Computer Communications 34 (2011) 1539-1548

Contents lists available at ScienceDirect

computer
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Separating computation and storage with storage virtualization

Yaoxue Zhang, Yuezhi Zhou *

Key Laboratory of Pervasive Computing, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, People’s Republic of China

ARTICLE INFO ABSTRACT

Article history:
Available online 3 July 2010

Recent advances of hardware, software, and networks have made the management and security issues
increasingly challenging in PC usage. Due to the tight coupling of hardware and software, each one of
the hundreds or thousands of PCs connected in a networked environment has to be managed and admin-
istrated individually, leading to a high Total Cost of Ownership (TCO). We argue that a centralized storage
of software and data, while distributed computation in clients, i.e., transparent computing, can address
these challenges potentially and reduce the complexity with reduced software maintenance time,
improved system availability, and enhanced security.

This paper presents a novel approach, named StoreVirt, to realize transparent computing, which sepa-
rates computation and storage from inside a single physical machine to different machines with a storage
virtualization mechanism. With virtualization, all the OSes, applications, and data of clients are centered
on the servers and scheduled on demand to run on different clients in a “block-streaming” way. There-
fore, due to the central storage of OSes and applications, the installation, maintenance, and management
are also centralized, leaving the clients light-weighted. Further, due to timely patching and upgrading, the
system security can be improved. Experimental and real-world experiences demonstrate that this

Keywords:

Transparent computing

PC management and security
Virtual storage

Virtual disk

approach is efficient and feasible for real usages.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The advent and advance of desktop/personal computers has
greatly improved end user productivity and flexibility by enabling
a richer set of applications to be installed and executed locally.
Now, they have been ubiquitously deployed in enterprise network
environments (typically LANs), such as universities, corporations,
and governmental organizations. However, the great success of
the distributed PC has also brought many challenges for system
management and security.

Consider a typical scenario of PC usage in educational class-
rooms, where tens of computers are connected through a local area
network. Given various course requirements, students need to use
different OSes such as Linux, Windows, and Solaris, and diverse
applications such as office software (e.g., MS Office or Open Office),
image/audio/video editors (e.g., Adobe Photoshop, Adobe Premiere,
3dMAX), and program developing tools (e.g., Microsoft C# or GCC).
Thus, to satisfy these diverse requirements, various types of OSes
and applications have to be installed on each PC. Other PC-based
systems in governmental organizations or enterprises are similar
to the above usage scenario, as illustrated in Fig. 1(1).

* Corresponding author. Tel./fax: +86 10 62782118.
E-mail addresses: zyx@moe.edu.cn (Y. Zhang), zhouyz@mail.tsinghua.edu.cn
(Y. Zhou).

0140-3664/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2010.06.024

In such typical scenarios, although end users can leverage the
computation and storage resources of distributed client computers
to achieve flexibility and enhanced productivity, there are mainly
two categories of challenges: management and security. With re-
spect to management, there are at least two following challenges:

o Software consistence: Since each PC has a local hard disk to store
all therequired software and data, the tasks of installation, patch-
ing, and upgrading have to be carried out on every client to keep a
correct, consistent, and up-to-date system state across the entire
environment. Automatic management tools such as Marimba can
help reduce the manual efforts of administrators by automati-
cally pushing new software images or patches to distributed cli-
ents. However, as clients may fail to respond to these tools due to
hardware, software, and user errors, or malicious attacks, these
tools cannot address the consistency problem fundamentally.
Heterogeneous OS and application support: As described in the
above scenario, multiple types or versions of OSes and applica-
tions may need to co-exist to support educational requirements,
or to support legacy applications and other new requirements.
This diversity of software further increases the management
complexity. Administrators need accurate knowledge of the
correct versions of software to update for each machine. Thus
more sophisticated tools are required to push packages auto-
matically in a heterogeneous environment.


http://dx.doi.org/10.1016/j.comcom.2010.06.024
mailto:zyx@moe.edu.cn
mailto:zhouyz@mail.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.comcom.2010.06.024
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

1540 Y. Zhang, Y. Zhou/Computer Communications 34 (2011) 1539-1548

Computation
and storage

— —= —=
PC PC PC
( LAN 0
| |
—— ——
PC PC
(1) PC computing

Software and

Computation data storage
Client Client Server
( LAN )
Client Client

(2) Transparent computing

Fig. 1. (1) Each PC machine is installed with all needed software and data and
executes them locally. (2) Each client machine does not hold any desired software
and data locally, which resides on the central server, while being streamed to and
executed with the client’s local resources.

The next category of challenges concerns the security issue:

e Malware threat: The first security risk is associated with mali-
cious attacks such as virus, worms, spyware, and other malware
that target the normal functions of individual machines. Once
the corresponding client is compromised or damaged, the
installed software and data may be lost or corrupted, requiring
expensive distributed backup and restoration services.

e Data protection: The second security issue is concerned with the
data protection. As the data is distributed in the typical sce-
nario, thus the distributed data backup, is time consuming
and not reliable due to the same difficulties as that in maintain-
ing software consistency. A more serious data security risk is
information leakage and data theft, which is in particular a
big threat to the governmental or military organizations. If
sensitive data are fetched and cached at local disks, they will
be potentially available to the errant end users or intended
attackers who have access to the client machines.

Due to these difficulties and challenges in PC management and
security, much money and manpower are involved in dealing with
these issues. As estimated in a typical scenario, the annual Total
Cost of Ownership (TCO) of a PC has been around five times the
purchase cost of the PC [1].

To address these challenges, a variety of approaches have been
proposed, which can be classified into two categories: distributed
client management tools and centralized computing paradigms.

Various client management tools (e.g., BMC BladeLogic Client
Automation [2]) have been produced in the past years. These tools
use two sets of software: one installed on the server that help

administrators to monitor and update the other set of software, of-
ten called agents, distributed on all client machines. These agents
can report client status to the server and carry out management
tasks assigned by the server, such as patching, updating, and scan-
ning. As mentioned before, it is challenging for these management
tools to tackle the management and security problems fundamen-
tally. With the constant change in the increasingly distributed and
heterogeneous environment, multiple operating system images
and hundreds of applications have to be maintained and the patch
and system security assured. Moreover, if the connectivity of the cli-
ent to the server is destroyed in any way, the management tools can-
not function anymore, resulting in manual effort or other data or
information lost.

To overset the distributed model of PC, new centralized comput-
ing paradigms, such as thin client [3-5] in the past decade and new
emerging virtual desktop [6,7], try to get PC off the desktop by cen-
tralizing both computation and storage on the server and only
delivering the keyboard and mouse input and display output be-
tween the client and server, which is similar to the mainframe com-
puting a long time ago, but can support desktop operating systems
and applications. Due to the centralization of computation and stor-
age, both management and security tasks are also centralized on
the server, reducing the overall management efforts in half [7].
However, the large video display data transferred from the server
to the client will consume much network bandwidth, it is very lim-
ited for these computing paradigms to support multimedia applica-
tions, such as video playback and 3D games. Further, the computing
power of clients will be underutilized and wasted.

