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a b s t r a c t

This paper investigates inventory control policies in a manufacturing/remanufacturing system during

the product life cycle, which consists of four phases: introduction, growth, maturity, and decline. Both

demand rate and return rate of products are random variables with normal distribution; the mean of

the distribution varies according to the time in the product life cycle. Closed-form formulas of optimal

production lot size, reorder point, and safety stock in each phase of the product life cycle are derived.

A numerical example is presented with sensitivity analysis. The result shows that different inventory

control policies should be adopted in different phases of the product life cycle. It is also found that the

optimal production lot size and reorder point are not sensitive to the phase length and the demand

changing rate.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

For the past few decades, electronic companies have faced two
major pressures: short product life cycle and environmental
sustainability. First, technology advances have shortened the life
cycles for many products. Product demand may increase rapidly
at first and then decrease a few months later due to the
emergence of new products. Inventory management under a
short product life cycle is not easy. Many problems such as large
safety stock, high obsolescence costs, and high forecasting errors
will arise. It is necessary to consider the constantly varying
demand and its uncertainty when making inventory control
policy. In addition, due to the short product life cycle and the
emergence of new products, an outdated product may be
returned even if it is still in good condition. For example, a
customer may buy a new mobile phone to replace his/her old
mobile phone just because he/she likes the new one, although the
old mobile phone is still in good condition.

Second, due to environmental and ecological responsibility,
enterprises are trying to reuse, remanufacture, and recycle the used
products in order to reduce the negative impact on environment.
Companies in many countries are required to conform to the Waste
of Electric and Electronic Equipment (WEEE) directives (Rahimifard
and Clegg, 2007). Environmental sustainability and green supply
chain management have received increasing attention since the
1990s (Seuring and Müller, 2008). Several international journals
ll rights reserved.
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have published special issues about sustainable/green supply chain
management in recent years (Piplani et al., 2007; Rahimifard and
Clegg, 2007; Jayaram et al., 2007; Seuring et al., 2008; see also
Srivastava, 2007; Seuring and Müller, 2008).

The pressures of a short product life cycle and environmental
sustainability make remanufacturing a reasonable choice. Rema-
nufacturing is an industrial process, whereby used/broken pro-
ducts are restored to useful life. Remanufacturing is also an
important part of sustainable supply chain and reverse logistics.
The motives for product remanufacturing include legislation,
increased profitability, ethical responsibility, secured spare part
supply, and brand protection. Reasons for returning used products
include end-of-life returns, end-of-use returns, commercial returns,
and reusable components (Östlin et al., 2008). After remanufactur-
ing, the returned products, along with the new products, comprise
the serviceable inventory and satisfy customer demand. Inventory
control in such remanufacturing systems becomes complicated. In
many cases, used products are assumed to be collected and
remanufactured to a good-as-new state, such as car batteries,
printer cartridges, one-time use cameras, and some electronic
components. Customers cannot distinguish ‘new’ (i.e. manufac-
tured) products from repaired products (i.e. remanufactured), or
they consider these two products as interchangeable. For example,
about 90% of Kodak one-time use cameras (OTUCs) are produced
from recycled camera bodies, and about 90% (by weight) of a used
Kodak (2005) OTUC body is directly reused in the manufacture of
new cameras (Mukhopadhyay and Ma, 2009).

The purpose of this paper is to investigate the effects of the
product life cycle on inventory control in a manufacturing/
remanufacturing system and to determine the optimal production
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lot size, reorder point, and safety stock during each phase of the
product life cycle. The product life cycle is divided into follow-
ing phases: introduction (phase 1), growth (phase 2), maturity
(phase 3), and decline (phases 4 and 5). Both demand rate
and return rate of products are random variables with normal
distribution; the mean of the distribution varies according to the
time in the product life cycle. Before introducing our model, we
present a brief literature review.

van der Laan et al. (1996a, 1996b) consider several inventory
control strategies with remanufacturing and disposal. Product
demands and returns are assumed to be independent Poisson
processes; push and pull strategies are considered in the inven-
tory model (van der Laan and Salomon, 1997; van der Laan et al.,
1999a; van der Laan and Teunter, 2006) to coordinate production,
remanufacturing, and disposal operations. Lead time effects are
further investigated in a similar remanufacturing system to improve
system performance (van der Laan et al., 1999b; Kiesmüller, 2003a,
2003b). Recently, Mukhopadhyay and Ma (2009) review joint
procurement and production decisions in remanufacturing under
quality and demand uncertainty. Three different cases are presented,
and the optimal procurement and the production quantity for the
firm are determined.

