
Expert Systems with Applications 40 (2013) 5456–5465
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Rule-based expert systems to support step-by-step guidance in algebraic
problem solving: The case of the tutor PAT2Math
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.04.004

⇑ Corresponding author. Tel.: +55 51 3591 1100x1626.
E-mail addresses: pjaques@unisinos.br, patricia.jaques@gmail.com (P.A. Jaques),

hseffrin@hotmail.com (H. Seffrin), geiserubi@gmail.com (G. Rubi), felipedemor-
aisfm@hotmail.com (F. de Morais), cassioghilardi@hotmail.com (C. Ghilardi),
ig.ibert@ic.ufal.br (I.I. Bittencourt), sisotani@icmc.usp.br (S. Isotani).
Patricia A. Jaques a,⇑, Henrique Seffrin a, Geiseane Rubi a, Felipe de Morais a, Cássio Ghilardi a,
Ig Ibert Bittencourt b, Seiji Isotani c

a PIPCA – UNISINOS, Av. Unisinos, 950 Bairro Cristo Rei, CEP 93.022-000 São Leopoldo, Brazil
b NEES – IC – UFAL, Campus A.C. Simões, BR 104, Norte, km 97, Cidade Universitária, CEP 57072-970 Maceio, AL, Brazil
c ICMC – University of São Paulo, Avenida Trabalhador São-carlense, 400 Centro, CEP 13566-590 Sao Carlos, SP, Brazil

a r t i c l e i n f o a b s t r a c t
Keywords:
Intelligent tutoring systems
Expert systems
Math learning
Algebra
Equations
In order for an Intelligent Tutoring System (ITS) to correct students’ exercises, it must know how to solve
the same type of problems that students do and the related knowledge components. It can, thereby, com-
pare the desirable solution with the student’s answer. This task can be accomplished by an expert system.
However, it has some drawbacks, such as an exponential complexity time, which impairs the desirable
real-time response. In this paper we describe the expert system (ES) module of an Algebra ITS, called
PAT2Math. The ES is responsible for correcting student steps and modeling student knowledge compo-
nents during equations problem solving. Another important function of this module is to demonstrate
to students how to solve a problem. In this paper, we focus mainly on the implementation of this module
as a rule-based expert system. We also describe how we reduced the complexity of this module from
O(nd) to O(d), where n is the number of rules in the knowledge base, by implementing some meta-rules
that aim at inferring the operations students applied in order to produce a step. We evaluated our
approach through a user study with forty-three seventh grade students. The students who interacted
with our tool showed statistically higher scores on equation solving tests, after solving algebra exercises
with PAT2Math during an approximately two-hour session, than students who solved the same exercises
using only paper and pencil.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Intelligent Tutoring Systems (ITSs) have shown promising results
when applied as a supplemental classroom learning tool (Koedinger,
Anderson, Hadley, & Mark, 1997; Nicaud, Bittar, Chaachoua, Inam-
dar, & Maffei, 2006; Nicaud, Bouhineau, & Huguet, 2002). Large-
scale experiments in high-schools demonstrated that ITSs can im-
prove students learning (Koedinger et al., 1997; Koedinger & Sueker,
1996). The success of this type of educational software is due to the
fact that it can offer important features to personalize the learning
processes such as one-on-one learning, immediate personal feed-
back, demonstration of problem solving when students are having
difficulty, and assessment of students’ skills.

Vanlehn (2006) describes the tutor as having two loops. The
outer loop is responsible for deciding the sequence of exercises or
problems for students to work on. The inner loop provides step-
by-step guidance during problem solving activity.
In order to provide immediate feedback in the inner loop, an
ITS’ architecture is generally composed of an expert system
module (ES) that is able to solve the same type of exercises that
students should do in multiple ways. Thus, for each step of the
problem the system compares the answer provided by a student
with the expert system’s solutions (an answer may have several
correct solutions) and checks whether they are equivalent. If the
ES can generate or test all possible solutions to a given prob-
lem, then it can identify when a student has taken an incorrect
path to solve the given problem and offer immediate feedback
(generally colored labels are presented to indicate whether or
not the student’s answer for a given step is correct) (Heffernan,
Koedinger, & Razzaq, 2008). Some tutors provide additional re-
sources (e.g. explanations or hints) when students are having
difficulty or solving the problem or arriving at the correct
answer.

In fields such as math and physics, the knowledge is usually
implemented as a rule in the form: ‘‘if hcondition is truei then hdo
action Ai’’. Each rule represents an operation that can be applied
in a step to solve a problem. The ES inference engine scans the base
searching for rules to be triggered, i.e. rules whose conditions are
satisfied by the current step of the solution.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.04.004&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.04.004
mailto:pjaques@unisinos.br
mailto:patricia.jaques@gmail.com
mailto:hseffrin@hotmail.com
mailto:geiserubi@gmail.com
mailto:felipedemoraisfm@hotmail.com
mailto:felipedemoraisfm@hotmail.com
mailto:cassioghilardi@hotmail.com
mailto:ig.ibert@ic.ufal.br
mailto:sisotani@icmc.usp.br
http://dx.doi.org/10.1016/j.eswa.2013.04.004
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465 5457
In addition to providing appropriate feedback to students, the
rules also contain information about the related knowledge com-
ponents. For example, a rule can represent the process (knowledge
component or skill) of ‘‘subtracting an integer b on both sides of
the equation’’. Thus, when the ES module corrects a student step
solution, it is able to provide the student model with information
about the skills necessary to solve that step. The student model
uses this information to infer which skills students have mastered
and which they need to practice more. This allows the tutor to cre-
ate personalized hints in the inner loop and also to select more
appropriate exercises for students to solve (outer loop).

Although there are well known algebra tutors (Chaachoua, Ni-
caud, Bronner, & Bouhineau, 2004; Cohen, Beal, & Adams, 2008;
Koedinger & Sueker, 1996; Melis, Goguadze, Libbrecht, & Ullrich,
2009), few of them have an expert system module that is able to
solve exercises and provide step-by-step guidance (Chaachoua
et al., 2004; Koedinger & Sueker, 1996), an essential feature for a
learning system to be classified as an ITS, according to (Vanlehn,
2006). Furthermore, previous work does not explore in detail
how to implement an expert system module, which artificial intel-
ligence knowledge representation format needs to be used, when
an inference mechanism should be trigged and how to solve some
inherent computational complexity problems.

This paper presents the ES of the algebra tutor PAT2Math. PAT2-
Math is an intelligent tutor system that teaches students how to
solve linear and quadratic equations. It is a web system imple-
mented in Java, which allows students to use it in any computer
or platform with Internet access. PAT2Math is composed of an
algebra editor (PATequation), which assists students in solving
equations.

