare the overall performance of these trackers, we also
validated the benefits of using different components including
‘1 norm minimization, dictionary learning, feature pooling.
Computational complexities of several representative trackers
are also compared.
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Based on the categorization of these methods and the exten-
sive experimental results, we concluded the application of sparse
coding in visual tracking, including
�
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AMSC methods significantly outperform TSSR methods, which
indicates that sparse coding is more suitable for modeling target
appearance than performing target searching. In addition, for
AMSC methods, both dictionary learning and pooling operator
affect the final tracking performance. When discriminative
dictionary is used, the resulting local codes are more easy to
distinguish the target patches from the background patches.
When multiple scale pooling operator based on pyramid struc-
ture is used, the resulting global appearance model reserves rich
spatial order information of the local codes.

�
 For TSSR methods, when the dictionary contains identity pixel

basis, the tracking performance is very sensitive to similar back-
ground or occlusion. In addition, when the dictionary consists of
both target and background images, the identity pixel basis is not
Table 5
Computation speeds (seconds/frame) of the selected trackers on faceocc2 se

Tracker L1 BL1 T2CL1 OT2CL1 BRD

Speed (seconds/frame) 5.56 1.97 0.94 1.13 0.15

32 48 64 80 96 112 128
0.72
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0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

number of basis functions

T
(T, B)
[T, B]

. 8. Illustration of discriminative abilities of three dictionary learning meth-

over different dictionary sizes.

. 9. An illustration of the first failure on the box sequence by BL1 tracker. The gro

tangles, respectively. These two candidates are also shown in the middle column. T

didates using these templates are shown by the blue and red bar plots, respectively

wn above the plots. (For interpretation of the references to color in this figure cap
necessary and can be removed from the dictionary but without
significant performance degradation. On the other hand, visual
tracking may be not a sparse representation problem. When the
sparsity constrain on the representation coefficients is removed,
the traditional ‘1 norm minimization tracking framework is
reduced to a ‘2 norm non-sparse representation tracking frame-
work, which achieves similar tracking performance but with
lower computational complexity.

Although sparse coding has been used in visual tracking for
several years, the tracking performance is still not satisfactory
particularly on eight complex sequences shown in Fig. 6.
To further improve tracking performance, the following topics
are worthing investigating:
�

que

1

und

he 1

. Th

tion
In the past, most attentions had been paid on how to use sparse
representation to perform target searching, which is motivated
by the success of using sparse representation in face recognition.
However, the latest work in face recognition indicated that face
recognition may be not a sparse representation problem.
Our experimental results also validated that visual tracking
may be not a sparse representation problem. Therefore, in the
future work, we will investigate how to use non-sparse repre-
sentation to perform target searching. The most desired advan-
tage of non-sparse representation is its low computational
complexity, which makes it especially suitable for developing
real-time visual tracking methods.

�
 Appearance modeling based on sparse coding has been attract-

ing much more attention in recent. However, the dictionary
learning and pooling operators used in existing methods can
be further improved to enhance the discriminative ability of
the appearance model. For dictionary learning, there are some
effective discriminative dictionary methods [65,66] proposed
in object recognition, which could be modified to be used in
visual tracking. For featuring pooling, the existing pooling
operators in visual tracking either lose spatial information of
local codes such as max pooling and average pooling or reserve
simple spatial information such as multiple scale pooling.
A more reasonable pooling operator should exploit the global
structure information [67] to model target appearance. In
nce. It should be noted that our Matlab codes were not optimized.

CT SLSA SCM_G SCM_L1 SCM_L2 SCM_LiI

0.04 0.42 0.24 6.22 0.24 7.85

0 101 190

Templateset

truth and the tracking result in this frame are marked by the blue and red

0 templates are shown on the top right. The coefficients of representing two

e reconstructed image using the templates and the associated coefficients are

, the reader is referred to the web version of this article.)
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addition, motivated by the success of deep learning in object
recognition, hierarchical sparse coding [68] should also be
investigated in visual tracking.

�
 The latest work that combines both appearance modeling

based on sparse coding and target searching based on sparse
representation reported some initial results. But the results are
not satisfactory due to the simple combination strategy. Future
work can be focused on how to develop effective combination
methods that exploit their advantages together. A possible
solution is to use multi-task sparse coding [69] to treat them
as different tasks and then integrate them together.
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