All the above articles have an assumption that the demand
rate and return rate are independent. In contrast, Kiesmüller and
van der Laan (2001) develop an inventory model in which the
random returns depend explicitly on the demand stream. They
assume a constant probability that an item is returned. Dobos
(2003) considers inventory strategies for a reverse logistics
system in which demand is a known continuous function in a
given planning horizon and the return rate of used items is also a
given function of time; there is a constant delay between these
two functions. To take stochastic demand rate and return rate into
consideration, most relevant articles assume that demand rate
and return rate follow specific distributions with fixed parameters,
which are consistent through the product life cycle. However, Östlin
et al. (2009) have developed strategies to balance supply and
demand for remanufactured products during the product life cycle,
but they do not present a clear inventory control policy.

As previously mentioned, the product life cycle is shorter than
before, especially in the electronics industry. Product demand
may increase rapidly at first and then decrease a few months
later. In addition, the product may be returned even if it is still in
good condition. Therefore, the product life cycle influences not
only long-term strategies but also operational activities. If the
product life cycle is not considered in inventory control, then
product shortage or overstocking is more likely to occur. Reiner
et al. (2009) point out that when the life cycle structure is not
considered in the demand model, forecasting errors may become
uncomfortably high, leading to large safety inventories and a
substantial risk of high obsolescence costs.

To our knowledge, very few articles consider product life cycle,
inventory control, and remanufacturing simultaneously. Ahiska
and King (2010) use a discrete-time Markov decision process to
find the optimal inventory policy (i.e. the manufacturing and the
remanufacturing strategy that have the smallest cost) in each life
cycle stage. Unlike in our paper, the same inventory policy is
adopted within a stage, because the mean demand and the mean
return are both assumed to be constant within each stage. Also,
the length of a stage is considered to be long enough so that the
problem can be treated as a set of infinite-horizon problems.
Chung and Wee (2011) also develop an integrated production
inventory model with short life cycles to consider green product
design and remanufacturing with re-usage concept. An optimal
replenishment policy is derived. The result of the analysis shows
that the re-manufacturability and the component life cycle of
product design are interrelated. They have shown that new
technology evolution, remanufacturing ratios, and system’s hold-
ing costs are critical factors affecting decision making in a green
supply chain inventory control system.

The rest of this paper is organized as follows. Section 2 presents
the assumptions and notations. Section 3 explains the mathematical
modeling. Section 4 provides numerical examples and sensitivity
analysis. The paper concludes in Section 5.
2. Assumptions and notations

2.1. Notations

Decision variables:

yi number of production activities in phase i of the product
life cycle

si safety stock in phase i of the product life cycle

Dependent variables:

Qi,j production lot size in the jth production activity in
phase i

ROPi,j inventory level of reorder point for the jth production
activity in phase i

Di,j mean of the total demand during the lead time of the jth
production activity in phase i

TCi sum of the fixed cost of manufacturing orders and the
holding cost in phase i

I(t) expected inventory level at time t

Parameters:

l(t) mean of the demand rate at time t

s2
l variance of the demand rate

g(t) mean of the return rate at time t

s2
g variance of the return rate

Covlg covariance between the demand and return rates
~lðtÞ mean of net demand rate at time t; ~lðtÞ ¼ lðtÞ�gðtÞ
Ti length of phase i

t lead time for manufacturing
K fixed cost per manufacturing order
h holding cost of a product per unit time
ai, bi constants
b preset fill rate, referring to the fraction of product demand

that is met from products in inventory, i.e., the probability
of no stockout

2.2. Assumptions

The scheme of the manufacturing/remanufacturing system in
this paper is illustrated in Fig. 1. The serviceable inventory stocks the
manufactured and remanufactured products to satisfy the demand.
There are two ways to replenish the serviceable inventory: by
manufacturing new products or by remanufacturing returned pro-
ducts. The remanufactured products are assumed to be as good as
the new ones. We also assume that both the demand and the return
rate of products are random variables with normal distribution and
that the mean of the distribution varies according to the time spent
in the product life cycle (Fig. 2). We can see that the return rate is
not independent of the demand rate. There is a time lag between the
two functions, and the peak of the return rate function decreases.