The ES has an essential role in PATequation; it is responsible for
providing immediate feedback to students at every step of their
problem solving. Our main goal is to present this module knowl-
edge and explain how to the ES implements problem solving and
provides the student with step-by-step guidance. We describe
how to reduce the complexity of this module from O(nd) to O(d),
where n represents the number of rules in the knowledge base,
by using meta-rules that guide the inference of the operations stu-
dent applied to produce a step. We finish this paper by presenting
the results of a user study we conducted with forty-three 7th grade
students who interacted with PATequation for three classes.

This paper is organized as follows. Section 2 describes problem
solving under a pedagogical perspective. Section 3 presents the
current state of the art in Algebra Intelligent Tutoring Systems. In
Section 4, we explain the main artificial intelligence techniques
used to develop ITS expert systems. In Section 5, we describe PAT2-
Math, the Algebra Tutor that our research group is developing.
PATequation, the problem solving editor of PAT2Math, is presented
in Section 6. The ES responsible for providing step-by-step guid-
ance in PATequation is described in Section 7. The experiment de-
sign and results are reported in Section 8. Finally, Section 9
presents our conclusions.
2. Solving algebraic problems

An Algebra task is generally a word problem for the student to
solve. An algebraic word problem consists of one or more sen-
tences representing a situation or a story, where the student needs
to understand the elements in order to generate a mathematical
model to represent it. The model consists of one or more equations
that the pupil should solve in order to obtain the numerical values
that are the solution of the problem (Gama, 2004). Take for exam-
ple the word problem below (adapted from Munem & West (2003,
p. 107)):
‘‘A computer store sells desktop and laptop computers. Due to space
considerations, the number of laptops in inventory is seven less
than twice the number of desktops in stock. How many desktops
does the store have if it has a total of 272 computers?’’
The process of solving a word problem has two phases (Mayer,
1999; Polya, 2004): (i) the Problem Representation (also called
Symbolization (Heffernan, Koedinger, & Razzaq, 2008)), and (ii)
the Problem Solution. While the former concerns to the transfor-
mation of algebra word problems into a system of equations, the
second encompasses the process of solving these equations using
algebraic operations.

For example, for the word problem that we previously pre-
sented, the student could provide the following solution:

xþ ð2x� 7Þ ¼ 272 ð1Þ
3x� 7 ¼ 272 ð2Þ
3x ¼ 279 ð3Þ
x ¼ 93 ð4Þ

In the example above, line (1) refers to the process of Problem Rep-
resentation, and lines (2–4) to the Problem Solution phase. As
shown in the above solution, solving a task involves several steps.
Each line provided by the student in the above solution is a step.

A step can involve the correct use of one or more Knowledge
Components (KC) (also called knowledge units (Aleven, McLaren,
Sewall, & Koedinger, 2009)). It comprises any unit into which the
knowledge can be broken down, such as rules, concepts, facts,
and procedures (Vanlehn, 2006). For instance, in order to arrive
at line (2) in the above example, the student applied the operation
(or KC) ‘‘add variable coefficients’’ in line (1) of the equation.

In the next section, we will describe the main Algebra Intelli-
gent Tutoring Systems and the tools and types of feedback they of-
fer to help students solve algebra word problems in these two
phases.

3. Algebra Intelligent Tutoring Systems

The field of ITS has shown significantly improvements since the
emergence of the first systems in the eighties (Woolf, 2009). The
evolution of the Internet, the increasing performance of computers,
and improvements of artificial intelligence techniques and tools
have furthered the development of ITSs in several domains, such
as Physics, Math, Medicine and others (see (Woolf, 2009) for an
overview).

Previous work has largely been applied in classroom settings,
demonstrating they can improve student performance on stan-
dardized and experimenter-designed tests by one-half to two stan-
dards deviation (Cohen et al., 2008; Koedinger & Sueker, 1996;
Shelby et al., 2000). Some of the most known research focused
on the Algebra content domain. This is the case of Cognitive Alge-
bra Tutor (previously PAT) (Koedinger & Sueker, 1996), Aplusix
(Nicaud et al., 2006, Nicaud, Bouhineau, & Huguet, 2002), Active-
Math (Goguadze & Melis, 2008; Melis, Goguadze, Libbrecht, & Ull-
rich, 2009) and AnimalWatch (Birch & Beal, 2008; Cohen et al.,
2008). We believe there are two main reasons for this. First, Alge-
bra is a content domain (or task domain (Vanlehn, 2006)) in which
a great number of students experience poor achievement (Carpen-
ter, Kepner, Corbitt, Lindquist, & Reys, 1982; National Commission
on Excellence in Education, 1983). Secondly, it requires less effort
to formalize math content into computer algorithms, because it
is mainly composed of procedural content, which can be easily rep-
resented by computer algorithms. In the end of this section, we de-
scribe the main algebraic tutors proposed by the Artificial
Intelligence and Education community.

Table 1
Inner loop functionalities supported by Algebra ITSs.

Supported functionalities Cognitive
Tutor

Aplusix Pat2Math

Minimal feedback on steps x x x
Error-specific feedback x x
Hints on the next step x x
End-of-problem review of the

solution
x x

Assessment of knowledge x x

5458 P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465
AnimalWatch (Birch & Beal, 2008; Cohen et al., 2008) assists
middle school students in solving arithmetic word problems. The
mathematical problems explore environmental issues around
endangered animal species. The main goal is to motivate students
by connecting math to real problems involving animals. The main
screen of AnimalWatch is composed of a textual description of a
word problem, additional illustrations of the problem (such as vi-
deo, charts, diagrams and pictures) and an answer box. The student
solves the problem elsewhere (for instance, on paper) and provides
the final result in the answer box (one step in the tutor interface).
AnimalWatch is mainly concerned with the Problem Representa-
tion. Thus, it does not have an ES that is able to correct the problem
in an intermediary step of the solving process. If student needs
help, the tutor provides hints, but it is not able to identify which
steps of the student’s problem solving are incorrect if the student’s
answer does not match the expected result.

ActiveMath (Goguadze & Melis, 2008; Melis et al., 2009) is a
web-based intelligent learning system for math that, in addition
to algebra, teaches differential calculus, logics, statistics. It allows
the students to freely navigate around the content. It uses a seman-
tic web representation in order to choose learning objects for stu-
dents, which can be textual explanations, several types of exercises
(multiple-choice, word problem), and others. Like AnimalWatch,
ActiveMath is more concerned with the outer loop, i.e. using a stu-
dent model and web semantic information to decide which task is
presented to the student. It does not incorporate an ES that sup-
ports students in the inner loop.

Aplusix and Cognitive Tutor do include an ES that is responsible
for providing step-by-step guidance to the student during a task.
During the inner loop, a tutor can offer customized mentoring in
one or both of the problem solving processes explained in Section 2
(i.e. Symbolization or Problem Solution). Cognitive Tutor gives the
student a linear or quadratic word problem to solve with the help
of charts and a table that assist students in the Symbolization. It
also has a simple editor for students to solve the linear equation.

