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Abstract

Over the past three decades, pressure swing adsorption (PSA) processes have gained increasing commercial acceptance as an energy efficie
separation technique. These processes are distributed in nature, with spatial and temporal variations and are mathematically represented b
partial differential equations (PDES). After a start-up time, the system reaches cyclic steady state (CSS), at which the conditions in each bed at
the start and end of each cycle are identical, revealing normal production. We implement a Newton-based approach with accurate sensitivities
to directly determine cyclic steady states with design constraints. We also design optimal PSA processes by means of state-of-the-art SQP-
based optimization algorithms. The simultaneous tailored approach can incorporate large-scale and detailed adsorption models and is more
robust and efficient than competing optimization methodologies. In order to improve the computational efficiency, we parallelize sensitivity
calculation and achieve a close-to-linear speed up rate. Applications of several non-isothermal indugialand H, PSA processes are
presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction converge. To design and optimize PSA, a common practice
is to develop a simplified model for one specific process and
With extensive industry applications of pressure swing fine-tune the model using experiments and pilot plant data.
adsorption (PSA), there is significant interest for efficient Although such models are often useful, the case-by-case
modeling, simulation and optimization strategies. However, studies are hard to transfer among different PSA systems.
the design and optimization of PSA systems still largely Recently, more sophisticated optimization strategies have
remain an experimental effors{rcar, 2002. This is mainly been applied to PSA systems with significant improvements
because most practical PSA processes are fairly complexin cycle performance. A review of these approaches can be
and are usually expensive and time-consuming to solve with found inBiegler, Jiang and Fox (in press$jere we develop
the accuracy and reliability needed for industrial design. a flexible and reliable optimization strategy that incorporates
For example, the traditional way to determine a cyclic general process models and rigorous solution procedures
steady state (CSS) is to simulate a series of complete cycleswithin a parallel computing framework. This paper is
until the bed conditions repeat periodically. TBisccessive  organized as follows. The next section outlines the solution
substitutiormethod mimics the true operation of a real plant strategies, including PDE discretization, CSS convergence
but usually takes hundreds or even thousands of cycles toacceleration, sensitivity evaluation and optimization. Section
3 discusses the parallelization algorithm. Sectiqoresents
four PSA processes as case studies and computational results
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are shown. Sectiob states the conclusions and future work.
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2. Solution strategy called the direct sensitivity approach.J§ and the sensi-
tivity equations are evaluated using automatic differentia-
This section provides a concise overview of the numerical tion (Bischof, Carle, Khademi, & Mauer, 1992the DAE

tools we develop in this research. More details can be foundintegration is more robust and produces more accurate sen-
in Jiang, Biegler and Fox (2003) and Jiang, Fox and Biegler sitivities. However, the disadvantage of the direct sensitiv-
(in press) ity approach is that the computational cost increases with
the number of parameteid, and can be quite expensive
whenNp is large. In Sectior8, we parallelize the sensitiv-

ity evaluation, thus enhancing the efficiency for design and
a?ptimization.

2.1. PDE discretization

As described inJiang et al. (2003)bed models consist
of mass and energy balances and constitutive equations th
are represented by hyperbolic partial differential equations )
(PDEs) that lead to sharp adsorption fronts. To solve these2-3: CSS convergence acceleration

PDEs, we apply thenethod of line§MOL). The PDEs are
first discretized in space which results in a system of ordi- 10 accelerate the convergence of CSS foNestep PSA

nary differential equations (ODEs) or differential algebraic ProcessCroft and LeVan (1994andSmith and Westerberg

equations (DAEs), which are then integrated over time by (1992)propose the direct determination approach.. Here we

standard routines. The advantage of MOL is that since spaced€fine the vector of parametersyals= [yg¢'] and write the

and time discretizations are decoupled, high order accuracy©SS condition as a boundary value problem:

can be achieved in each dimension.Jiang et al. (2003 /

we apply a finite volume method for spatia?discreti(zatio%, in F011.4.0 =0 »0)=yo. 0=r=mn,

order to preserve the mass and energy conservation laws inFi(yi, y1, ¢, 1) =0,  yi(ti—1) = yi—1(ti—1), tic1 <1t <t,

the spatial direction. To resolve the sharp adsorption fronts . _ _

that arise from rapid gas—solid mass transfer, we adopt the' 2. N, Ck=yo—ynlty) =0 2)

second-order Van Leer flux limiter to mitigate numerical error  This is solved using a shooting method with the DAE bed

and avoid physically unrealistic oscillations near the adsorp- models solved implicitly and Newton-based methods used to

tion fronts. Modifications are made to force the flux limiter  djrectly determine the initial bed conditiogg When design

to have continuous first derivatives everywhere. constraints\(V) such as purity and pressure are imposed, we
define atiteratiokan augmented error vector and augmented

