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In this paper, a production inventory model is considered for stochastic demand with the
effect of inflation. Generally, every manufacturing system wants to produce perfect quality
items. However, due to real-life problems (labor problems, machine breakdown, etc.), a
certain percentage of products are of imperfect quality. The imperfect items are reworked
at a cost. The lifetime of a defective item follows a Weibull distribution. Due to the produc-
tion of imperfect quality items, a product shortage occurs. The profit function is derived by
using both a general distribution of demand and the uniform rectangular distribution of
demand. Computational experiments along with graphical illustrations are presented to
discuss the optimality of the probability functions.
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1. Introduction

In the modern world, computer controlled machines are used to increase the productivity and quality of products. Such a
manufacturing system can be difficult to control owing to its complicated working system. A system breakdown sometimes
occurs resulting in the production of defective items. Given these facts, several researchers and scientists from different sec-
tors have considered models with the flexible manufacturing system (FMS). FMS offers the prospect of eliminating many of
the weaknesses of the different approaches but possibly at the cost of many jobs. It consists of small or medium sized auto-
mated production lines. The ultimate aim of FMS design is to develop a manufacturing system that is extremely flexible in
terms of product and volume mix, and provides high quality and low cost outputs.

In fact, productivity is the measure of inventory turnover ratio. A higher turnover ratio increases the productivity of items.
For higher production, machinery systems have to pass through a long run process. During the process, machinery systems
are shifted from the in-control to the out-of-control system where the manufacturing system produces defective/ imperfect
quality items. These items are reworked at a cost to restore the original quality and the brand image of the company.

Generally, the classical EPQ (economic production quantity) models consider the production of perfect quality items. How-
ever, in reality, this is quite different due to the different types of problems. Researchers and scientists have made numerous
attempts in the direction of extending the EPQ model with different types of deterministic demand. Some of them consid-
ered the EPQ model with stochastic demand. Given all these factors, we consider the expansion of the EPQ model with sto-
chastic demand as well as the production of defective items that follow a Weibull distribution in the presence of a product
shortage under the effect of inflation. This type of model has not been considered yet.

The basic economic order quantity (EOQ) model was developed by Harris [1]. The square-root formula by Harris is based on
constant demand where shortage is not allowed. In most classical EOQ models, demand is considered to be of deterministic
type. In reality, however, most demands in the market are of stochastic type. Moran [2] established a model on the storage
. All rights reserved.
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system with a stochastic demand pattern. After that Wagner [3] derived the classical EOQ model with a stochastic demand
pattern. Miller [4] extended the continuous time stochastic storage process model with random linear input and output.
Researchers like Faddy [5], Harrison and Resnick [6], Nahmias [7] and Meyer et al. [8] extended the EOQ model with different
types of stochastic demand.

Scraf [9] developed the optimization model of (s,S) policies in a dynamic inventory problem for a finite time horizon.
Iglehart [10] extended the same model with an infinite time horizon. Veinott and Wagner [11] developed the (s,S) inven-
tory model with a new computing algorithm. Among others, Archibald and Silver [12], Silver [13], Federgruen and Zipkin
[14] and Zheng and Federgruen [15] extended (s,S) inventory policies with a more efficient algorithm in computational
procedures. Ke et al. [16] developed optimization models and a GA-based algorithm for stochastic time–cost trade-off
problem.

In this direction, several researchers like Zhou [17], Khouja and Mehrej [18] and Zhou [19] extended the EPQ model con-
sidering stochastic demand. Chen et al. [20] found Bayesian single and double variable sampling plans for a Weibull distri-
bution with censoring. Dutta et al. [21] developed continuous review inventory model in mixed fuzzy and stochastic
environment. Chiu et al. [22] presented the optimal run-time for the EPQ model with scrap, rework, and stochastic break-
downs, which was again extended by Chiu et al. [23]. Sohn et al. [24] developed an excellent model on random effects Wei-
bull regression model for an occupational Lifetime, and it was extended by Wienke and Kuss [25]. Arizono et al. [26]
developed another model with Weibull distribution. Seliaman and Ahmad [27] extended optimizing inventory decisions
in a multi-stage supply chain under stochastic demands. Skouri et al. [28] discussed inventory models with ramp type de-
mand rate, partial backlogging and Weibull deterioration rate. In this direction, Xu [29] presented the optimal policy for a
dynamic, non-stationary and stochastic inventory problem with capacity commitment. Recently, Perea et al. [30] developed
modeling cooperation on a class of distribution problems and also Liao et al. [31] derived an excellent EPQ model for imper-
fect processes with imperfect repair and maintenance. Sana [32] extended an EOQ model over an infinite time horizon for
perishable items with price dependent demand and partial backlogging. The deterioration rate was taken to be time propor-
tional. Based on the partial backlogging and lost sale cases, the model developed the criterion for the optimal solution for the
replenishment schedule.