We believe that a new Transparent Computing paradigm with
distributed computing, while centralized storage of all software
and data, can achieve the best benefits of both the distributed com-
puting model of PC and the above centralized computing para-
digm. Without local storage, clients keep no persistent states and
execute programs with local resources, while administrators can
ensure centralized control of all software and data at a small num-
ber of servers, hence effectively addressing various challenges
associated with distributed and inconsistent system states.

In this paper, we present a transparent computing system,
namely StoreVirt, that can provide desirable features, such as heter-
ogeneous OS support, user transparency, and flexible software and
data sharing, by separating computation from storage. StoreVirt
decouples software, data, and states from the underlying client
hardware. The StoreVirt clients perform all the computing tasks,
while all required OSes, applications, and data will be located at
centralized servers and streamed to the clients on demand. The
key technique is the virtual storage/disk mechanism which simu-
lates the physical block-based storage devices using disk images lo-
cated on the server and accesses them via network communication.

The remainder of this paper is organized as follows. In Section 2,
we introduce the concept of transparent computing as a back-
ground and discuss some related work. In Section 3, we provide
the detailed ideas and design of StoreVirt. In Section 4, we present
the implementation and real experiences of StoreVirt. In Section 5,
we study the performance of StoreVirt through several experi-
ments and compare it with other similar approaches. Section 6 dis-
cusses possible extensions and optimizations. In Section 7, we
conclude this paper.

2. Background and related work
2.1. Concept of transparent computing

To address the challenges faced by today’s personal computers
as mentioned above, we proposed a new computing paradigm,

termed as transparent computing [8,9]. Its aim is to realize the
vision advocated by ubiquitous or pervasive computing [10,11], in



Y. Zhang, Y. Zhou /Computer Communications 34 (2011) 1539-1548 1541

which users can demand any computing services via any available
device, at any time and any place, with no concerns about these
issues such as service installation, maintenance, management,
and security.

Specifically, in contrast to PC paradigm, where computation and
storage are coupled via inside bus in a single physical machine, as
shown in Fig. 1(1), in transparent computing, the computation and
storage are separated into different machines via outside networks,
as shown in Fig. 1(2). Thus, in transparent computing, users can
only focus on their desired computing tasks through easily obtain-
able devices, while leaving other non-relevant technical machine-
specific and management details to system administrators or
professional staffs. In transparent computing, all software services,
including OSes, middleware, application programs, status, and
data, are stored in dedicated servers (transparent servers), while
they are delivered in a on-demand and streaming way to terminal
devices (transparent clients) and executed mainly with the clients’
local resources. In such a centralized storage of services while
distributed computation mode, transparent computing paradigm,
not only centralizes the maintenance, management, and security-
related issues, but leverages the cheap and underutilized resources
of different types of client devices.

First, with full control of all software, administrators can en-
force OS and application patching and upgrading at the earliest
available time. Only a small number of centralized servers have
to be managed and maintained, as opposed to tens or hundreds
of client machines. The savings of installation and configuration
time can ensure software consistency significantly.

Second, centralized storage of software potentially opens up
great opportunities for sharing OSes and applications to reduce
the complexity of managing heterogeneous software. Administra-
tors can install and support only one copy of each software at
the centralized repository. Thus there is no need to keep track of
the detailed configuration knowledge of each client machine.

Third, since software patching and upgrading can be performed
in a more timely fashion, the time window of clients being vulner-
able to malicious attacks will be shorten. Thus virus and worms
could have little chance to infect client computers. Information
leakage will no longer happen and there is no need to scrub client
hard drivers at the end of their usage life. Consider the centralized
servers can be better protected, for example, by being locked in
more secure locations, it can reduce the end users’ opportunities
of introducing attacks into the system.

Fourth, without the need of transferring data back and forth
between clients and servers, centralized data backup and recovery
is faster and more reliable by simply preserving and recovering the
snapshots of server repository images.

In all, by ensuring centralized control of software and data,
centralized management and security with storage virtualization
is a promising solution to address the challenges associated with
distributed, inconsistent system states. For an in-depth discussion
of the transparent computing, please refer to [8,9].

However, with centralized storage, many issues of managing
software at server repositories still need to be addressed, for exam-
ple, developing tools to update OSes and applications across various
disk images or database entries. The centralized and virtualized
storage also creates a number of new challenges, for example, soft-
ware sharing and customization, access control, and in particular
performance isolation and guarantee. For some of these issues, we
present our solutions to address them in the StoreVirt system that
will be described in Section 3.

2.2. Related work

There has been extensive research on distributed and pervasive
computing platform. Our work is mostly related to systems such as

network computers, thin-clients, network file systems, and virtual
machine based systems.

At the end of last century, to deal with the management chal-
lenge of personal computers, network computers, such as the Java
Station by Sun [12], are proposed to replace the personal comput-
ers. Such solutions support WWW & Java applications, but do not
work with general commodity OSes or other applications such as
Microsoft Office. So their usage is very limited in the markets.

Thin client systems have been very popular, by providing a full
featured desktop to users with low management costs. Example
systems include Microsoft RDP [3], Citrix ICA [4], Sun Ray 1 [5],
and VNC [13]. In the thin-client system paradigm, all computation
and storage tasks are performed at the central server with a multi-
ple-users enhanced Windows OS (e.g., Windows 2003), while a cli-
ent works only as a user interface by performing display, and
keyboard/mouse input/output functions. Although such systems
also achieve centralized management, they greatly increase the ser-
ver resource requirements with limited scalability. Applications
with heavy computing requirements (e.g., multimedia applications)
usually cannot be supported by thin-client systems efficiently. Fur-
thermore, user performances are hard to be guaranteed and isolated
in Windows-based terminal services.

Network file systems, such as NFS [14], AFS [15], and NAS [16],
are popular solutions for sharing data in distributed enterprise
environments. Although these systems can be used to share user
files flexibly, they generally do not support sharing system files
for the reasons described in Section 3.6.

Our idea of centralizing storage while distributing computation
is similar to the concept of diskless computers (e.g., [17,18]) in
early years. Without local hard disks, a diskless computer usually
downloads an OS kernel image from the remote server. It thus can-
not support OSes that do not have clear kernel images, e.g., Win-
dows. Neither does it support booting from heterogeneous OSes.
Further, virtual disks perceived by StoreVirt users can be flexibly
mapped to virtual disk images on the server. Such flexibility allows
StoreVirt to share OS and application software across clients to re-
duce the storage and management overhead, while still isolating
personal files for user privacy.