On the other hand, the main interface of Aplusix is an editor
where students can solve math problems in the fields of numerical
calculations, expansions, factorizations, quadratic equations,
inequalities, and systems of equations. It is not an ITS in the sense
that it does not retain information about the skills that a student
mastered and it does not choose the next task based on a student
model (outer loop). For each step provided by the student, Aplusix
is able to provide real time feedback by showing whether or not
the answer is correct or by demonstrating how to solve the
equation.

Both expert systems (Aplusix and Cognitive Tutor (CT)) were
implemented as rule-based expert systems. This is also the case
of the proposed expert system. The main differences among these
works are the information associated with the rules and the inter-
face options, which enable (or not), more powerful modes of inter-
action and feedback for the student. The ES of the Cognitive Tutor
is also called Cognitive Model, since it is based on a cognitive ap-
proach to learning. It contains rules that represent the procedural
knowledge of the student (Anderson, Corbett, Koedinger, & Pelle-
tier, 1995; Ritter, Anderson, Koedinger, & Corbett, 2007). Generally,
each rule symbolizes an operation (a knowledge component) nec-
essary to solve an equation. However, the interface of the solver
limit what students can do by making them choose one operation
from a menu. Afterwards, students simply have to complete the
new textboxes presented by the system. It does not allow the stu-
dents to apply their own paper-and-pencil reasoning steps and
strategies during the problem solving. One limitation of Aplusix
is that it does not assess student knowledge. Table 1 summarizes
the inner loop’s main problem-solving functionalities supported
by Aplusix and Cognitive Tutor. It is important to observe that
the focus of this paper is on problem solving. For this reason, we
are not taking into account functionalities provided in the Symbol-
ization process.

The three ITSs provide minimal feedback on steps, i.e., they pro-
vide real-time correction in the form of a symbol (label, color or
sign) that indicates whether or not a student response is correct.
If the student did not correctly solve a step, the system should pro-
vide some specific feedback indicating how to solve the step. This
is done by the Hint module of Pat2Math and by the companion
agent in Aplusix. Although Cognitive Tutor presents this option
for the Symbolization process, it does not work in the solver tool.
Another function available in CT and Pat2Math is the assessment
of student knowledge. In the CT, a Bayesian network assesses a stu-
dent’s skills and displays them in the ‘‘skillometer’’. Although Pat2-
Math is able to track a student’s performance in each knowledge
component (currently using the arithmetic mean), it exhibits the
student’s general performance in a colored bar.

In the next section, we describe, in more detail, the main artifi-
cial intelligence techniques used in the implementation of ES in
Algebra tutors.

4. Implementing the expert system of an algebra tutor

Artificial Intelligence classifies knowledge into two types:
declarative and procedural (Nilsson, 1982). Procedural knowledge
is concerned with understanding how to do things, such as, when
to apply the distributive operation in a quadratic equation. Declar-
ative knowledge is concerned with facts – for example, knowing
that the capital of Brazil is Brası́lia. Generally, the Domain Knowl-
edge module of an ITS is able to represent both of them.

These two types of knowledge usually require different forms of
representation (Davis, Shrobe, & Szolovits, 1993). A usual represen-
tation format for procedural knowledge is a production rule. A rule
is typically expressed as IF-THEN statements that denote: (1) the
antecedent (IF) that embodies a set of conditions to be satisfied;
(2) the consequent (THEN) that contains actions to be executed
or new knowledge to be produced if the consequent is true. An
example of a rule is:

IF the temperature is below 0

THEN the weather is cold

Rules are usually used by expert systems to represent proce-
dural knowledge and allow powerful reasoning and inference. Be-
sides having a knowledge base (KB) that stores permanent rules
and facts, a Rule-Based Expert Systems (RBESs) also has a Working
Memory that stores the facts and rules that are being applied in the
current problem.

However, the most important component of a RBES is the infer-
ence engine. It selects those rules whose antecedents match Work
Memory facts and stores them in the Conflict Set (also called the
Agenda). If the Conflict Set has more than one rule (i.e., if more
than one rule can be triggered), the inference engine uses a conflict
resolution strategy to determine which rule to trigger. A RBES is a
powerful reasoning mechanism when there is not a pre-specified
sequence of actions to solve the problem, such as in an exhaustive

P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465 5459
search or in the case of Algebra, where students can solve a prob-
lem in several ways.

The inference engine is the most important component of a
RBES and the most difficult one to implement. On the other hand,
it is independent of the domain. Although the facts and rules are
exclusive for each domain, the inference engine depends only on
the language used for knowledge representation. For this reason,
there are some implementations of the inference engine that assist
the development of a RBES. They are called Expert Systems Shells.
Drools is an ES shell implemented in Java (Bali, 2009; JBOSS, n.d.).

The PATEquation expert system is a production system imple-
mented in Drools, version 4.0 (JBOSS, n.d.). We chose the shell
Drools because it allows easy integration with Java. It is possible
to invoke Java methods from Drools and vice versa. This enables
us to develop more powerful and flexible rules.

In the next sections we will present more details about
Pat2Math.

5. PAT2Math

In this section, Pwe present the ITS PAT2Math and the function-
alities it offers to assist students in learning algebra.

PAT2Math stands for Personal Affective Tutor to Math. The main
goal of this project is to develop a web-based ITS that takes into ac-
count students emotions (inferred by student’s actions in the sys-
tem interface and by facial expression (Jaques, Vicari, Pesty, &
Martin, 2011)) when scaffolding, and information about skills they
mastered, as an ITS usually does. The domain of Algebra, more spe-
cifically the content of linear and quadratic equations, was chosen
because it usually induces fear and other negatives emotions in
students that generally impair the learning process and result in
frustration and increased dropout rates (Frenzel, Pekrun, & Goetz,
2007; Hannula, 2002).

Although, there are well-known ITS in literature (cited on Sec-
tion 3), we chose to develop another Algebra ITS because most of
the existing systems (such as Aplusix and Cognitive Tutor) are
not open-source. We cannot extend or improve on them to inte-
grate the emotions inference. Our intention is to make PAT2Math
available without charge to all schools in Brazil. Our second goal
is to develop an ITS that follows the algebra curriculum specified
by the Brazilian Ministry of Education (Brasil. Secretaria de Edu-
cação Fundamental, 1997). Since all Brazilian schools must follow
Fig. 1. PATequation interface. PATequation is a Java applet that assists students when sol
by-step guidance.
this specification curriculum, this would increase the acceptance
of our ITS in Brazil.

The project began on 2008 and we have since developed PAT-
equation, a tool that includes an editor and a powerful expert sys-
tem that assists students in solving first and second degree
equations. This tool comprises the inner loop of PAT2Math for
problem solving and offers the services detailed in Table 1.