The above-mentioned models did not take into account the production of defective items. In real life situations, when a
machine undergoes repair for a very long time, the manufacturing system may produce defective items. The defective items
should be restored to their original quality by reworking them at a cost. Depending on this policy, some researchers like Sal-
ameh and Jaber [33], Cardenas-Barron [34] and Goyal and Cardenas-Barron [35] discussed an EPQ model for imperfect qual-
ity items. Goyal et al. [36] discussed an EPQ model for imperfect quality items for a deterministic model. Sana et al. [37]
investigated the EPQ model for deteriorating items with trended demand and shortages. Mandal and Roy [38] developed
a Multi-item imperfect production lot size model with hybrid number cost parameters.

The effect of inflation and time-value of money cannot be ignored in global economics. Buzacott [39] first derived an EOQ
model by considering the inflationary effect on costs. Bierman and Thomas [40] then extended Buzacott’s [39] model under
inflation with discount rates. Misra [41] then extended the EOQ model with different inflation rates for various associated
costs. Later, Yang et al. [42] established various inventory models with time varying demand patterns under inflation. Some
researchers like in Sarker et al. [43], Moon and Lee [44], Yang [45], Moon et al. [46] and Jolai et al. [47] – derived different
types of models under inflation and time-discounting. Dey et al. [48] extended this type of model by considering a two-stor-
age system and dynamic demand under inflation. Chern et al. [49] developed inventory lot size models for deteriorating
items with fluctuating demand under inflation. Recently, Sarkar et al. [50] discussed a finite replenishment model with
increasing demand under inflation. Sarkar et al. [51] studied the production inventory model with variable demand under
the effect of inflation. Sarkar et al. [52] developed an inventory model with different types of stochastic demand pattern.

To the author’s knowledge, such a type of model for stochastic demand with the production of defective items has not yet
been considered. Therefore, our model has a new managerial insight that helps a manufacturing system/ industry gain max-
imum profit.

2. The mathematical model

The following assumptions and notation are considered to develop the model.

Assumptions
1. The production-inventory system in an imperfect production system produces a single item type in which some products
are defective in nature and can be reworked at a cost.

2. The time horizon of the production system is finite.
3. The demand is stochastic and uniform over the time horizon.
4. The production rate of the inventory system is considered to be constant.
5. Shortages are permitted and fully backlogged.
6. The effect of inflation and time value of money is considered.
7. The lead time is zero.
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Notation
Q production lot size-considered as a decision variable
P production rate per unit time
Q1 on-hand inventory at time t without shortage
Q2 on-hand inventory at time t with shortage
x uniform demand over [0,T]
T length of production inventory cycle
f(x) probability density function of demand x
C0 rework cost/defective item
Ch holding cost/unit/unit time
Cs shortage cost/unit/unit time
Cp profit/unit item

We consider a production-inventory system that produces a certain percentage of defective items. The production of
items started with a fixed production rate P with production lot Q and continues up to time t1 ¼ Q

P . During [0, t1], the inven-
tory piles up after adjusting the uniform demand x and after reaching time t1 it decreases gradually until the zero level at
time T. The lifetime of defective item follows a Weibull distribution /(t) = atb, b > �1 where a and b are the two parameters
and t is the time to failure. Hence, the total number of defective items is:8 9
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Therefore, the expected reworking cost with the effect of inflation is
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Now, there are two cases:

Case (1): System without shortage: The mathematical state of on-hand inventory is described by the following differential
equations
dQ1ðtÞ
dt

¼ P � x
T

; 0 6 t 6 t1; with Q 1ð0Þ ¼ 0; 0 6 t 6 t1 ð1Þ
and
dQ1ðtÞ
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¼ � x
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with Q1ðTÞP 0; t1 6 t 6 T: ð2Þ
The solution of the system can be found using the initial conditions.
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T t; t1 6 t 6 T:

( )
Since there is no shortage, the lot size at time t = T is always greater than or equal to zero, which implies demand x 6 Pt1 = Q.
In real life situation, inflation is a rise in the general level of prices of goods and services in an economy over a period of

time. When the price level rises due to inflation, each unit of currency buys small amount of items; consequently, annual
inflation is also an erosion in the holding cost – a loss of real value in the internal medium of trading. Since the value of
an inventory item is no longer constant, holding costs become a function of the inflation used to determine the value of end-
ing inventory. Hence, the expected holding cost for the inventory system with the effect of inflation is
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Therefore, the expected profit with the effect of inflation is
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Case (2): System with shortage: The mathematical state of on-hand inventory, Q2(t), is described by the following differen-

tial equations.
dQ2ðtÞ
dt

¼ P � x
T

; with Q 2ð0Þ ¼ 0; 0 6 t 6 t1; ð3Þ
dQ2ðtÞ
dt

¼ � x
T
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and
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Using the boundary conditions for Q2(t), the solution of the system
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and Q2(t2) = 0 which implies t2 ¼ Pt1T
x . Since shortage occurs, so Q2(T) < 0 implies x > Pt1 = Q.