The concept of resource virtualization was introduced long ago
and recently has been adopted to address security, flexibility, and
user mobility. For example, commercial products such as VMware
[19] have extended the concept of virtual machines to support
multiple commodity platforms. The disks in these virtual machines
are also virtualized, but they reside in local host machine and need
to be accessed through the file system of host OS. In contrast, vir-
tual disks in StoreVirt are located in the remote server, with differ-
ent types of virtual disks for sharing and isolating data among
users.

VM-based stateless thick client approaches, e.g., ISR (Internet
Suspend/Resume [20]), use virtual machine technology (e.g.,
VMware) together with a network file system (e.g., Coda [21]) to
support user mobility. Each ISR client runs OS and applications in
a virtual machine provided by a preinstalled VMware on the host
0S. The use of virtual machine can support heterogeneous OSes
as well, but it also introduces additional performance overhead
due to its virtualization of all hardware resources, including CPU
and memory, while in StoreVirt, client OSes are running directly
on top of the CPU, memory, and graphics resources of the client
machines.

VM-based thin client approaches emerging as virtual desktop
solutions in cloud computing, such as Xen Desktop [6] and
VMware View [7], create virtual PCs/desktops (i.e., an instance of
Windows) on the server or server blade with virtualization tech-
nology. The user thus has a complete PC in the data center or cloud,
but only consume a fraction of resources of the servers. The virtual
desktop can be accessed from any client devices, such as normal



1542 Y. Zhang, Y. Zhou /Computer Communications 34 (2011) 1539-1548

PC, thin client, and mobile devices, through a remote display inter-
face. Compared with traditional thin client systems, the virtual
desktop can guarantee and isolate the user performance and secu-
rity concerns. However, as a type of thin client, it is very hard to
support graphics-intensive applications, such as multimedia
applications, due to the much network bandwidth needed to trans-
fer video display data. Also, it cannot leverage the cheap and
underutilized computation resources of client machines that can
be fully beneficial in StoreVirt.

3. StoreVirt mechanism and method

To realize the transparent computing described above, we pro-
pose a StoreVirt mechanism. The main enabling technology for
StoreVirt is the storage virtualization whose primary function is
to provide a client machine with virtual disks (Vdisks) instead of
local physical hard disks, whose actual contents are located and
stored on a remote server. Through storage virtualization, the OS
and application programs, the status, and the data stored on local
disks are now processed on the central server, fetched to, and exe-
cuted on the StoreVirt clients via networks, hence the separation of
computation and storage is achieved. With the virtualization of
storage, the system bus is naturally extended to as a network.
The goal of this paper is to present and validate the StoreVirt
mechanism.

3.1. Assumptions and environments

We made the following four assumptions in the StoreVirt mod-
el. First, StoreVirt model operates based on the spatio-temporally
extended von Neumann-based computer (transparent client) and
uses the remote storage of other computer (transparent server)
for storing instructions and data. The transparent client has both
CPU and memory to complete the needed computation locally.
Here, we assume that the client has enough computing power
and volatile memories to carry out the needed computation and
the server is a traditional von Neumann architecture-based com-
modity computer.

Second, it is assumed that the transparent client has no local
large storage, such as hard disks. Hard disks are mechanical de-
vices; they consume several tens percent power, generate noise,
and are fragile to failures that result in program breakage or data
losses. Thus, this assumption can reduce the cost and improve
the system security.

Third, we assume there is a strong network connection between
the transparent client and server. This means that the network in a
transparent computing system can have enough capability and
speed for timely transferring instructions and data from servers
to clients to satisfy the requirements of computation on clients.
This assumption is realistic, since the modern network, especially
local area network, has low latency and high bandwidth. Also,
our experimental results have shown that a local Ethernet-based
network can satisfy these requirements.

Fourth, it is assumed that the transparent computing system is
setup and maintained by professional staff and trusted by users.
When fetching instructions and data from these servers, users trust
in these servers. Because the servers are commonly locked in a
dedicated room and maintained by experts, they are more reliable
and secure and thus can be trusted.

3.2. StoreVirt model

The overview of StoreVirt model is illustrated in Fig. 2. As men-
tioned above, in a transparent computing system, there are two
roles of machines. One is the transparent client, which is a client

Transparent client 1

( Applications ) (

[ Operating system [ Operating system

Transparent client n

Applications )

Vdisk
emulator

Vdisk
emulator

Transparent server(s)

( Operating system j

Physical disk

Fig. 2. Overview of the StoreVirt model.

device with local CPU, memory, and other related devices, but with
no large persistent storage of instructions and data, such as hard
disks. The other is the transparent server, which is a commodity
server computer and holds all the needed OS and application pro-
grams to run on the transparent clients, whose main function is to
manage the program depositories and serve the clients’ requests of
instructions and data. Accordingly, also there are two parts of the
StoreVirt model, i.e., StoreVirt client and server, which works on
the transparent client and server, respectively.

As shown in Fig. 2, the StoreVirt client consists of three compo-
nents, including virtual disk (Vdisk) emulator, Cache manager, and
Vstack module. The Vdisk emulator is to simulate a normal hard
disk for transparent clients, contents of which are stored on the
transparent server’s hard disks. We call the emulated hard disk
in the transparent client as a virtual disk. To communicate with
the transparent server independent of the client OSes, StoreVirt
uses a virtual network stack (Vstack) to multiplex the physical net-
work card with other regular network protocol stacks in an OS, for
examples, TCP/IP stack. In addition, to alleviate the effects of la-
tency of network delivery, there is a Cache manager in the Store-
Virt client. It caches the written results by users for deferring
them to be synchronized with the servers, or for serving the suc-
ceeding reading.

The StoreVirt server’s function is simple to be described. It just
listens, receives, and queues the requests from the StoreVirt clients
via the server OS, handles them and then returns the correspond-
ing results to the StoreVirt clients. For the virtual disk reading or
writing, it first consults the relevant database, and then decides



Y. Zhang, Y. Zhou /Computer Communications 34 (2011) 1539-1548 1543

where and how to handle the requests with the hard disks of trans-
parent server via the file system of the server OS. Next, we will dis-
cuss the relevant components and techniques in more details.

3.3. Virtual disk and access method

The core idea of StoreVirt is the notion of virtual disks. From the
perspective of a user or application, there is no difference in access-
ing data from Vdisks or local hard disks. However, Vdisk is just a
virtualized logical disk device in transparent clients; its actual con-
tents reside at the transparent server(s) and are fetched to the cli-
ents for execution on demand. To use the virtual disks whose
contents are located on the transparent server, there are two set
of access protocols needed in the StoreVirt model. The first set of
protocols is concerned about how to access the contents of Vdisk
before a client OS starts, termed as MRBP (Multi-OS Remote Boot-
ing Protocol). The second set is about how to access the Vdisk when
the client OS runs after starting, termed as NSAP (Network Service
Access Protocol).