Due to space limitations, the focus of this paper is on the expert
system and the rational functioning of the tutor. Some results of
the ongoing research on the emotional aspects of the interaction
student-tutor, such as recognition of students’ emotions and
expression of emotions by the tutor can be found at (Jaques, Leh-
mann, & Pesty, 2009; Jaques et al., 2011; Motola, Jaques, & Axt,
2008).

In the next section, we describe PATequation. It is an editor the
student can use to solve equations step-by-step with immediate
feedback. It implements the inner loop of PAT2Math. Currently,
PATequation assigns tasks (outer loop) in a fixed sequence previ-
ously defined by a professor.

6. PATequation

PATequation is a Java applet that assists students in solving lin-
ear and quadratic equations in PAT2Math. Fig. 1 illustrates the
interface of PATequation.

PATequation is comprised of an Editor (Fig. 1) where students
exercise problem solving and an Expert System that provides
step-by-step guidance for students. In Fig. 1, on the green black-
board, the first line (labeled A) contains the equation the tutor se-
lected for the student to solve. The next lines represent step-by-
step solutions provided by the students. The tutor offers immedi-
ate feedback for each step, indicating whether or not a response
is correct by using thumbs up and thumbs down symbols. For each
step, the student should choose an operation to apply and also pro-
vide the resulting equation.

The student chooses an operation by clicking a button with the
corresponding symbol from one of the right panels. The selected
operation symbol will appear in the step line on the left side of
the equation (see letter D in Fig. 1). This allows the tutor to evalu-
ate two things: (1) whether the students knew which operation to
use to solve the problem and (2) whether they applied the opera-
tion correctly. It is not possible to evaluate the former skill if the
ving linear and quadratic equations in PAT2Math. It provides the student with step-

Fig. 2. The Architecture of PAT2Math Expert System. PAT2Math’s expert system
comprises two modules and three rules databases. The step generator generates the
next step of the solution. The step analyzer compares the step provided by the
student with all the possible solutions found by the step generator. It then classifies
the student’s solution as either ‘‘correct’’ or ‘‘incorrect’’.

5460 P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465
tutor interface does not ask students to explicitly choose an oper-
ation to apply. To allow advanced learners to operate freely, PAT-
equation permits the student to provide a step solution that uses
several operations. For example, for the equation 3x + 5 = 2x � 7
(see Fig. 1), a student may provide as the next step x = �7 � 5 in-
stead of creating three steps: 3x � 2x + 5 = �7, 3x � 2x = �7 � 5,
x = �7 � 5. In this case, the system allows the student to choose
anyone of the operations applied in the three steps. The tutor noti-
fies students when they reach the final solution, i.e., when they
find the value of the variable.

At any time during the problem-solving process, the students
can also choose one of the following assistance options: (1) They
can ask for a hint, (2) They can request that the tutor solve the next
step of the equation, or (3) They can request that the tutor com-
plete the equation from the current step.

PAT2Math has all of the functionalities described above (imme-
diate feedback, hint, solve the next step and solve the full prob-
lem). In the next section, we describe in more detail the
implementation of this expert system.
Fig. 3. Examples of an expression tree. (a) Is the expression tree for the equation
2x + 3x = 6. (b) Represents the equation (2x + 3) � x = 6. The expression tree is the
data structure that PAT2Math ES uses to represent equations.
7. PATequation expert system

In order to provide immediate feedback for student steps during
the problem solving process, PATequation must be able to solve
linear and quadratic equations. Additionally it must be able to ver-
ify that the partial solution provided by the student matches one of
the equations obtained by the tutor. Although PATequation has
both of these features, the features represent different modules
of an ITS and involve different types of rules. The former is called
the step generator because it generates the next step for the student
(Vanlehn, 2006). It also provides the next-step hint. The latter is
called the step analyzer because it compares the step provided by
the student with all possible steps found by the step generator. It
then classifies the student’s solution as either ‘‘correct’’ or ‘‘incor-
rect’’ (Vanlehn, 2006). It is this combination of the step generator
and the step analyzer that we refer to as the ‘‘expert system’’.
When it is necessary to make explicit which set of rules we are
mentioning, we refer to them as Step Generator (SG) or Step Ana-
lyzer (SA), respectively. Fig. 2 represents the architecture of PAT2-
Math Expert System.

PATequation uses 53 rules for the SG and 21 rules for the SA. In
the SG, each rule generally represents an algebraic operation to
solve a linear or quadratic equation. They are knowledge compo-
nents in the Algebra domain. For example, in order to solve linear
equations, students can use one of the following operations: basic
arithmetic operations (add, subtract, multiply or divide) on real
numbers or on variables; a transformation (add, subtract, multiply
or divide both sides of the equation); simplification of fraction, or
least common multiple. In order to solve quadratic equations, they
can apply the following operations in addition to the previous
ones: factorization, expansion, quadratic formula, square of the
sum of two numbers, difference of the square formula, square of
the difference, rationalization, potentiation, and square root. Of
the 53 rules available in the SG, 20 rules aim at replicating stu-
dents’ misconceptions (described bellow in more detail). The
remaining rules are used to rewrite the equations (for instance,
combine like terms) and other complementary operations (find
the final roots for quadratic equations).

The expert system is invoked by PATequation’s graphical inter-
face when students request a demonstration of how to solve an
equation (by clicking either the ‘‘Show Step’’ button or the ‘‘Show
Resolution’’ button shown in Fig. 1) or when they want to verify
if the step they provided is correct. When a student asks the tutor
to show the equation solution, the ES calls the SG, which receives
the equation and solves it from the current step. To verify if the
student step is correct, the ES receives the equation along with
the student’s current step and sends them to the SA. The SA re-
quests that the SG solve the equation and then verifies whether
the SG is able to calculate the same step provided by the student.
If it cannot, the SA requests that the SG solve the equation using
the rules that represent students’ misconception. If it does not rec-
ognize the step provided by the student, the SA gives the student a
hint. Otherwise, the SA simply indicates that the step is incorrect.
7.1. Representation format for equations

In order for the ES to solve equations, it is necessary that the
data structure to represent equations is easy to operate on and is
unambiguous. For example, consider the equation 2x + 3 � x = 6. It
is ambiguous unless one knows that multiplication happens before
subtraction. A natural data structure for representing an equation
is a binary tree because it defines the order in which operations
happen. For this reason, compilers have largely used it to represent
mathematical expressions (Aho, 2007). A binary tree that repre-
sents an equation is called an ‘‘expression tree’’. Fig. 3 shows exam-
ples of expression trees for the equations 2x + 3x = 6 and
(2x + 3) � x = 6, respectively.

There are three types of nodes in an expression tree:

– constant nodes: hold real or integer numbers,
– identifier nodes: denote variables,
– compound nodes: represent the application of a operator to two

operands, each one being another expression tree.