High or unpredictable inflation rates are regarded as injurious to an overall economic sector. They include disorganizations
in the real market, and make it crucial for the different marketing sector to budget or plan for long-term. Inflation can operate
as a drag on productivity as the business sectors are forced to move resources away from products and services in order to
focus on profit and losses from currency inflation. Hence, the expected holding cost with the effect of inflation is
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The inflation also affects the shortage cost. Due to inflation, money value will decrease. Therefore, people want to buy more,
i.e., due to excess demand shortage may occur. Hence, the expected shortage cost with the effect of inflation is
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The expected profit, in the presence of shortages, becomes
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Therefore, the expected profit for the whole system in the presence of inflation is
vðQÞ ¼ Profit from Case 1þ Profit from Case 2� Rework cost of the defective items
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To maximize the profit function, we need the following lemma.

Lemma 1. If Q⁄�(0,1) satisfies the conditions ðCp � C0Pn0ðQ=PÞÞ ð1�e�rT Þ
r
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Proof. We have the profit function v(Q) as follows
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For maximization of the profit function, v0(Q) = 0 and v00(Q) < 0 must be satisfied. Hence,
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For v0(Q) = 0, we have
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Hence, we prove the lemma. h
3. Rectangular distribution

The density function for demand x is as follows:
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If the density function follows a rectangular distribution, the associated profit function is given by
vðQÞ ¼ ðCpQ � C0PnðQ=PÞÞ ð1� e�rTÞ
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Now, for the maximum value of the profit function, the conditions v0(Q) = 0 and v00(Q) < 0 must be satisfied.
Now
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Therefore, we provide a lemma as follows:
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Fig. 1. Graphical Representation of production-inventory system for rectangular distribution of demand.
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4. Numerical example

We first solve a numerical example with the help of Mathematica 7 software from where we get the optimal value.

Example 1. We consider the following parameter values in appropriate units: a = 2 units, b = 3 units, a = 0.2, b = 0.7, r = 0.03,
P = 30 units, Ch = $4, Cp = $3.5, C0 = $1.5, Cs = $3, T = 2 weeks. Then the optimal solution is Z⁄ = $433.47, Q⁄ = 2.32 units,
t�1 ¼ 0:077 weeks. Although the closed type formula for the concavity of the profit function v(Q) is not obtained, the
graphical representation of the Example (see Fig. 1) shows the global maximum value at Q = 2.32 units.

The sensitivity analysis of the key parameters and the features of the analysis have been discussed in
Table 1.
Table 1
Sensitivity analysis of the numerical example.

Parameters change (in %) Q⁄ (%) Z⁄ (%)

a �50 +0.0008 +0.0150
�25 +0.0004 +0.0070
+25 �0.0004 �0.0070
+50 �0.0008 �0.0150

Ch �50 7.66 �142.44
�25 5.86 �75.52
+25 +2.97 +65.08
+50 +3.91 +131.94

Cp �50 �0.05 �1.81
�25 �0.02 �0.90
+25 +0.02 +0.91
+50 +0.05 +1.82

C0 �50 +0.0008 +0.0150
�25 +0.0004 +0.0076
+25 �0.0004 �0.0070
+50 �0.0008 �0.0150

Cs �50 +4.66 85.19
�25 +3.39 41.40
+25 �3.03 18.36
+50 �13.87 10.79
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5. Conclusion

In the present model, the classical EPQ model is extended with stochastic demand under the effect of inflation. Due to the
different types of problems during production run-time (labor problems, machinery breakdown, etc.), manufacturing
systems produce a certain percentage of defective items. These items are reworked at a cost. After expending the reworking
cost, the original product quality is restored. The model is described by considering a general distribution function f(x) and is
extended further using a particular type of distribution, namely the rectangular distribution. In the present situation, infla-
tion is a very important factor for all sectors. Therefore, we also take inflation into account. In our model, no closed type for-
mulas for convergence are obtained because of the complicated objective functions. However, a particular numerical
illustration in Fig. 1 shows the concave nature of the objective functions. To the author’s knowledge, such a stochastic
EPQ model has not yet been discussed in the inventory literature. This model is applicable in an industry where the produc-
tion rate is fixed throughout the production-run, shortages are permitted and fully backlogged and inflation is present. A
possible future research direction is the study of a multi-item EPQ stochastic model for a variable production rate.
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