In order to start an OS from the transparent server, the transpar-
ent client must read the OS instructions from the Vdisk images,
instead of from hard disks as that in traditional computers. First,
the transparent client needs to establish a network link to the
transparent server and then a virtual disk (through emulating the
access interface of traditional hard disks for the OS bootstrap
program). Second, the transparent client needs to discover the sup-
ported OSes, and then display the OS lists to end users for their
selections. Third, after the user’s selection, the Vdisk on the trans-
parent client will be mapped to the dedicated Vdisk image that
holds the corresponding OS instructions. Finally, the OS bootstrap
program can read the OS instructions from the Vdisk as from a nor-
mal hard disk. To implement this set of protocols, it is needed to
extend the traditional BIOS function [22].

However, after the client OS is booted up, the Vdisk access
interface established through extending the BIOS function is to
be disrupted in modern PCs (e.g., x86-based machines), due to
the different memory access method before and after the booting
up of common OSes. Therefore, to continue providing instructions
and data after the OS initiates, the OS-specific StoreVirt client is
loaded and run as kernel services for streaming the OS instructions
and data continually.

As mentioned above, a virtual disk request issued by the above
OS or file system will be intercepted by the StoreVirt client, i.e., the
Vdisk driver, and then be changed into one or more NSAP packets
that are sent to and responded from the remote transparent server.
Thus, each given virtual disk request received from the file system,
the OS-specific Vdisk emulator will compose one or more remote
disk requests in the format of NSAP to be sent to the server.

The first function of NSAP is to establish a unique connection
between the Vdisk in transparent client and the Vdisk image in ser-
ver side. Consequently, each client can maintain two request
queues: one for the virtual disk requests received from the file sys-
tem, and the other for the remote disk requests to be sent to the
server. The second function of NSAP is to deliver the instructions
and data including OS codes from transparent servers to clients
or the computation results from transparent clients to servers.
These transmissions occur when interruptions or I/O requisitions
are made in the transparent client.

3.4. Flexible mapping from virtual to physical

As mentioned in the above section, it is first needed to map a
logical virtual disk in the transparent client to the physical hard
disk (via Vdisk image) at the transparent server before the virtual
disk can be accessed by users. In SotreVirt, there are two different
levels of mapping in establishing such mapping relationships. The

first level is to map the users’ virtual disk to its authorized Vdisk
image on the transparent server; the second level is to map the log-
ical blocks of Vdisk images to the physical blocks of hard disks of
transparent servers.

This corresponding relationship between the user’s Vdisk and
Vdisk image can be expressed as a mathematical mapping:f:VD —
VDI, in which VD means the aggregate of Vdisks and VDI the aggre-
gate of Vdisk images. Under the control of StoreVirt, though the
driver letters of the Vdisks accessed by different users of transpar-
ent clients are the same, after being transformed by the StoreVirt,
they can be mapped to the same or different Vdisk images located
on the transparent server.

Actually, there are two types of mapping from the user’s Vdisks
to Vdisk images: one-to-one mapping and many-to-one mapping,
as shown in Fig. 3(1) and (2), respectively. The one-to-one mapping
is mainly used for mapping to the Vdisk image that stores private
user information or data, while the many-to-one mapping is for
mapping to the Vdisk image that is shared by multiple users. In
fact, other corresponding relationships also exist from VD to VDI,
such as one-to-many mapping. Although this is not a mapping
relationship in mathematical term, it can be used to develop the
concurrent operation capability for the Vdisk.

At the second level, the occupation of Vdisk image resources can
be described with different storage granularity, such as “block” of
one data block or “chunk” of multiple blocks. The organization of
its resources can be in the form of a table or tree. Different resource
granularity and different organization forms may lead to different
searching performance, which will in turn affect the overall read/
write performance of Vdisk.

Fig. 4 shows a table-based resource mapping of Vdisk images in
a block granularity. In the resource table, each horizontal row dem-
onstrates the mapping of a virtual block address (VBA) of virtual

N\ N\

Vv Vv Vv
Vdisk Vdisk Vdisk
Image, Image, Image;

(1)

N

)

Fig. 3. Different types of mapping from Vdisks to Vdisk images.



1544 Y. Zhang, Y. Zhou /Computer Communications 34 (2011) 1539-1548

VBA, PSD, PBA,
VBA, PSD, PBA;
VBA,. PSD, PBAy
VBA, PSD, PBA,,

Fig. 4. Resources of Vdisk image organized in a table form.

disk block to its physical block address (PBA), including the phys-
ical storage device (PSD) where the corresponding physical block
locates. The number of items in the table is determined by the
number of logical blocks in a Vdisk image. We can see from this fig-
ure that the Vdisk image shown here occupies the resources across
two physical devices, namely, PSD1 and PSD2.

Obviously, the organization of Vdisk images’ resources in a table
form is quite simple and easy to understand, but it may be less effi-
cient. In order to enhance the searching efficiency, the resources of
Vdisk images can be organized in the form of a tree, such as a radix
tree implemented in parallax [23]. In a resource tree, each leaf
node represents the PSD where each real physical block corre-
sponding to the VBA is located, as well as the specific PBA of the
logical block.

When an end user logins, the StoreVirt client will ask for his
name and password. After the user logs in and selects the desired
0S, the StoreVirt server will then establish his virtual disks to the
virtual disk images and related physical storage devices. This pro-
cess is illustrated in Algorithm 1.

Algorithm 1. Algorithm for establishing users’ virtual disk
mappings.

Input:
The end user name: Ny;
The end user password: Py;
Output: Virtual disk mappings: M;;

1: The end user input N, and P,; {client}

2: Authenticate the end user with N, and P,; {server}
3: if success then

4: The end user select the desired OS; {client}
5: Get the id of the selected OS; {server}

6: Look up for the set of VD,, has been assigned;
7: Initialize M;;

8: forj=1tondo

9: Map VD; to VDI;;

10: Map VDJ; to PSD;;

11: Fill Mj;

12: end for

13: return M;;

14: else

15: return error;

16: end if

3.5. Software and data separation

As described in Section 3.4, there are two levels of mapping
from the virtual disks on the StoreVirt client to the physical devices
on the StoreVirt server. The first level mapping mechanism from

Vdisks to Vdisk images provides a very flexible approach for soft-
ware and data sharing by mapping different users’ Vdisks to a same
Vdisk image that contains the software or data to be shared. The
second level of mapping from logical blocks of Vdisk images to
the physical blocks of real hard disks also provides a mechanism
for flexible resource management of Vdisk images and advanced
features for reading or writing, for example, providing concurrent
reading/writing operations from/to different hard disks through
mapping different ranges of virtual blocks of a Vdisk to different
physical hard disks. We will illustrate the advantage of the first le-
vel mapping by separating software and data below.