The product life cycle has four phases (i.e., introduction,
growth, maturity, and decline) that can be demarcated according
to several factors (e.g. sales, demand, profits, and competitors).



Fig. 1. Scheme of the manufacturing/remanufacturing system.

Fig. 2. Product life cycle and the relation between demand rate and return rate.
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A firm can also use its experience or the historical data of similar
products to predict the phase lengths of a product’s life cycle. In
this paper, without loss of generality, different phases of a
product’s life cycle are demarcated according to the demand.
Each phase is described as follows:
(1)
 Introduction: demand remains at a low level, i.e., l(t)¼a1,
where a140.
(2)
 Growth: demand begins to increase rapidly, i.e., l(t)¼atþb,
where a40.
(3)
 Maturity: demand remains in a steady state, without signifi-
cant increase or decrease, i.e., l(t)¼a0, where a04a1.
(4)
 Decline: demand starts to decrease, i.e., l(t)¼atþb, where
ao0.
We also make the following assumptions: (1) the lead time for
manufacturing is a constant; (2) a returned product is either
remanufactured or recycled/disposed immediately; the remanu-
facturing time is ignored; (3) the unit cost for remanufacturing a
returned product is less than the unit cost for manufacturing a
new product; and (4) no salvage value or disposal costs are
applied to a recycled/disposed product.
3. Mathematical modeling

In this section, we discuss how to manage the inventory during
different phases of the product life cycle, including how to deter-
mine the optimal production lot size, reorder point, and safety stock.

3.1. Introduction (phase 1)

In this phase, demand remains at a low level; the returned
products are rarely seen and can be ignored. Suppose l(t)¼a1 and
l(t) is a constant, then we can use the Economic Order Quantity
(EOQ) model to determine the optimal production lot size.
The sum of the fixed cost of manufacturing orders and the holding
cost is expressed as follows:

TC1 ¼ ða1T1=Q1ÞKþðQ1=2ÞT1h ð1Þ

According to the EOQ model, we can derive the optimal
production lot size Q1 for each production activity in phase 1 as
follows:

Q1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2a1K

h

r
ð2Þ

Since the total demand during the lead time is also a random
variable that follows normal distribution Nðta1,t2s2

lÞ, the safety
stock is necessary to prevent stockout and to maintain a high fill
rate b. The higher the fill rate, the greater the amount of safety
stock needed.

Suppose that F�1 is the reverse cumulated probability function
of the standard normal distribution. The safety stock can then be
derived as follows:

s1 ¼ F�1ðbÞtsl ð3Þ

After the safety stock is determined, the reorder point for each
production activity in this phase can be calculated as

ROP1 ¼ ta1þs1 ð4Þ

Once the inventory level drops down to ROP1, an order for Q1

products is placed.

3.2. Growth (phase 2)

In this phase, demand begins to rise rapidly, and some
returned products emerge due to end-of-use or end-of-life. For
simplification, we suppose that the means of both the demand
and the return rates increase linearly over time in this phase.
Since the demand rate is greater than the return rate and the unit
cost for remanufacturing a returned product is less than the unit
cost for manufacturing a new product, all returned products will
be remanufactured. The mean of the net demand rate for new
manufactured products is equal to l(t)�g(t), which is a linear
function ~lðtÞ ¼ a2tþb2 (Fig. 3). Since ~lðtÞ increases over time, the
production lot size may not be the same each time. A production
lot size must be equal to the sum of the net demands during the
time before next production activity. In other words, the produc-
tion lot size Q2,j is the integral of the net demand rate function ~lðtÞ
between jth and jþ1th production activities, as illustrated in Fig. 3.
We can see that the production lot size increases with production
activities. Suppose that there are y2 production activities in this
phase and that the length of time between production activities is
the same. Once y2 is determined, the production lot sizes Q2,j can be
calculated as

Q2,j ¼

Z ðjþ1ÞT2=y2

jT2=y2

~lðtÞdt¼
a2

2
ð2jþ1Þ

T2

y2

� �2

þb2
T2

y2

� �
, j¼ 0,. . .,y2�1

ð5Þ



Fig. 3. Illustration of production lot size Q2,j in phase 2.