As Fig. 3 illustrates, the constant nodes and the identifier nodes
are always leaf nodes (a node that has no child). On the other hand,
the compound nodes have either one (unary operation) or two
(binary operation) children trees, which represent the operands
of the operation.

Fig. 4. An example of ES reasoning cycle based on (Hopgood, 2000). For every cycle, the ES selects from the knowledge base those rules that match with facts in the working
memory and stores them in the Agenda. It triggers a rule from the Agenda according to a determined selection strategy. It also empties the Agenda and starts a new cycle until
the Agenda has no more rules to trigger.

1 Actually, there are other paths if we allow recursive operations.

P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465 5461
7.2. PATequation step generator

In a rule-based expert system, the inference engine (IE) exe-
cutes several cycles of reasoning to solve problems. In each cycle,
it executes the following actions (shown in Fig. 4). First, it selects,
from the knowledge base, the rules that correspond to facts in the
working memory and stores them in the Agenda, a special memory
area that stores that rules selected to be triggered. Among these
rules, it chooses one rule to trigger according to a determined strat-
egy of selection. For example, in PATequation, each rule has a pri-
ority number and the IE selects the rule with highest priority to
trigger. In the case where all the rules have the same priority,
the IE triggers the rule that has matched those facts most recently
added to the database. If the rule produces new knowledge, the IE
adds this new fact to the working memory. It also empties the
Agenda and starts a new cycle until the Agenda has no more rules
left to trigger.

There are two reasoning mechanisms in the RBES inference en-
gine: Forward Chaining (FC) and Backward Chaining (BC). Forward
Chaining selects rules whose antecedents match facts in the work-
ing memory while Backward Chaining examines the rules conse-
quents. While the FC is more appropriate for diagnostic
problems, the BC is more suitable for proving assertions. BC is more
efficient because it only triggers the rules that are necessary to
solve the problem.

As previously explained, the PATequation ES was implemented
with the Drools shell. The Drools IE applies Forward Chaining. This
is the most appropriate type of reasoning for algebra problem solv-
ing because the solution is previously unknown.

Indeed, there are several paths to solve an equation. Fig. 5 illus-
trates the available paths to solve the equation 4x + 4 = 9 � x. It is
represented as a directed graph, in which the nodes denote a step
solution. Each edge represents the operation that is applied to the
equation in the predecessor node in order to obtain the equation in
the successor node.

Even when solving a very simple equation, such as the afore-
mentioned equation in Fig. 5, there are two possible paths.1 When
demonstrating how to solve an equation, PATequation should be
able to choose a solution path. This is implemented by applying
higher priority to the rules that represent operations with greater
significance. An operation can have high significance because it has
higher precedence or because its application is more desirable for
pedagogical reasons. For example, in Fig. 5, although both paths
are correct, the left path is the more desirable because teachers gen-
erally prefer to first isolate the variable on the left of the equation in
order to emphasize it.

In the forward chaining reasoning, the first step of the IE is
selecting the rules for examination. Generally, it selects all the
rules of the KB. It evaluates the condition part of each rule. If the
condition component is satisfied, it adds the rule to conflict set.
After examining all the rules, it selects one conflict set rule to trig-
ger according to a conflict resolution strategy. For example, the
strategy could select the rule with higher priority. Finally, the IE
updates the working memory with the new facts generated by
the rule and empties the conflict set in order to start a new cycle.

The following scenario, illustrated in Table 2, shows how PAT-
equation solves the euation 4x + 4 = 9 � x through forward chain-
ing reasoning. First, it translates the equation from the infix math
notation to postfix (Goodrich & Tamassia, 2010) in order to convert
it into an expression tree (Lafore, 2003). It includes the expression
tree as a new fact into the working memory of Drools and launches
the inference engine. At this moment, the FC reasoning begins.
Generally every cycle solves one step of the equation.

In the first cycle, the IE examines all rules in the KB in order to

Fig. 5. Paths to solve the equation 4x + 4 = 9 � x. There can be several paths to
solving an equation. A path is a sequence of steps with each step resulting in an
intermediate equation. A step is a user interface action (for example, to simplify the
fraction 5x/5 in an intermediate equation) that the student takes in order to achieve
a task2. (In fact, Vanlehn differs step and learning events, where the step is a user
interface action and the learning event is the application of a knowledge component
to achieve a task; it is just a mental event. For the sake of simplicity, we just refer to
steps in this article to mean that it is a user action that involves one or more
learning events.) This figure illustrates two possible paths to solve the equation
4x + 4 = 9 � x. The left and right paths have both six steps (the two last steps are
equal).

5462 P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465
select those rules whose antecedents contain conditions that are
satisfied by the current equation. Because the operation of addition
is only applied on the same side of the equation, this rule is not eli-
gible. The IE chooses the rules MOVE_INT and MOVE_VARIABLE,
which aim at moving the operand from one side of the equation
to the other by applying an operation on both sides. While the goal
of the MOVE_INT rule is to move constants to the right side, the
purpose of MOVE_VARIABLE rule is to move all variables to the left
side. Both rules aim at isolating the variables on the left and con-
stants on the right side. The IE selects and triggers the MOVE_VAR-
IABLE rule because it has a higher priority. The resulting equation
(4x + 4 + x = 9 � x + x) replaces the previous one in the Working
Memory. This prevents the IE from applying the operations
recursively.

In the second cycle, there are two possible operations that the IE
can apply: (1) sum the variables on the left and right sides of the
equation and (2) apply MOVE_INT. MOVE_VARIABLE is not se-
lected because it does not satisfy the condition that the equation
only present one variable term on its right side. The IE selects
the rules representing these two operations and inserts them into
Table 2
Illustration of the working memory and agenda for solving equation 4x + 4 = 9 � x.

Working memory (facts before firing rule) Working memory (fact

1 4x + 4 = 9 � x 4x + 4 + x = 9 � x + x

2 4x + 4 + x = 9 � x + x 5x + 4 = 9 � x + x

3 5x + 4 = 9 � x + x 5x + 4 = 9

4 5x + 4 = 9 5x + 4 � 4 = 9 � 4
5 5x + 4 � 4 = 9 � 4 5x = 9 � 4
6 5x = 9 � 4 5x = 5
7 5x = 5 5x/5 = 5/5
8 5x/5 = 5/5 x = 5/5
9 x = 5/5 x = 1

10 x = 1 hEMPTYi
the Agenda. The former rule has higher priority and is triggered.
The resulting equation (5x + 4 = 9) is now the only fact in the work-
ing memory. In fact, the IE applies this rule twice. In the second cy-
cle, it adds 4x + x on the left side of the equation. In the third cycle,
it adds �x + x on the right side.

In the fourth cycle, there is only one rule eligible to be triggered,
the MOVE_INT rule. The IE triggers this rule and a new equation
(5x + 4 � 4 = 9 � 4) replaces the previous one in the Working
Memory.