To facilitate effective management of centralized Vdisk images
and support heterogeneous OSes and applications with reduced
complexity, StoreVirt classifies Vdisks in the transparent client into
four different categories to enable sharing and isolation, based on
the flexible mapping mechanism described in Section 3.4.

We separates software from data in StoreVirt based on the
observation that, many users will use the same OS and application
software and thus they can be shared among users, while data are
often user-specific and cannot be shared directly. There are mainly
four categories of Vdisks:

System Vdisk: It is mapped in a many-to-one mode to the “gold-
en image” that stores the OS and application programs. The corre-
sponding system Vdisk images are created by administrators and
shared by all transparent clients. They can only be modified by
the administrators. More details will be presented in Section 3.6.

Shadow Vdisk: It is a user-specific Copy-On-Write (COW) Vdisk
for a system Vdisk to enable write access to the System Vdisk con-
tents. Each Shadow Vdisk is mapped to a user-specific Vdisk image
in a one-to-one mode. The COW semantics can be supported at the
granularity of files through a file redirector, which is a file system
level software agent as mentioned before. When a user needs to
modify a file on the System Vdisk, a COW copy of the file will be
created on the shadow Vdisk for any subsequent access. The use
of Shadow Vdisks is transparent to end users.

Profile Vdisk: Each client also has a Profile Vdisk to store user-
specific persistent data such as customized user settings for OS
and applications. Similar to Shadow Vdisks, the existence of Profile
Vdisks is also transparent to end users.

User Vdisk: Each client has one or more User Vdisks that are
used to store the private user data. Each Profile or User Vdisk will
be mapped to a user-specific Vdisk image.

It is the classification of Vdisks that greatly simplifies software
management tasks, especially for system recovery. For example, if
a transparent client is corrupted by accidental errors, software
bugs, or malicious attacks such as viruses, worms, and spyware,
system administrators can quickly clear the COW Vdisk contents
to return a clean system image for end users.

3.6. Software sharing, isolation, and recovery

To enable software sharing, StoreVirt maintains a ‘“golden
image” of a clean system that contains the desired OS and a
common set of applications. This “golden image” is thus immuta-
ble and can be shared by all transparent clients. However, some
applications must write to the directories where they reside to
function properly, e.g., creating temporary files. To support such
applications, StoreVirt adopts a COW approach by having a
user-specific COW Vdisk (i.e., shadow Vdisk) image corresponding
to the “golden image” for each client user.

The COW operations can be implemented through a file system
redirector at the file level on the transparent client. It filters the file
written operations and redirects them to the COW Vdisk or images.
It also needs to carry out the reading operations by combining the
contents of the original and COW Vdisk.



Y. Zhang, Y. Zhou /Computer Communications 34 (2011) 1539-1548 1545

Specifically, the file redirector translates the file access requests
on user-perceived Vdisks into those on server-perceived Vdisks by
intercepting all the file system calls. If the file to be accessed lo-
cates on the user-perceived private Vdisks (i.e., shadow Vdisk, pro-
file Vdisk, and user Vdisk), the redirector simply maps the request
to the same file on the server-perceived private Vdisk. If the file to
be accessed is on the system Vdisk, the file redirector will redirect
the request to the shadow Vdisk in the two following cases: (1) a
read request to a system file that already has a customized copy
on the shadow Vdisk, and (2) a write request to a system file (in
this case, a copy of the file will be first created on the shadow Vdisk
before written). Otherwise, the file redirector will redirect the
request to the system Vdisk. The file redirector therefore supports
dynamic redirection of system files for enabling file system level
COW semantics. This software agent will be loaded from the
system Vdisk as part of the underlying file system. Algorithm 2
shows the process for the file redirector to handle an open file
system call.

Algorithm 2. Algorithm for redirecting users’ open file request
mappings.

Input:
The file name to be opened: F;
The file operation mode: mode;
Output: The pointer to the file opened: Fp;
if F locates on user-perceived private_Vdisk then
Fp = open_file (F, mode, “private_Vdisk”);
return Fp;
end if
if F has a copy F on the shadow_Vdisk then
Fp = open_file (F, mode, “shadow_Vdisk”);
else if mode = read then
Fp = open_file (F, mode, “system_Vdisk”);
{no customized copy of F exists, open directly}
: else if mode = write then
10: Fp = open_file (F, mode, “shadow_Vdisk”);
{need to customize F, open a new file in the
shadow_Vdisk}
11: end if
12: return Fp

OO U A WN =

Of course, the COW operation can also be implemented at
the block level. The block redirector can be carried out by the
transparent server and transparent to the client and thus can alle-
viate the dependence on the client’s computation and the network
delivery.

With the above COW operation of system Vdisk, not only can
the system Vdisk and hence the software be shared among differ-
ent end users, but also their performance and experiences are iso-
lated and guaranteed. Further, if an end user gets attacked or
makes a mistake, it is very easy and quick to recover and return
him a consistent and usable clean system state just by cleaning
his COW Vdisk content of the corresponding system Vdisk.

3.7. Virtual network stack

As discussed in Section 3.2, in StoreVirt model, the Vdisk emu-
lator needs to submit read/write requests to the remote StoreVirt
server for further handling. Thus, the StoreVirt client needs to
share the underlying physical network with other regular OS com-
ponents or applications. To implement this, we adopts a virtual
network stack technique to multiplex and share the network be-
tween the StoreVirt and the normal TCP/IP stack in a client OS, as
shown in Fig. 5.

Virtual network
stack TCP/IP stack

~

Virtual bridge

I

Physical NIC driver

!

Physical NIC

Fig. 5. Virtual network stack in StoreVirt client.

The virtual network stack implements the high and low-level
network protocols needed to communicate with the StoreVirt ser-
ver, specifically, NSAP and others. It receives the Vdisk access re-
quests from the Vdisk emulator, interprets and encapsulates
them in well-formed packets, and then delivers them to the virtual
bridge.

The virtual bridge is the most important component to multi-
plex the underlying physical network. It binds to the network dri-
ver to receive every packet that the physical NIC has received. It
then decides to route the packet to one of the above network
stacks. This decision can be made through using different IP ad-
dress between the virtual network and the TCP/IP stack or through
different UDP/TCP ports if needed.

It should be noted that, with virtual network stack, other net-
work functions can be implemented, such as firewall, monitoring,
and auditing to improve the security of StoreVirt. But these are be-
yond the discussion of this paper.