Fig. 4. Expected inventory level (safety stock not considered yet) in phase 2.

Fig. 5. Illustration of production lot size Q3,j in phase 3.
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To choose an optimal y2, we establish the following mathe-
matical model, in which TC2 is the sum of the fixed costs of
manufacturing orders and the holding cost:

min
y2

TC2 ¼ Ky2þ
Xy2�1

j ¼ 0

h

Z ðjþ1ÞT2=y2

jT2=y2

Q2,j�

Z t

jT2=y2

~lðxÞdx

 !
dt ð6Þ

The second term in Eq. (6) refers to the holding cost, which is
the integral of the expected inventory level multiplied by the unit
holding cost h. As illustrated in Fig. 4, the expected inventory level
function I(t) (safety stock not yet considered) is zigzag, which is a
common characteristic in inventory management. However, dif-
ferent features are that (t) is not linearly decreasing and that the
production lot size is increasing due to the increasing ~lðtÞ. The
expected inventory level function can be derived as follows:

IðtÞ ¼Q2,j�

Z t

jT2=y2

~lðxÞdx¼Q2,j�
a2

2
t2� j

T2

y2

� �2
 !

þb2 t�j
T2

y2

� � !

j¼ 0,. . .,y2�1; jT2=y2rtr ðjþ1ÞT2=y2 ð7Þ

where
R t

jT2=y2

~lðxÞdx refers to the cumulative net demand from the
beginning of that production activity to time t.

Applying Eqs. (5) and (7) to Eq. (6), we obtain the following
model:

min
y2

TC2 ¼ Ky2þh
a2

12
T3

2 y�2
2 þ

a2

4
T3

2 þ
b2

2
T2

2

� �
y�1

2

� �
ð8Þ

Because TC2 is a convex function (see Appendix A for proof),
we let dTC2/dy2¼0 to calculate the optimal y2 to minimize TC2:

Ky3
2�h

a2

4
T3

2 þ
b2

2
T2

2

� �
y2�

a2

6
hT3

2 ¼ 0 ð9Þ
Eq. (9) is a cubic equation in y2 that can be solved using the
Cardano formula or other suitable methods (Witula and Slota,
2010). The solution obtained from the Cardano formula may not
be an integer solution. Since TC2 is a convex function, however,
we can calculate TC2 values of the nearest two integers to the
solution obtained from the Cardano formula and choose the one
with the smaller TC2 value as the optimal solution for y2.

The net demand for new manufactured products at time t is
assumed to be normal distribution with mean ~lðtÞ ¼ lðtÞ�gðtÞ ¼
a2tþb2 and variance s2

lþs
2
gþ2Covlg. Therefore, the total demand

for new manufactured products during the lead time of the jth
production activity in this phase also follows normal distribution
with mean

D2,j ¼

Z jT2=y2

jT2=y2�t

~lðtÞdt¼ a2jt T2

y2
�

a2

2
t2þb2t, j¼ 1,. . .,y2 ð10Þ

and variance t2ðs2
lþs

2
gþ2CovlgÞ. To prevent stockout, the follow-

ing safety stock is necessary:

s2 ¼ F�1ðbÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
lþs2

gþ2Covlg

q
ð11Þ

The reorder point for jth production activity in this phase is
then derived as

ROP2,j ¼D2,jþs2 ¼D2,jþF�1ðbÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
lþs2

gþ2Covlg

q
, j¼ 1,. . .,y2

ð12Þ

Once the inventory level drops down to ROP2,j, an order for Q2,j

products is placed. Note that both the reorder point and the
production lot size will increase due to the increasing net demand
in this phase.
3.3. Maturity (phase 3)