In the fifth and sixth cycles, it selects and triggers the rule
ADD_CONSTANTS twice. Each cycle produces the equations
5x = 9 � 4 and 5x = 5, respectively.

In the next cycle (7th), there is only one rule whose conditions
match with the fact 5x = x in the working memory. This rule di-
vides both sides of the equations by 5 in order to cancel the coef-
ficient of the term 5x. The resulting fact is 5x/5 = 5/5.

In the following two cycles, the IE applies the rules to simplify
the fractions on both side of the equation. The result is that the
equation x = 1 is the only fact left in the Working Memory.

In the last cycle, the IE triggers the rule whose purpose is to test
if the final response was achieved, i.e., PATequation found the final
value of the equation variable. In this case, it removes all the facts
of the Working Memory. This stops the execution of the IE.

Besides the cycles above cited, there are other cycles in which
the IE applies auxiliary rules aimed at preparing the equation for
the next operation. For example, there is a rule based on the com-
mutative property of numbers that aims at grouping the similar
terms in the equation. It transforms the equation x + 4 + 3x = 0 into
the equation x + 3x + 4 = 0. As the objective of this type of rule is
simply to prepare the expression tree for an operation, we do not
cite it in the above scenario because we want to focus on the rules
that actually represent a real step towards solving the problem.

In this section, we demonstrated how PATEquation ES solves an
equation. This functionality allows the system to show students
how to solve a step or the full equation from any point of the solv-
ing process when they assistance. If the students ask only for the
next step, only one cycle of the forward reasoning is performed.
If the student asks for the full solution, the IE iterates through as
many cycles as necessary to solve the equation. It also shows all
the facts generated in each solving cycle. In both cases, the initial
fact is the current equation.

In the next Section, we show how the Step Analyzer verifies stu-
dents’ steps in order to provide immediate feedback.

7.3. PATequation step analyser

As we previously mentioned, in order for a learning system to
be considered an intelligent tutoring system it must be able to pro-
vide immediate feedback to the students in the inner loop (Van-
s after firing rule) Agenda (rules) Triggered rules

(1) MOVE_INT MOVE_VARIABLE
(2) MOVE_VARIABLE
(1) ADD_VARIABLES ADD_VARIABLES
(2) MOVE_INT
(1) ADD_VARIABLES ADD_VARIABLES
(2) MOVE_INT
(1) MOVE_INT MOVE_INT
(1) ADD_CONSTANTS ADD_CONSTANTS
(1) ADD_CONSTANTS ADD_CONSTANTS
(1) DIVIDE_BOTH_SIDES DIVIDE_BOTH_SIDES
(1) SIMPLIFY_FRACTION SIMPLIFY_FRACTION
(1) SIMPLIFY_FRACTION SIMPLIFY_FRACTION
(1) TEST_END TEST_END

Fig. 6. PATequation step analyser algorithm. The SA verifies students’ steps in order to provide immediate feedback.

P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465 5463
lehn, 2006). Additionally it should be able to verify which opera-
tions they used correctly and which they used incorrectly. The Step
Analyzer (SA) accomplishes this task, which is also called Model
Tracing (Anderson, Corbett, Koedinger, & Pelletier, 1995; Heffernan
et al., 2008).

The SA is a recursive function that receives as parameter the
current equation (curEq) and the student step (stdEq) and returns
a linked list containing the sequences of operations necessary to
achieve the student’s answer. The pseudo-code below demon-
strates how this recursive function works.

The recursive algorithm in Fig. 6 allows backtracking, i.e., the IE
can return to a previous state in order to try another solution path.
While backtracking is a powerful process, it can significantly de-
crease the system performance. Without using any heuristic to
minimize the possible paths, the FC performs a full breadth-first
search, resulting in a worst case runtime complexity of O(nd),
where n is the maximum branching factor of the search tree (in
an ES the number of possible rules) and d is the depth of the
last-cost solution (number of triggered rules) (Russell & Norvig,
2003). In PATequation, for the worst cases, the value of n can be
53, which are the numbers of rules available in the SG set.

In order to minimize the number of unnecessary triggered rules,
we create meta-rules that infer the operation that the student ap-
plied. These additional rules compare the current equation and the
student step in order to identify which operations the student most
likely applied. For example, let us assume that the current equation
is 1 + 2 + 3 = x and the student step response is 1 + 5 = x. The meta-
rules verify that the terms 1 and x are still present in the student
equation, but not the terms 2 and 3. They also verify that there is
an add operator between these terms. In that case, it tries to apply
the rule ADD_CONSTANTS for these two operands in order to try to
find 5. With the meta-rules, the time complexity is reduced to O
(d), where d is the number of triggered rules, it means, the number
of rules that need to be triggered in order to achieve the solution. It
happens because the meta-rules guide the FC to trigger only the
rules that are necessary to find the student’s solution.

In fact, these meta-rules try to emulate a backward chaining in
the expert system, which is the most appropriate reasoning for this
type of problem. Backward reasoning only triggers the rules that
are necessary to solve the problem. However, Drools and other sta-
ble expert systems shells do not implement this type of reasoning.
This is the reason why we decided to implement this meta-rules
approach.

Another potential problem with expert systems is the number
of comparisons that need to be made between rules and facts in
the database. Most current ES shells use a RETE algorithm for this
match process, which reduces the average complexity from O (nd)
to O (n2), where n is the number of facts in the Working Memory
(Watson, 2008). As we generally work with few facts (generally
two) in PATequation, this process does not impair its performance.
8. Evaluation

In order to evaluate the effectiveness of our tool, we compared
the students’ improvement in performance in a group of 22
students who solved equations in PATequation (experimental
group-EG) in relation to a group of 21 students who only exercised
without the tool (control group-CG).

The hypothesis of the experiment is that PATequation helps the
student in learning linear equations providing a statistically higher
gain scores (difference between posttests and pretests) compared
to students who exercised equation without the tool. The null
and alternative hypotheses are:

H0: EGgain 6 CGgain (null hypothesis)
H1: EGgain > CGgain (alternative hypothesis)

The null hypothesis is that the gain scores in the EG is less than
or equal to the CG gain. Moreover, the claim is that the EG gain was
statistically higher than the CG gain, identifying that students exer-
cising with PATequation learned more than students who only
solved equations in paper-and-pencil.

The experimental evaluation took place in June 2012 in a pri-
vate school in Porto Alegre, Brazil. Forty-three students from two
seventh grade classes of an elementary school participated in the
experiment. Because the students were minors (12–13 years), we
asked the parents to sign the informed consent form before con-
ducting our study. This evaluation can be classified as a quasi-
experiment, because the sample subjects were not chosen ran-
domly (Campbell & Stanley, 1963). These classes were selected be-
cause of their previous contact with our research group and also
because of the interest of their teachers.