3.8. Cache and buffer management

Due to the extending of local I/O operations to networked I/O
operations, the Vdisk I/O access path involves travelling from the
transparent client, through network, and then to the transparent
server, thus, the access performance of Vdisk will be affected by
conditions of the network and transparent server. To lower the
dependence on network and reduce the number of requests for
Vdisk I/O operations sent to the transparent server and thus reduce
the corresponding response time, the cache manager buffers part
of the response data. Similarly, to further reduce the operations
to Vdisk images, a Vdisk image cache can also be established in
the transparent server to buffer the Vdisk image status and rele-
vant data.

The first function of the cache manager of StoreVirt client is to
cache the request or response data from the client OS or the remote
StoreVirt server, respectively, and thus reducing the I/O response
time.

In case, the requests sent from client OS are for data reading, the
Vdisk emulator will first send the request to the cache manager for
searching the local cache for the data requested. If it is found there,
the cache manager will operate on the local cache and return the
results to the Vdisk driver. Otherwise, the cache manager will send
the requests to the transparent server. Upon receipt of the results
returned by the transparent server, the cache manager will parse
the results and return them to the Vdisk emulator in a form that
can be understood by the latter. At the same time it will send
the same results to the local cache so that, relevant contents in
the latter may be updated. This process can be illustrated in Algo-
rithm 3.



1546 Y. Zhang, Y. Zhou /Computer Communications 34 (2011) 1539-1548

Algorithm 3. Algorithm for reading blocks of Vdisk with local
cache.

Input:
Vdisk Id:: id;
Block offset to read: st;
Block length to read: le;
Output: The data to be read: D[0..n — 1];
initialize D[0..n — 1];
fori=0;i<le;i++do
Look up for Blockl,"
if find in cache then
DJi] = Block(}™";
else
Fetch Block from the remote server;
Prefetch related blocks from the remote server;
Update the local cache;
10: end if
11: end for
12: return D[0.n — 1];

in local cache;

OO U WN =

In case of requests for data writing, also the Vdisk emulator will
first send the written requests to the cache manager. The cache
manager will update the local cache with the written data and then
send the written request to the StoreVirt server through NSAP.
After getting the successful response from the transparent server,
it delivers it to the Vdisk emulator to indicate that the written
operation is completed.

In addition to caching the written results for succeeding reading
operations, the cache manager can also prefetch some instructions
or data in advance, thus reducing the response time of reading data
sharply. However, this prefetching may bring waste of network
bandwidth if the prefetched data is not needed in short time.

4. Implementation and deployment experiences

We have implemented a prototype of StoreVirt that supports
both Windows 2000/XP and RedFlag Linux Desktop 6.0 (Linux ker-
nel 2.6) [24]. Our implementation of MRBP is based on the Intel
PXE protocol [25] for sending boot requests. The implementation
of NSAP is based on the UDP [26]. Because, device drivers are plat-
form dependent, we implemented two different Vdisk emulators,
customized for Windows and Linux, respectively. The Vdisk emula-
tor is implemented as a SCSI port device driver at the block level.
The cache manager is integrated within the Vdisk driver. We have
implemented the Vstack module as a filter intermediate driver,
which binds to the network miniport driver.

The implementations are in C++. Since Windows 2000/XP is a
modified microkernel, we modified the corresponding Windows
Registry files for the OS to load these added drivers. Thus there is
no need to change or recompile the kernel. However, since Linux
is a monolithic kernel, we compiled the Vdisk and Vstack drivers
into the kernel by modifying the related kernel source code before
recompilation.

The technology of StoreVirt has been transferred to several
companies for industrial products. These systems based on Store-
Virt have been deployed across many universities, enterprises,
and other organizations for daily usages.

Take the typical deployment for an interactive English learning
class as an example, the transparent clients are Intel Atom
1.60 GHz machines, each with 512 MB DDR2 666 MHz RAM and
100 Mbps onboard network card. The server is a Dell PowerEdge
840 machine with an Intel Xeon Dual Core 1.6 GHz CPU, 2 GB
DDR2 333 MHz RAM, a 1Gbps network card, and a 160 GB

16

—o— Vdisk
14| —— Local disk
—— VM disk

12

10

Throughput (MB/s)
oo

0 1 2 4 8 16 32 64 128
Request Size (KB)

Fig. 6. Random read throughput.

Samsung He160hj 7200 rpm SATA hard disk. The clients and the ser-
ver are connected by an Ethernet switch with 48 100 Mbps inter-
faces (used for clients) and 2 1 Gbps interfaces (used for the
server). The server OS is Windows 2003 Standard (SP2). The trans-
parent clients use Windows XP Professional (SP3).

These real deployed systems have been observed to run stable
most of time and have achieved at least the following benefits:

Reduced system maintenance time: Previously, administrators
spent on average one or at least a half of a day in a week to clear
every machine regularly even with the help of automatic tools to
fix problems caused by user faults or malicious attacks. Using
StoreVirt, the system cleaning and upgrading time is reduced to
30 min per week, due to both the reduced number of malicious at-
tacks and the centralized operations.

Improved availability and usability: Before using StoreVirt, the 4-
8 hour system maintenance took place every week. No class can be
arranged to use the classroom during this maintenance day. After
deploying StoreVirt, the classroom can be used everyday without
weekly service interruption.

Improved security: After deploying the transparent computing
system, there have been less reported virus or worm attacks than
before. Even with errors, the transparent system resumed opera-
tions quickly.

5. Experimental evaluation

In this section, we will evaluate the StoreVirt in Windows XP
with several experiments. We evaluated the storage virtualization
performance in disk and file system levels and compared it with
other popular approaches.

5.1. Experiment setup

In our experiments, we used the same hardware configurations
as the above mentioned real deployment but with a more powerful
server of Dell PowerEdge 1900 machine. It is configured with an In-
tel Xeon Quad Core 1.6 GHz CPU, 4 GB Dual DDR2 666 MHz RAM,
one 160 GB Hitachi 15,000 rpm SATA hard disk, and a 1 Gbps on-
board network card. We also compared the StoreVirt performance
with a regular PC, which has the same hardware configurations but
with an additional local hard disk (80 GB Seagate Barracuda
7200 rpm SATA), and a virtual machine that emulates the VM-
based like approaches, which is virtualized as with 512 MB mem-
ory and a static 8 GB SCSI hard disk using VMWare Workstation
6.5 hosted by Windows XP Professional (SP3) with NTFS V3.1 file



Y. Zhang, Y. Zhou /Computer Communications 34 (2011) 1539-1548 1547

—6— Vdisk
14| —— Local disk
—k— VM disk

Throughput (MB/s)
[e:]

0 1 2 4 8 16 32 64 128
Request Size (KB)

Fig. 7. Random write throughput.

system on the same regular PC hardware (but with 1 GB physical
memory, a half of it is used by the Host OS). The server OS of Store-
Virt is Windows 2003 Enterprise (SP2) running a NTFS v3.1 file sys-
tem. All the StoreVirt clients, the regular PC, and the virtual
machine use Windows XP Professional (SP3) with NTFS v3.1 file
system.