2.2. DAE solver and sensitivity evaluation Jacobian as:

3.0 (Li & Petzold, 1999 Li et al., 2000 to integrate the W W
system over time. DASPK solves initial value problems of

DAEs/ODEs using backward differentiation formulae (BDF) dey

and is well suited for stiff systems. For a general DAE sys- “* — d(yo.x» qr)

tem, F(t, y, ¥, p) = 0, y(0) = yo(p), wherey(t) are the ) )
differential-algebraic state variables anthe independent ~ The vectorq represents the manipulated variables for the
variable, time, DASPK solves this by a modified version of d€sign constraints. At each new iteration, the new vari-
Newton’s method. DASPK also automates a sensitivity anal- 2PI€s fot+1, gi+1) are determined byGo+1)T (g1 ]
ysis. The original DAE/ODEs are differentiated with respect = [ (vox)" (4x)"] — (J)~tex This process repeats until

After converting PDEs to DAES/ODEs, we use DASPK |:Ck } |:yN(tN) - yo,k} 0
e = = =0,

3)

to the sensitivity parameters, yielding additionalV, x Ny the CSS condition is satisfied. Newton methods can achieve
sensitivity equations. The latter are integrated together with & quadratic convergence rate near the solution. The Jaco-
the original DAEs: bian in (3) comes from the sensitivity E?). The high cost
, of obtaining the Jacobians has IBihg and LeVan (2001)
F(t, .Y, p)=0, y(0)=yo(p), Kvamsdal and Hertzberg (199@hd Smith and Westerberg
G= oF O I s-(O)—% 21N (1992)to consider using quasi-Newton updates to substitute
ay oy ap 0 TN ep T T for new Jacobians. In addition, the high nonlinearity and ill-
dy conditioning in realistic PSA systems can often lead to the
wheres; = P failure of Newton and Broyden solvers. To ensure robust
pi 1) convergence, we use a trust region method with scaling to

achieve good convergence for several industrig/SA and
Defining the variables' ™ = [y's]s] ---sy,], the enhanced  H, PSA processesliang et al., 2003, in pressThe trust
system can be rewritten &3(t, Y, Y/, p)=0 and is solved region method combines Newton (or Broyden) and Cauchy
at each time step by a Newton iteration meth&§!! = steps. The search direction is controlled by the size of the
Yk — J(;lG(Y"), whereJg represents the Jacobian®fThe trust region, which is determined by monitoring the conver-
sensitivitiess are used in design and optimization. This is gence progress. With proper scaling, trust region methods are
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well suited for ill-conditioned systems of equatiolsegler, with each processor running a copy of the state equations
Grossmann, & Westerberg, 1997 and computing a subset of the sensitivity variables. Although

the computation of DAE models is repeated at each proces-
2.4. PSA optimization sor, this overhead work is rather small compared to the ef-

fort of calculating sensitivities. We implement a master—slave
Optimization problems for design of PSA systems can be paradigm. The master processor has the maximum control

expressed as: over the process and deals with the optimizer directly. When
the master processor decides to do sensitivity calculation,
Min ¢(y, yo,q) st F(y,Y',q.1) =0, W(y(z, yo. q)) <0, it broadcasts all the necessary information to the slave pro-
C(yo) = yo — yn(tn) = 0, LB < (yo, g) < UB () cessors.and gathers the sensitivities from slgves upon their
completion. The slaves are mostly working independently,
HereF(y, Y, g, )T = [F1(ys, y1/, @, )T Fa(y2, y2/, q, )7 - -- and have no control over the computation process. Because
Fn(yn, YN, G, 1) T]is the collection of bed models, discretized the communication and synchronization costs among slave
inspacey” = [y]y] .-y} are the state variableg initial processors are very low, nearly linear speedup is possible to