In this phase, demand remains in a steady state without
significant increase or decrease, while more and more end-of-
use and end-of-life products are returned. For simplification, we
suppose that the mean of the demand rate l(t) is a constant and
the mean of the return rate g(t) increases linearly over time in this
phase. Fig. 5 illustrates the production lot size Q3,j in this phase. If
~lðtÞ ¼ a3tþb3, then we can derive the production lot sizes Q3,j and
the reorder point ROP3,j following a procedure similar to the one
used in phase 2. First, Q3,j can be derived as

Q3,j ¼

Z ðjþ1ÞT3=y3

jT3=y3

~lðtÞdt¼
a3

2
ð2jþ1Þ

T3

y3

� �2

þb3
T3

y3

� �
, j¼ 0,. . .,y3�1

ð13Þ
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where y3 is obtained by solving the following mathematical
model:

min
y3

T C3 ¼ Ky3þ
Xy3�1

j ¼ 0

h

Z ðjþ1ÞT3=y3

jT3=y3

Q3,j�

Z t

jT3=y3

~lðxÞdx

 !
dt ð14Þ

Eq. (14) can be simplified as

min
y3

TC3 ¼ Ky3þh
a3

12
T3

3 y�2
3 þ

a3

4
T3

3 þ
b3

2
T2

3

� �
y�1

3

� �
ð15Þ

Because TC3 is a convex function (see Appendix B for proof), we let
dTC3/dy3¼0 to derive the optimal y3 to minimize TC3:

Ky3
3�h

a3

4
T3

3 þ
b3

2
T2

3

� �
y3�

a3

6
hT3

3 ¼ 0 ð16Þ

Eq. (16) is a cubic equation in y3 and can be solved using the
Cardano formula. We then calculate the TC3 values of the nearest
two integers to the solution obtained from the Cardano formula
and choose the one with the smaller TC3 value as the optimal
solution for y3.

The net demand for new manufactured products at time t is
assumed to be normal distribution with mean ~lðtÞ ¼ lðtÞ�gðtÞ ¼
a3tþb3 and variance s2

lþs
2
gþ2Covlg. Therefore, the total demand

for new manufactured products during the lead time of the jth
production activity in this phase also follows normal distribution
with mean

D3,j ¼

Z jT3=y3

jT3=y3�t

~lðtÞdt¼ a3jt T3

y3
�

a3

2
t2þb3t, j¼ 1,. . .,y3 ð17Þ

and variance t2ðs2
lþs

2
gþ2CovlgÞ. To prevent stockout, the follow-

ing safety stock is necessary:

s3 ¼ F�1ðbÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
lþs2

gþ2Covlg

q
ð18Þ

The reorder point for jth production activity in this phase is
then derived as

ROP3,j ¼D3,jþs3 ¼D3,jþF�1ðbÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
lþs2

gþ2Covlg

q
, j¼ 1,. . .,y3

ð19Þ

Once the inventory level drops down to ROP3,j, an order for Q3,j

products is placed. Note that both the reorder point and the
production lot size will decrease each time due to the decreasing
net demand in this phase.

From Eqs. (11) and (18), we can see that the safety stocks
required in phases 2 and 3 are the same. This result shows that
the safety stock is only relevant to the length of lead time, the
variance of net demand, and the required fill rate. If all of these
items are the same, then the safety stocks will be the same too.
3.4. Decline (phases 4 and 5)

In this phase, the demand rate starts to decline. If the demand
rate is still greater than the return rate, then all returned products
will be remanufactured; otherwise, there will be no production of
new products, and some of the returned products will be disposed
or recycled. We further discuss these two scenarios in the follow-
ing sections.
3.4.1. Decline phase I (phase 4)

In this phase, we suppose l(t) is decreasing linearly but still
greater than g(t), which is also assumed to be a linearly increasing
function over time. The net demand rate for new manufactured
products is defined as ~lðtÞ ¼ a4tþb4, which is also a decreasing
linear function. Therefore, we can repeat the analysis procedure in
Section 3.3 to derive the production lot size:

Q4,j ¼

Z ðjþ1ÞT4=y4

jT4=y4

~lðtÞdt¼
a4

2
ð2jþ1Þ

T4

y4

� �2

þb4
T4

y4

� �
, j¼ 0,. . .,y4�1

ð20Þ

where y4 is obtained by solving the following integer cubic
equation:

Ky3
4�h

a4

4
T3

4 þ
b4

2
T2

4

� �
y4�

a4

6
hT3

4 ¼ 0, y4A integer, y4Z1 ð21Þ

The reorder point is determined as

ROP4,j ¼D4,jþF�1ðbÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
lþs2

gþ2Covlg

q
, j¼ 1,:::,y4 ð22Þ

where

D4,j ¼ a4jt T4

y4
�

a4

2
t2þb4t, j¼ 1,. . .,y4

3.4.2. Decline phase II (phase 5)

In this phase, the demand rate keeps declining and is lower
than the return rate. There is an excess of returned products,
some of which will be disposed or recycled to reduce unnecessary
remanufacturing and holding costs. All products come from
remanufacturing, and no new products are produced. As a result,
there is no need to calculate the production lot size or reorder
point. However, to ensure the required fill rate, we must control
the inventory I(t) at the following level:

IðtÞ ¼ lðtÞþF�1ðbÞsl ð23Þ

When a product is returned at time t, it will be remanufac-
tured if the current inventory level is less than l(t)þF�1(b)sl;
otherwise, it will be disposed or recycled.

3.5. Summary

The production lot size Q1 and the reorder point ROP1 in
phase 1 are irrelevant to the phase length according to
Eqs. (2)–(4); prediction of the demand rate is more important in
this phase. On the contrary, the phase lengths in phase 2 through
phase 4 affect inventory policies. In addition, the production lot
size and reorder points in phase 2 through phase 4 can be
calculated using the same formula, as long as the net demand
rate function ~lðtÞ is derived first.
4. Numerical examples and sensitivity analysis

4.1. A basic numerical example

Fig. 6 shows the mean demand rate and return rate functions
for the numerical example. Other parameters are as follows: t¼3,
K¼500, h¼0.1, sl2¼100, sl2¼200, Covlg¼50, and b¼0.97. The
inventory control policy in each phase is discussed below.

Phase 1:
Let a1¼30. The optimal production lot size, reorder point, and

safety stock are derived as

Q1 ¼ 547:72, ROP1 ¼ 146:42, s1 ¼ 56:42

Phase 2:
From Fig. 6, we have a2¼3, b2¼30, T2¼60. First, we must

calculate the optimal number of production activities y2. From
Eq. (9), we have

y3
2�43:2y2�21:6¼ 0 ð24Þ

Solving Eq. (24) using the Cardano formula, we find that
y2¼6.809685. The integer solution is y2¼7, because TC2(6)4
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TC2(7). The optimal production lot size and reorder point are then
derived as follows:

Q2,j ¼ 220:41jþ367:35, j¼ 0,. . .,6

ROP2,j ¼ 77:14jþ189:35, j¼ 1,. . .,7

The safety stock s2¼112.85.
Phase 3:
Let a3¼�2, b3¼210, T3¼45. From Eq. (16), we have

500y3
3�16706:25y3þ3037:5¼ 0 ð25Þ
� (t)

Phase 1 Phase 4 Phase 5
30 90

30

260

330

Phase 2 Phase 3
135 160

� (t)

Q
ua

nt
ity

Time

Fig. 6. Mean demand rate and return rate functions for the numerical example.

Table 1
Results of numerical examples.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Production lot size 547.72 367.35 1518.75 1500 260

587.76 1406.25

808.16 1293.75

1028.57 1181.25

1248.98 1068.75

1469.39 956.25

1689.80

Reorder point 146.42 266.50 706.85 134.45 –

343.63 661.85

420.78 616.85

497.92 571.85

575.06 526.85

652.20 481.85

729.35

Safety stock 56.42 112.85 112.85 112.85 18.81
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Solving Eq. (25), we find that y3¼5.687206. The integer solution is
y3¼6, because TC3(5)4TC3(6). The optimal production lot size
and reorder point are then derived as

Q3,j ¼�112:5jþ1518:75, j¼ 0,:::,5

ROP3,j ¼�45jþ751:85, j¼ 1,:::,6

The safety stock s3¼112.85.
Phase 4:
Let a4¼�4.8, b4¼120, T4¼25. From Eq. (21), we have

y3
4�3:75y4þ2:5¼ 0 ð26Þ

Solving Eq. (26), we find that y4¼1.402801. The integer solution is
y4¼1, because TC4(2)4TC4(1). The optimal production lot size
and reorder point are Q4,0¼1500 and ROP4,1¼134.45, respec-
tively. The safety stock s3¼112.85.