5.2. Vdisk access performance

We first evaluate the Vdisk access performance in terms of
throughput in a single transparent client setup. The experiment
is carried out by using the lometer tool [27] to submit random disk
access requests of different size to the machine, with the filesystem
caches disabled.

The results shown in Figs. 6 and 7 are the average of five trials.
Because the standard deviations are small (less than 10%), they are
not plotted here. As mentioned above, we also compare the
throughput with that of a regular PC’s local hard disk and virtual
machine’s virtualized hard disk. As seen from Fig. 6, for read access,
the Vdisk throughput in StoreVirt increases with the request size
and is higher than the local disk, but decreasing when the request
size is larger than 64 KB, which is the maximum size delivered by
one NSAP service. When the request size is larger, the network
communication dominates the latency, for that a large request size
will cause several service requests. At the same time, because the
response in StoreVirt can be satisfied with the server’s memory
cache, the Vdisk performance is higher than local disk when the re-
quest size is small. The write access shown in Fig. 7 is similar to
that of the read access, but decreasing at the size of 32 KB, which
is also the maximum size delivered by NSAP writing service. Note
that the throughput of write access is bigger than read access in all
cases, this may be due to the embedded hardware cache of hard
disk or the server cache of StoreVirt server returns success without
carrying the real disk operations.

5.3. File system performance

In this section, we evaluate the overall file system performance
of a StoreVirt client, using a modified Andrew benchmark [28]. We
compared the performance against the file system performance of
a regular PC with a local disk, the CIFS (Common Internet File Sys-
tem) [29], and the virtual machine in the VM-based approaches.
For CIFS, we used the same PC and the same StoreVirt server hard-
ware configuration. In our benchmark, we used the Windows
Apache 2.0.53 source tree. This source tree has 39.3 MB data before
compilation, and 42 MB data after compilation. Table 1 shows the
average performance over 5 runs. For each run, we rebooted both
the client and server to clean various caches.

We observe that StoreVirt achieves a little better performance
than regular PC in the “mkdir”, “scan dir”, and “cat” phases, which
is aligned with the better Vdisk accessing performance. However,
the StoreVirt performance in “cp” and “make” phases is a little
worse than the regular PC. In StoreVirt, these phases may require
accessing continuous blocks of large size, resulting in a large num-
ber of remote disk requests and thus involving much CPU and com-
munication overhead. Even though, the StoreVirt performance is
much better than the CIFS and virtual machine.

Our file system performance evaluation shows that, using a
more powerful server and fast network access, StoreVirt can
achieve comparable file access performance to a regular PC, and
can potentially perform better than other remote file system solu-
tions and VM-based approaches.

6. Discussion

In this section, we discuss possible extensions and optimiza-
tions to StoreVirt for enhancing the system performance, robust-
ness, and security.

The use of explicit caches at both client and server side can
potentially enhance performance significantly. At the client side,
Vdisk driver cache can reduce the number of network communica-
tions. This latency is the current performance bottleneck. At the
server side, we can exploit the locality of read requests across dif-
ferent clients using a Vdisk image cache and optimize write re-
quest using application level write optimization schemes (e.g.,
lazy write). The Vdisk access protocol can be further optimized
to improve performance. In our current implementation, remote
disk requests are sent in sequential order. As future work, we can
enhance the disk access latency and throughput by sending multi-
ple remote disk requests concurrently.

So far, we have not discussed how to generate or update the
contents of Vdisk images at StoreVirt server. In our current imple-
mentation, the contents of Vdisk images exactly simulate those of a
hard disk, with several special, initial blocks proceeding the data
blocks. These special blocks are hardware dependent, containing
disk parameters such as disk capacity, cylinders, heads, and sec-
tors. Thus Vdisk image files, in particular the system disk image,
can work for only homogeneous hardware machines. Supporting
machines with heterogeneous hardware is our ongoing work.

Table 1

Average time spent at various phases of the modified Andrew benchmark with Apache Windows source tree. Times are reported in seconds and standard deviations are given in

parentheses.
Phase StoreVirt PC CIFS Virtual machine
mkdir 0.77 (0.07) 2.44 (0.12 2.92 (0.59) 1.39 (0.09)
cp 34.68 (0.66) 26.64 (1.85) 77.46 (0.52) 28.98 (1.02)
scan dir 187.26 (3.25) 205.95 (1.02) 234.59 (1.48) 771.22 (2.85)
cat 365.83 (1.08) 381.58 (2.53) 455.14 (0.95) 1463.66 (12.82)
make 323.60 (0.82) 254.79 (1.98) 403.39 (0.52) 709.40 (4.76)
Total 912.14 (4.02) 871.40 (2.97 1173.50 (1.69) 2974.65 (13.72)




1548 Y. Zhang, Y. Zhou/Computer Communications 34 (2011) 1539-1548

Our current prototype does not implement automatic server fail
over. When server crashes or the system disk image needs to be
updated, the entire system needs to be manually shutdown and re-
boot. As future work, we plan to use server replication mechanisms
(e.g.,[30,31]) to handle these scenarios, where clients can switch to
an identical backup server when required.

SotreVirt server needs to prevent and detect unauthorized ac-
cess of information. The current use of user name and password
authentication can only protect against malicious attackers that
spoof client users, but can not protect with the content of each
NSAP packet content. A network-level encryption mechanism
(e.g., IPsec [32]]) might help mitigate the possibility of such attacks.
We can also augment the current system using various encryption
based approaches to protect the privacy of disk data access.

Our current prototype only support Ethernet-based LAN net-
work. As the mobile network and even 3 G network emerge, it is
more benefical to support them in transparent computing. Due to
the network bandwidth is limited and vibrated, we need to explore
its usage in transparent computing systems. This is one of our
ongoing work.

In StoreVirt, we do not need to change the kernel of Windows or
Linux OS, thus it does not touch the working mechanism of the
supported OS, such as task/process, memory, and other I/0 man-
agement. This compatibility is critical for successful adoption in
real markets. However, as a future work, we may need to explore
the impact of the storage virtualization on the normal functions
of OS.

7. Conclusions

We have introduced a novel computing paradigm, transparent
computing, which tries to solve the challenges faced by current
computing systems based on a storage virtualization mechanism
by separating the tight-coupled computation and storage in the
past PC. To realize transparent computing system, we have devel-
oped StoreVirt, which stores all data and software on virtual disks
that correspond to disk images located on a central server with a
storage virtualization mechanism.

We have given real usage experiences and carried out several
experiments to evaluate StoreVirt. We show that with a powerful
server, StoreVirt can achieve comparable or even better disk and
filesystem performance than regular PCs with local hard disks, net-
worked file system and VM-based approaches.