Fig. 7 illustrates the phases of the evaluation experiment. Ini-
tially, the subjects were informed about the objectives of the exper-
iment (evaluate PATequation), as well as the voluntary and
confidential nature of their participation. The experiment was con-
ducted in 4 sessions each lasting for 50 min, totaling 3 h and 20 min
of interaction. In the first lesson, we administered a pretest aimed at
identifying the students’ prior knowledge. During the following two
classes, the students in the experimental group solved equations
with our tool and students in the control group used only paper
and pencil. In the last class they solved the posttest and completed
the questionnaire. The questionnaire consisted of four questions
regarding students’ habits when studying math and thirteen ques-
tions about the students’ experience with PATequation after having
used it (Fig. 8 shows the students’ answers for one of the questions).

The students’ grades and the mean and standard deviation of
pretest and posttest in control and experimental groups are shown
in Table 3. Each test was composed of 5 problems for students to
solve, worth a total of 2.5 points. The equations in each test were
different, but evaluated the same skills. Table 4 shows the mean
and standard deviation for pretests and posttests scores.

Fig. 7. The PAT2Math evaluation experiment. The experiment consisted of 3 phases: (1) pretest, (2) solving equations in paper-and-pencil for the control group, or solving
equations in PAT2Math for the experimental group, and (3) posttest and questionnaire.

Fig. 8. Students’ answers to the question ‘‘Solving equations in PATequation was
. . .’’ After completing the posttest, students were asked to complete a questionnaire
regarding their math habits and their experience with PATequation.

Table 3
Students’ pretest and posttest scores.

Control Group Experimental Group

Student Pretest Posttest Gain Student Pretest Posttest Gain

1 1.7 2.0 0.3 1 1.0 2.0 0.3
2 0.4 1.0 0.6 2 1.0 1.9 0.6
3 1.0 1.8 0.8 3 2.0 2.5 0.8
4 2.0 2.0 0.0 4 1.5 2.2 0.0
5 2.3 2.5 0.2 5 2.5 2.5 0.2
6 2.5 2.5 0.0 6 2.5 2.5 0.0
7 1.3 2.5 1.2 7 2.0 2.5 1.2
8 1.4 2.5 1.1 8 1.5 1.7 1.1
9 0.9 2.0 1.1 9 2.0 2.2 1.1

10 2.0 2.2 0.2 10 2.0 2.0 0.2
11 1.2 1.7 0.5 11 1.0 2.5 0.5
12 1.5 1.7 0.2 12 2.0 2.5 0.2
13 1.0 2.0 1.0 13 1.5 2.5 1.0
14 2.0 2.0 0.0 14 1.5 2.1 0.0
15 1.1 1.5 0.4 15 0.5 2.5 0.4
17 2.1 2.1 0.0 17 1.0 2.1 0.0
18 1.7 1.9 0.2 18 0.5 2.1 0.2
19 0.3 0.5 0.2 19 2.0 2.5 0.2
20 0.5 0.5 0.0 20 2.0 2.5 0.0
21 2.0 2.4 0.4 21 1.0 1.6 0.4

22 2.0 1.9 0.3

Table 4
Students’ pretest and posttest mean and standard deviation (sd).

Pretest Posttest Gain

Control group
Mean 1.44 1.86 0.42
sd 0.64 0.59 0.40

Experimental group
Mean 1.6 2.2 0.7
sd 0.59 0.29 0.56

5464 P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465
We used a one-tail t-test because we did not know the popula-
tion standard deviation (we only know the sample s). With a con-
fidence level of 90% (a = 0.1), we obtain p = 0.06 (t = �1.5376,
df = 39). The mean score increased from 1.445 (sd = 0.642) on the
pretest to 1.865 (sd = 0.599) on the posttest. The difference be-
tween the two means is statistically significant at the .1 level. Thus,
as p < a, we reject the null hypothesis and conclude that there is
evidence to say with 90% confidence that students using PATequa-
tion have higher gain scores in equation solving than students
using pen and pencil.

On the questionnaire, 22% of students reported it was very
interesting to solve equations in PATEquation, 56% of them stated
it was interesting and for 22% of students, it was good. Finally, 52%
of students agreed that solving equations in PATequation with
the help of hints increased their knowledge about algebraic
equations.

9. Conclusions

In this paper we presented PAT2Math, an expert system module
of an Algebra ITS. The ES is responsible for correcting student steps
and modeling student knowledge components during problem
solving in the PAT2Math’s editor (PATequation). Another impor-
tant function of this module is to demonstrate to the student
how to solve a problem. In order to provide this step-by-step guid-
ance in the inner loop, ES is able to solve the same problems that
student do.

The proposed ES was implemented as rule-based expert system
in which one rule is used to represent each algebra operation a stu-
dent should master. The ES is composed by meta-rules that aim at
reducing the number of possible paths to explore when correcting
a student’s solution. This solution reduces the computational com-
plexity from O(nd) to O(d), where n is the number of rules in the
knowledge base and d is the number of rules triggered.

In this paper, we mainly focused on the expert system of PAT2-
Math, describing its implementation and its approach on solving
equations and providing feedback to the user. We also described
a quasi-experiment with forty-three 7th grade students, which
demonstrated that the performance improvement observed in stu-
dents using PATequation to solve equations was statistically signif-
icant. Encouraged by our initial results we plan to conduct a new
user study involving more students over a longer period of time.
We expect to gain new insights about the long-term applicability
and scalability of our approach.

Acknowledgements

This research is supported by the following research funding
agencies of Brazil: CAPES, CNPq and FAPERGS.

We greatly appreciated the feedback on the article from Sven
Stork and Meghan Tighe.

P.A. Jaques et al. / Expert Systems with Applications 40 (2013) 5456–5465 5465
References

Aho, A. V. (2007). Compilers: Principles, techniques, and tools. Pearson/Addison
Wesley, p. 1009.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). Example-tracing
tutors?: A new paradigm for intelligent tutoring systems. International Journal of
Artificial Intelligence in Education, 19(2), 105–154.

Anderson, J. R., Corbett, A., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors:
Lessons learned. The Journal of the Learning Sciences, 4(2), 167–207.

Bali, M. (2009). Drools JBoss Rules 5.0: Developer ’ s Guide (p. 320). PACKT.
Birch, M., & Beal, C. R. (2008). Problem posing in AnimalWatch: An interactive

system for student-authored content. In International Florida Artificial
Intelligence Research Society Conference (pp. 397–402).

Brasil. Secretaria de Educação Fundamental (1997). Parâmetros Curriculares
Nacionais: matemática (Vol. 3, p. 148). Brası́lia: MEC/SEF.

Campbell, D. T., & Stanley, J. C. (1963). In N. L. Gage (Ed.). Experimental and quasi-
experimental designs for research (Vol. 20, pp. 84). Rand McNally. http://
dx.doi.org/10.1016/0306-4573(84)90053-0.