Phase 5:
In this phase, we must control the inventory level at

IðtÞ ¼ lðtÞþ18:81 ð27Þ

A returned product will be disposed or recycled if the current
inventory level is greater than l(t)þ18.81.

Under the above inventory control policy, we summarize the
optimal production lot size, reorder point, and safety stock during
different phases of the product life cycle in Table 1. The expected
inventory level over time is illustrated in Fig. 7.

4.2. Sensitivity analysis

As mentioned in Sections 3.4.2 and 3.5, the length of phases 1 and
5 is irrelevant to the production lot size and the reorder point, but
the phase lengths in phase 2 through phase 4 affect the inventory
policies. Unfortunately, the prediction of the phase lengths is not
very accurate. Therefore, we perform sensitivity analysis on the
phase lengths. Note that the length of phase 4 is not an independent
parameter; it is defined as �b4/a4 when ~lðtÞ ¼ 0.

We take Q2,3 and ROP2,3 for testing phase lengths varying from
51 to 70. Fig. 8 shows that Q2,3 will increase as the phase lengths
increase and decrease when y2 increases. It fluctuates from
936.91 to 1232.63. Similar results are found for ROP2,3, although
the influence is not as significant.

Another parameter that needs estimation is the slope of ~lðtÞ.
Again, we take Q2,3 and ROP2,3 for testing slopes of ~lðtÞ, i.e., a2

varying from 2 to 4. Similar to Fig. 8, the zigzag lines appear in
Fig. 9. By performing additional sensitivity analyses, we discover
that the zigzags in Figs. 8 and 9 are due to the integralization of
y2. If we ignore the integer property of y2 and adopt the original
phase 3 phase 4 phase 5

ime

vel over time.
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real number solution, the resulting Q2,3 and ROP2,3 become more
stable, as indicated by the dotted lines in Figs. 8 and 9.

The above analysis indicates that the impact of inaccurate
estimation for the phase length and the demand changing rate on
the inventory control is not very significant. This implies that our
inventory control model is robust in an uncertain environment.
However, in other aspects of management, especially strategic or
long-term decisions, the prediction of these two parameters
remains an important issue.
5. Conclusion and future research

This paper analyzes the relationship between the demand rate
and the return rate in a manufacturing/remanufacturing system
during each phase of the product life cycle. The major contribution
of the paper is that the closed-form formulas of optimal production
lot size, reorder point, and safety stock in each phase of the product
life cycle are successfully derived. The numerical example shows the
practicability of our model and indicates that different inventory
control policies should be adopted in different phases of the product
life cycle. In phase 1, the EOQ model with safety stock is enough. The
production lot size should increase with production activities in
phase 2 and decrease in phases 3 and 4. There is no need to
manufacture new products in phase 5, during which some returned
products are discarded to reduce unnecessary remanufacturing and
holding costs. Phase 5 only requires maintaining inventory at a
decreasing level to ensure the necessary fill rate. In addition, the
results of sensitivity analysis show that the inventory control policy
is not sensitive to the phase length and the demand changing rate.

When applying the proposed inventory control policy to a real
case, it is particularly suitable for the products with very short life
cycle, such as in the mobile phone industry. The demand for these
products changes quickly, but traditional inventory models typi-
cally assume that demand is stationary. Therefore, traditional
inventory models cannot consider the change in demand even in
a certain stage of the product life cycle. Our model, however, can
provide a detailed inventory control policy within a stage, which
may have a dramatically changing demand.

Several assumptions in this paper can be relaxed for future
research. Customers may consider remanufactured and manufac-
tured products as two different ones. Other distribution can be
adopted for demand and return rate. Nonlinear mean demand and
return rate functions also deserve investigation.
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Appendix A

To prove that TC2 is a convex function, we calculate the first
and second order derivatives of TC2:

dTC2
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¼ K�h
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2 þ
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Appendix B

To prove that TC3 is a convex function, we calculate the first
and second order derivatives of TC3:

dTC3

dy3
¼ K�h
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3 þ
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