Future work includes further optimizing performance, enhanc-
ing the system security, and supporting more types of computing
devices, such as smart phones and digital appliances, and more
types of networks, such as WiFi and 3G.

Acknowledgments

This work is supported by the National High Technology
Research and Development Program of China (2009AA01Z151).
The authors would like to thank the students, especially Hao Liu,
Li Wei, etc., for their contributions in the development and exper-
iments. The authors thank other people for their helpful comments
and fruitful discussions.

References

[1] R. Bloor, Why the desktop is broken, 2007. <http://havemacwillblog.com/
2007/11/21/why-the-desktop-is-broken/>.

[2] Bmc bladelogic client automation, 2009. <http://www.bmc.com/products/
offering/configuration-automation-for-clients.html>.

[3] B. Cumberland, G. Carius, A. Muir, Microsoft Windows NT Server 4.0, Terminal
Server Edition: Technical Reference, Microsoft Press, 1999.

[4] Boca Research, Inc. Citrix ICA Technology Brief, Technical White Paper, Boca
Raton, 1999.

[5] Sun Ray Overview, White Paper, Version 2, 2004. <http://www.sun.com/
sunray/whitepapers.html>.

[6] Citrix XenDesktop 4, 2009. <http://www.citrix.com/English/ps2/products/
product.asp?contentID=163057>.

[7] VMware, Inc. VMware View 3, Brochure, 2009. <http://http://www.vmware.
com/files/pdf/view_brochure.pdf>.

[8] Y.X. Zhang, Y.Z. Zhou, Transparent computing: a new paradigm for pervasive
computing, in: Proceedings of the Third International Conference on
Ubiquitous Intelligence and Computing, 2006.

[9] Y.Z. Zhou, Y.X. Zhang, Transparent Computing: Concepts, Architecture, and
Implementation, Cengage Learning Asia Pte Ltd., 2009.

[10] M. Weiser, The computer for the twenty-first century, Scientific American 265
(3) (1991) 94-104.

[11] D. Saha, A. Mukherjee, Pervasive computing: a paradigm for the 21st century,
IEEE Computer 36 (3) (2003) 25-31.

[12] R.G. Herrtwich, T. Kappner, Network computers - ubiquitous computing or
dumb multimedia? in: Proceedings of the Third International Symposium on
Autonomous Decentralized Systems, 1997.

[13] T. Richardson, Q. Stafford-Fraser, K.R. Wood, A. Hopper, Virtual network
computing, IEEE Internet Computing 2 (1) (1998) 33-38.

[14] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, Design and
implementation of the sun network filesystem, in: USENIX Association
Conference Proceedings, 1985.

[15] J.H. Howard, M.L. Kazar, S.G. Menees, Scale and performance in a distributed
file system, ACM Transactions on Computer Systems 6 (1) (1988) 51-81.

[16] G.A. Gibson, R.Y. Meter, Network attached storage architecture, Communications
of the ACM 43 (11) (2000) 37-45.

[17] D.R. Cheriton, W. Zwaenepoel, The distributed V kernel and its performance for
diskless workstations, in: Proceedings of the Ninth ACM Symposium on
Operating Systems Principles, 1983.

[18] B. Croft, J. Gilmore, Bootstrap Protocol (BOOTP) RFC 951 (1985).

[19] J. Sugerman, G. Venkitachalam, B.-H. Lim, Virtualizing i/o devices on vmware
workstations hosted virtual machine monitor, in: Proceedings of the 2001
USENIX Annual Technical Conference, 2001, pp. 1-14.

[20] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, D.R. O’Hallaron, A.S. abd A.
Wolbach, J. Harkes, A. Perrig, D.J. Farber, M.A. Kozuch, C.J. Helfrich, P. Nath, H.A.
Lagar-Cavilla, Pervasive personal computing in an internet suspend/resume
system, IEEE Internet Computing 11 (2) (2007) 16-25.

[21] M. Satyanarayanan, The evolution of coda, ACM Transactions on Computer
Systems 20 (2) (2002) 85-124.

[22] Y. Zhang, Y. Zhou, 4vr*: a novel meta os approach for streaming programs in
ubiquitous computing, in: Proceedings from AINAO7: The IEEE 21st International
Conference on Advanced Information Networking and Applications, 2007, pp.
394-403.

[23] D.T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M.]. Feeley, N.C. Hutchinson, A.
Warfield, Parallax: virtual disks for virtual machines, SIGOPS Operating System
Review 42 (4) (2008) 41-54.

[24] RedFlag Linux. <http://www.redflag-linux.com/en/index.php>.

[25] Intel Corporation. Preboot Execution Environment (PXE) Specification, Version
2.1, 1999.

[26] ]. Postel, User Datagram Protocol RFC 768 (1980).

[27] lometer. <http://www.iometer.org>.

[28] L.P. Cox, C.D. Murray, B.D. Noble, Pastiche: making backup cheap and easy, in:
Proceedings of the Fifth USENIX Symposium on OSDI, 2002.

[29] P. Leach, D. Perr, CIFS: A common internet file system, Microsoft Interactive
Developer (1996).

[30] R. Guerraoui, A. Schiper, Software-based replication for fault tolerance, IEEE
Computer 30 (4) (1997) 38-74.

[31] A. Helal, A. Heddaya, B. Bhar, Replication Techniques in Distributed Systems,
Kluwer Academic Publishers, 1996.

[32] S. Kent, R. Atkinson, Security Architecture for the Internet Protocol RFC 2401
(1998).


http://havemacwillblog.com/2007/11/21/why-the-desktop-is-broken/
http://havemacwillblog.com/2007/11/21/why-the-desktop-is-broken/
http://www.bmc.com/products/offering/configuration-automation-for-clients.html
http://www.bmc.com/products/offering/configuration-automation-for-clients.html
http://www.sun.com/sunray/whitepapers.html
http://www.sun.com/sunray/whitepapers.html
http://www.citrix.com/English/ps2/products/product.asp?contentID=163057
http://www.citrix.com/English/ps2/products/product.asp?contentID=163057
http://http://www.vmware.com/files/pdf/view_brochure.pdf
http://http://www.vmware.com/files/pdf/view_brochure.pdf
http://www.redflag-linux.com/en/index.php
http://www.iometer.org

	Separating computation and storage with storage virtualization
	Introduction
	Background and related work
	Concept of transparent computing
	Related work

	StoreVirt mechanism and method
	Assumptions and environments
	StoreVirt model
	Virtual disk and access method
	Flexible mapping from virtual to physical
	Software and data separation
	Software sharing, isolation, and recovery
	Virtual network stack
	Cache and buffer management

	Implementation and deployment experiences
	Experimental evaluation
	Experiment setup
	Vdisk access performance
	File system performance

	Discussion
	Conclusions
	Acknowledgments
	References