conditions for the state variablegsare decision variablesand achieve.
are subject to the lower bounds (LB) and upper bounds (UB),
Ware design constraints which can include purity, pressure or3.2. Message passing model
production rate requirements a@dare the CSS conditions.
Candidates for the decision variablpsan be geometric pa- The message-passing model posits a set of processes that
rameters such as bed length, diameter and adsorbent packinpave only local memory but are able to communicate with
or process parameters such as flow rates, step times and opsther processes by sending and receiving messages. The data
erating pressures. Als@, is the objective function which,  transfer, from local memory of one process to the local mem-
for example, can maximize overall recovery or minimize op- ory of another, requires operations to be performed by both
erating cost at desired purity. As describediegler et al. processes. The message passing model has the advantages of
(in press)we apply an efficient simultaneous tailored frame- universality, expressivity, ease of debugging and high perfor-
work to solve (4). Here, convergence of CSS is incorporated mance Gropp, Lusk, & Skjellum, 1999 The message pass-
as a constraint in the optimization problem while the DAEs ing interface (MPI) addresses the message-passing model
are solved in an inner loop. The detailed bed model is solved with a collection of processes communicating with messages.
at every optimization iteration, in order to evaluate objective The structural diagram with MPI implementation is shown
and constraint functions and their sensitivities. The CSSis notin Fig. 1
converged until the optimal solution is reached, thus the time-
consuming CSS direct substitution loop is eliminated. The 3.3. Computing facility
optimization algorithm in the simultaneous tailored approach
is reduced space Successive Quadratic Programming (rSQP). The parallel computing work is performed on the Be-
rSQP exploits this problem structure and is well suited to op- owulf computer cluster, a “Beowulf” class distributed par-
timize large nonlinear programming systems with relatively allel computer built and maintained by the Department
few decision variables. More details on the rSQP algorithm of Chemical Engineering at Carnegie Mellon University
can be found inTernet and Biegler (1998EFxtensions of (http://beowulf.cheme.cmu.eduBeowulf has 3 servers and
rSQP to deal with ill-conditioning are describedJdiang et 41 computing nodes. Most nodes have dual 1 GHz Pentium
al. (2003) Il processors with between 0.5 and 2 GB RAM. Nodes are
arranged in 3 rack cabinets, with 100 Mbps interconnects and
1 Gbps uplinks to the file server.
3. Parallelization with message passing interface
(MPI)
4. Case studies
3.1. Algorithms
Applications of several @VSA and H, PSA industrial cy-
For our optimization algorithm, the sensitivity calculation cles are employed for illustration. More details can be found
is the most time-consuming step and remains a bottleneck forin Jiang et al. (2003, in press)
design and optimization. However since the sensitivity cal-
culation with respect to each parameter is independent, paral4.1. System 1
lelization is straightforwardZhu and Petzold (199@pmpare
several parallel sensitivity analysis schemes for DAEs and  AsseenirFig. 2 thisis a single-bed 3-step non-isothermal
find the distributed parameter only (DPO) approach is the O, VSA cycle consisting of Make Product, Evacuation and
most efficient. Here, the sensitivity parameters are divided Repressurization steps. This process separates oxygen from
into different sets and are distributed to different processors, air using active zeolite. For design purposes, we choose the
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Fig. 1. MPI implementation diagram for optimization.

flow rates of feed, evacuation and purde,(F2, F3) and 4.2. System 2
the valve constant (CV) to be the manipulated variables. The

design targets are end-of-step presstg$,, P3 and 35% This is a single-bed 6-step industriab &SA process
O2 product purity. For optimization, we maximize@cov- (Fig. 3. The adsorption bed is continuously packed with ze-
ery at desired purity (35%) at cyclic steady state. We chooseolite. The design targets are end-of-step presdeueBs, Pa,
product tank pressure, valve constant, and step titaes) Pgs and 95% Q purity in the product tank. The manipulated

as decision variables. The optimal condition achieves 27%
more recovery than design condition, by withdrawing prod-
uct and repressurizing at a higher level. )

P
) "%
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F g * o
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Fig. 2. Single-bed, three-step PSA cycle. Fig. 3. Single-bed, six-step O2 VSA cycle.
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Fig. 4. Flow sheet of five-bed HPSA system.

variables are feed flow raté&{), evacuation flow rateH>)
and valve constants (GYCV4, CV;). For optimization, we
minimize the specific work usage at 95% @urity at cyclic This system is very similar to system 2, except that the
steady state. Additional constraints on the step pressures ar@adsorption bed is packed with two layers of different adsor-
P; > 1.5atm andP4 = P3 + 0.1 atm. Feed flow rate~(), bents. The adsorbent in the first one-third of the bed is inert
evacuation flow rateRp), step times$; andts, valve constants ~ while the adsorbent in the next two-thirds is active zeolite.
(CV2, CV4, CVy) are decision variables. Compared with de- The inert adsorbent represents adsorbent poisoned by wa-
sign conditions, we obtain an 8% energy saving. The energyter and introduces an extreme nonlinearity in the temperature
saving is accomplished by lowerifig, maintainingP; at its profile where the two adsorbents meet. The same design vari-
lower bound and reducintg when product is recovered. ables and constraints are used. In order to achieve the same