Carpenter, T. P., Kepner, H. S., Corbitt, M. K., Lindquist, M. M., & Reys, R. E. (1982).
Student performance in algebra: Results from the national assessment. School
Science and Mathematics, 82(6), 514–531. http://dx.doi.org/10.1111/j.1949-
8594.1982.tb10052.x.

Chaachoua, H., Nicaud, J. F., Bronner, A., & Bouhineau, D. (2004). APLUSIX, A learning
environment for algebra, actual use and benefits. In Proceedings of ICME-10 (p.
8). Copenhagen, Denmark.

Cohen, P. R., Beal, C. R., & Adams, N. M. (2008). The design, deployment and
evaluation of the AnimalWatch intelligent tutoring system. Information Systems,
178, 663–667.

Davis, R., Shrobe, H., & Szolovits, P. (1993). What is knowledge representation? AI
Magazine, 14(1), 17–33.

Frenzel, A., Pekrun, R., & Goetz, T. (2007). Girls and mathematics—A ‘‘hopeless’’
issue? A control-value approach to gender differences in emotions towards
mathematics. European Journal of Psychology of Education, 22(4), 497–514.

Gama, C. A. (2004). Integrating metacognition instruction in interactive learning
environments. University of Sussex.

Goguadze, G., & Melis, E. (2008). Feedback in ActiveMath exercises. In Proceedings of
international conference on mathematics education (pp. 1–7).

Goodrich, M. T., & Tamassia, R. (2010). Data structures and algorithms in Java. Wiley.
Hannula, M. (2002). Attitude towards mathematics: Emotions, expectations and

values. Educational Studies in Mathematics, 49(1), 25–46.
Heffernan, N. T., Koedinger, K. R., & Razzaq, L. (2008). Expanding the model-tracing

architecture?: A 3 rd generation intelligent tutor for algebra symbolization.
Artificial Intelligence, 18.

Hopgood, A. A. (2000). Intelligent systems for engineers and scientists. Library. Boca
Raton: CRC Press (p. 461).

Jaques, P. A., Lehmann, M., & Pesty, S. (2009). Evaluating the affective tactics of an
emotional pedagogical agent. ACM symposium on applied computing (Vol. 1,
pp. 104–109). Hawaii: ACM. http://dx.doi.org/10.1145/1529282.1529304.
Jaques, P. A., Vicari, R., Pesty, S., & Martin, J.-C. (2011). Evaluating a cognitive-based
affective student model. In S. K. D’Mello, A. C. Graesser, B. Schuller, & J.-C.
Martin (Eds.). International conference on affective computing and intelligent
interaction (ACII) (Vol. 6974, pp. 599–608). Springer.

JBOSS (n.d.). Drools Expert. <http://www.jboss.org/drools/drools-expert.html>
Retrieved 03.06.12.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent
tutoring goes to school in the big city. International Journal of Artificial
Intelligence in Education, 8(1), 30–43.

Koedinger, K. R., & Sueker, E. L. F. (1996). PAT goes to college: evaluating a cognitive
tutor for developmental mathematics. In Proceedings of the 1996 international
conference on Learning sciences (pp. 180–187). International Society of the
Learning Sciences.

Lafore, R. (2003). Data structures and algorithms in Java. Sams.
Mayer, R. E. (1999). The promise of educational psychology: Learning in the content

areas. Merrill.
Melis, E., Goguadze, G., Libbrecht, P., & Ullrich, C. (2009). ActiveMath–A learning

platform with semantic web features. The Future of Learning, 1–22 (2006).
Motola, R., Jaques, P. A., & Axt, M. (2008). A Domain and Platform Independent

Architecture for Presentation of Affective Behaviors of Animated Pedagogical
Agents. In Anais do Simpósio Brasileiro de Informática na Educação (pp. 22–31).
Porto Alegre: SBC.

Munem, M. A., & West, C. (2003). Beginning algebra. Kendall/Hunt Publishing
Company.

National Commission on Excellence in Education (1983). A nation at risk: The
imperative for educational reform. Washignton, DC.

Nicaud, J. F., Bittar, M., Chaachoua, H., Inamdar, P., & Maffei, L. (2006). Experiments
with Aplusix in four countries. International Journal for Technology in
Mathematics Education, 13(2), 79–88.

Nicaud, J. F., Bouhineau, D., & Huguet, T. (2002). The Aplusix-Editor?: A new kind of
software for the learning of algebra. In International Conference on Intelligent
Tutoring Systems (pp. 178–187). Biarritz, France: Springer-Verlag.

Nilsson, N. J. (1982). Principles of artificial intelligence. Springer.
Polya, G. (2004). How to solve it: A new aspect of mathematical method. Princeton

University Press.
Ritter, S., Anderson, J. R., Koedinger, K. R., & Corbett, A. (2007). Cognitive tutor:

applied research in mathematics education. Psychonomic Bulletin and Review,
14(2), 249–255.

Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.).
Pearson Education.

Shelby, R., Schulze, K., Treacy, D., Wintersgill, M., Vanlehn, K., & Anders Weinstein,
A. (2000). An assessment of the andes tutor. In Physics education research
conference. Rochester, NY.

Vanlehn, K. (2006). The behavior of tutoring systems. International Journal of
Artificial Intelligence in Education, 16(3), 227–265.

Watson, M. (2008). Practical artificial intelligence programming with Java.
Woolf B. P. (2009). Building intelligent interactive tutors. Pragmatics (p. 467). Elsevier.

http://refhub.elsevier.com/S0957-4174(13)00241-8/h0005
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0005
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0010
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0010
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0010
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0015
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0015
http://dx.doi.org/10.1016/0306-4573(84)90053-0
http://dx.doi.org/10.1111/j.1949-8594.1982.tb10052.x
http://dx.doi.org/10.1111/j.1949-8594.1982.tb10052.x
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0030
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0030
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0030
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0035
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0035
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0040
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0040
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0040
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0045
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0050
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0050
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0055
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0055
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0055
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0060
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0060
http://dx.doi.org/10.1145/1529282.1529304
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0070
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0070
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0070
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0070
http://www.jboss.org/drools/drools-expert.html
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0075
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0075
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0075
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0080
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0080
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0085
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0085
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0090
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0090
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0095
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0095
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0095
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0100
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0100
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0100
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0105
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0110
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0110
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0115
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0115
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0115
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0120
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0120
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0125
http://refhub.elsevier.com/S0957-4174(13)00241-8/h0125

	Rule-based expert systems to support step-by-step guidance in algebraic problem solving: The case of the tutor PAT2Math
	1 Introduction
	2 Solving algebraic problems
	3 Algebra Intelligent Tutoring Systems
	4 Implementing the expert system of an algebra tutor
	5 PAT2Math
	6 PATequation
	7 PATequation expert system
	7.1 Representation format for equations
	7.2 PATequation step generator
	7.3 PATequation step analyser

	8 Evaluation
	9 Conclusions
	Acknowledgements
	References