4.3. System 3

Table 1
Wall clock time comparison with single processor (in CPU hours)
CSS convergence Design, direct determination Optimization
Successive substitution Direct determination Black Box Simultaneous tailored
System 1 0.56 0.62 0.62 56 aq
System 2 4.55 291 291 455 88
System 3 6.91 6.04 6.04 691 68
System 4 6.67 Not tested Not tested Failed to converge 380
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Fig. 5. Parallel computing results: (a) design; (b) optimization.

purity as system 2, we decredsg increasd-,, and setthe  Table 2
valve CVs smaller. To formulate an optimization problem Percentages of non-parallelized parts for design and optimization

we substitute valve Cyfor feed flow ratd=1. Here a 13.4% Design (%) Optimization (%)
energy saving is gained over the design conditions. System 1 1.717 0.57

System 2 4.86 1.03
4.4. System 4 System 3 1.914 0.86

System 4 N/A 1.36

This is a five-bed hydrocarbon separation procEgs @).
High-purity hydrogen is obtained from a gas mixture of H ) .
Np, CO,, CO and CH. The adsorbent bed is packed with Fig. 5a) and (b) shows the spee_d upfactors_ vv_|th increas-
APHP carbon and UOP 5A zeolite. Each bed undergoes!ng number of processors for design and optimization, us-

eleven steps, and an idle step synchronizes five bed oper—'ng the direct determination and simultaneous tailored ap-

ations. This system is solved with a multibed optimization proaches, respectively. The speedup factors for each system

strategy. We maximize srecovery with a 10 ppm CO level are obtained by dividing the single processor timekble 1

at cyclic steady state. Pressure constraints are imposed ale the actual wall time under multiple processors. For opti-

each stepRy, Py—P1o, Ps—Po, Ps—Pg, Pe, P7, P11). The deci- mization, the speedup factors are calculated based on time
sion variables include step timeBs( Teycie), valve constants ~ PEr rSQP iteration. With parallel computing, each proces-
(CV41, CVa, CVa, CVs), molar flow rates (molé;, mole t sor solves a smaller set of variables so the accuracy level is
a, b) and bed diameter. Iiang et al. (in pressye compare slightly different with varying number of processors. For in-
the Hp recoveries with CO levels at 10, 100 and 1000 ppm and stance, the number of time steps and the number of nonlinear
observe a trade-off. grecovery increa{ses as the purity is iterations for integration are smaller and the average step size
reduced. However, the penalty for producing higher purity H is larger. This is a reason for super-linear speed up in system
is not large. An upgrade in the purity from 1000 to 10 ppm de- 1. The different level of accuracy of the sensitivities also af-

creases recovery by only 2.8%. Longer production times |eadfects.opt|m|zatlon and leads to different numbers of rSQP
to higher i recovery but at the cost of a lower production iterations. On the other hand, the non-parallelized parts, such
rate. as function evaluation and search direction determination,

limit the potential for speed up as the number of processors
increases. The time spent on these parts is a fixed cost and
5. Computational results the percentage of these non-parallelized parts increases when
the total wall time decreaseRable 2lists the percentages of
Table 1 compares the CPU time usage by different non-parallelized (serial) parts in design and optimization with
methods for design and optimization. When additional de- @ single CPU, which explains the different speedup behav-
sign constraints are included, the computational effort for iors. For each system, the speedups are typically larger for
direct determination method rarely increases, which is a Optimization than for design, due to the smaller percentages
real advantage over successive substitution. Compared tdor optimization. All speedup factors are sub-linear when the
Black Box approach, the simultaneous tailored approach humber of processors is large as the serial calculations now
can significantly improve the optimization efficiency and limit the throughput.
robustness. Note that Black Box approach failed in sys-
tem 4 because of inaccurate finite difference derivatives.
Also, because Black Box approaches require successive6. Summary
substitution for CSS, full parallelization is not possible
with this approach and parallel implementation was not  In previous work byJiang et al. (2003, in pressyve
attempted. employ a Newton-based approach to quickly converge
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the cyclic steady state with design specification, and a Bischof, C., Carle, A., Khademi, P., & Mauer, A. (1992)xe ADIFOR

simultaneous tailored approach and the state-of-art rSQP
optimization strategy to design optimal PSA processes. We
find the competitiveness of these approaches depends on a

efficient and accurate sensitivity evaluation. In this work,
we parallelize this sensitivity evaluation, thus accelerating
the design and optimization processes. Several a@d

H, industrial cycles have been solved for illustration. In
the future, we plan to implement the adjoint sensitivity

approach. Although harder to implement, adjoint approach

is more efficient than the direct sensitivity approach,

especially when the number of sensitivity parameters is

large.
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