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In this paper, a production-repairing inventory model in fuzzy rough environment is pro-
posed incorporating inflationary effects where a part of the produced defective units are
repaired and sold as fresh units. Here, production and repairing rates are assumed as
dynamic control variables. Due to complexity of environment, different costs and coeffi-
cients are considered as fuzzy rough type and these are reduced to crisp ones using fuzzy
rough expectation. Here production cost is production rate dependent, repairing cost is
repairing rate dependent and demand of the item is stock-dependent. Goal of the research
work is to find decisions for the decision maker (DM) who likes to maximize the total profit
from the above system for a finite time horizon. The model is formulated as an optimal
control problem and solved using a gradient based non-linear optimization method. Some
particular cases of the general model are derived. The results of the models are illustrated
with some numerical examples.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Different types of uncertainty such as randomness [1], fuzziness [2,3] and roughness [4] are common factors in any real
life problem including inventory control. Well established mathematical tools are available to deal with problems involving
these uncertainties [2,3,5,1]. But in real life, some problems occur where both fuzziness and roughness exist simultaneously.
To overcome these situations normally fuzzy rough variables are used to model the problem. Dubois and Prade [6] intro-
duced the concept of fuzzy rough sets. After that, some researchers [7,8] defined fuzzy rough set as a more general case.
Using this approach some researchers modelled different problems where fuzziness and roughness occur simultaneously
[9–14]. Liu [15] proposed some definitions and discussed some valuable properties of fuzzy rough variable.

In many cases, it is found that some inventory parameters involve both the fuzzy and rough uncertainties. For example,
the inventory related costs – holding cost, set-up cost, production cost, repairing cost, disposal cost, etc. depend on several
factors such as bank interest, inflation, labour wages, wear and tear cost, etc. which are uncertain in fuzzy rough sense. To be
more specific, inventory holding cost is sometimes represented by a fuzzy number and it depends on the storage amount
which may be imprecise and range within an interval due to several factors such as scarcity of storage space, market fluc-
tuation, human estimation/ thought process i.e. it may be represented by a rough set. In the literature, some researchers
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[16,1,17,18] developed and solved inventory models in fuzzy random environment. Very few investigations [9,10] are avail-
able for inventory or production-inventory problems with fuzzy rough impreciseness.

Production-repairing system is, now-a-day an important area of inventory studies due to growing environmental con-
cern, environmental regulations in industry and gradually decreasing resources in the world. Beside fabricating the finished
product from raw materials, it may be possible to repair the defective units produced from the production. In these cases,
recovery of the defective units is economically more attractive than disposal. Furthermore, in the recent past, the growth
of environment movement has given the reuse system increasing attention [19]. Initial attempts to address the inventory
of repairing items or products dates back to the 1960s, with Schrady [20] being the first to investigate a repair-inventory
system. After that, extensive research works have been made to develop real-life recycling models during last two dec-
ades[3,21–24]. Some scholars also studied inventory problem in repairing/reworked processes under mixed uncertain envi-
ronment [10,25].

Defective units may be reworked in the same cycle along with the normal production after some time from the initial
commencement of production engaging some additional labour forces and machinery for repair. But all of the defective units
can not be considered for reworking. Some of the defective units may be of very poor quality so that it will be expensive to
repair those units, which should be avoided for rework. Therefore, a certain percentage of the defective units may be con-
sidered for reworking. The demand of the units will be met not only from the produced perfect units but also from the re-
worked units.

From financial standpoint, an inventory represents a capital investment and must compete with other assets within the
firm’s limited capital funds. Most of the classical inventory models did not take into account the effects of inflation and time
value of money. This has happened mostly because of the belief that inflation and time value of money do not influence the
cost and price components (i.e., the inventory policy) to any significant degree. But, during last few decades, due to high
inflation and consequent sharp decline in the purchasing power of money in the developing countries like India, Bangladesh
etc., the financial situation has been changed and so it is not possible to ignore the effect of inflation and time value of money
any further. Misra [26], Chang [27], Sarkar and Moon [28] and Sarkar et al. [29,30] have extended their approaches to dif-
ferent inventory models by considering the time value of money, different inflation rates for the costs, finite replenishment,
shortages etc.

After all these studies, some lacunas in the formation of the models and the shortcomings may be summarized as below:

� Most of the earlier models considered constant production/repairing rates and constant production/repairing costs. But in
many production systems, production cost is function of production rate [31,32] with imprecise parameters.
� One of the weaknesses of major production-inventory models is the unrealistic assumption that all units produced are of

good quality. But production of defective units [33,34] is a natural phenomenon in any production process.
� Normally production inventory models are formulated for infinite time horizon which is not realistic [5]. Due to rapid

change of world economy, specially for fashionable/luxarious items, manufacturers very frequently change their product
specification with new features, names and packets to attract the customers. As a result lifetime of these products (with
respect to demand) in the market is finite[2,32]. Not much attention has been paid on production inventory models in
finite time horizon specially for the production repairing system.
� A little study has been made on production repairing model considering selling price, production cost, holding cost, set-up

cost, etc. as fuzzy rough parameters [9].
� No investigation on production-repairing inventory system has been made considering dynamic production and repairing rates.

In order to overcome the above mentioned limitations of reworked inventory models, in this paper, a production-repair-
ing inventory model incorporating inflation and time value of money with fuzzy rough coefficients is considered with dis-
played inventory level dependent demand, dynamic production and repairing rates, production rate dependent production
cost and repairing rate dependent repairing cost. Some particular cases of the general model such as models with constant
demand having constant/linear production and repairing rates and costs are presented. Numerical examples are provided to
illustrate the model.

Rest of the paper is organized as follows. In Section 2, some preliminaries and deductions are presented. In Section 3,
assumptions and notations of the proposed inventory model are listed. In Section 4, mathematical formulation of the inven-
tory model is presented. Numerical examples to illustrate the models are provided in Section 5. Some particular cases are
presented in Section 6, also. Finally, a brief conclusion is drawn in Section 7. Some mathematical calculations are presented
in Appendix.
2. Preliminaries and deductions

2.1. Possibility (Pos), necessity (Nes) measure

Any fuzzy subset ~a of R with membership function l~aðxÞ : R! ½0;1� is called a fuzzy number. Let ~a and ~b be two fuzzy
quantities with membership functions l~aðxÞ and l~bðxÞ respectively. Then according to Dubois and Prade [35,36] and Liu and
Iwamura [37]
Please cite this article in press as: M. Mondal et al., A production-repairing inventory model with fuzzy rough coefficients under inflation
and time value of money, Appl. Math. Modell. (2012), http://dx.doi.org/10.1016/j.apm.2012.07.024
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Please
and ti
Posð~a � ~bÞ ¼ fsupðminðl~aðxÞ;l~bðyÞÞ; x; y 2 R; x � yg; ð1Þ
Nesð~a � ~bÞ ¼ finf ðmaxð1� l~aðxÞ;l~bðyÞÞ; x; y 2 R; x � yg; ð2Þ
where ⁄ is any arithmetic relational operator and R is set of real numbers.

2.1.1. Fuzzy extension principle [38]
If ~a; ~b 2 R and ~c ¼ f ð~a; ~bÞ where f : R�R ! R be a binary operation then membership function l~c of ~c is defined as
l~cðzÞ ¼ supfminðl~aðxÞ;l~bðyÞÞ; x; y 2 R and z ¼ f ðx; yÞ; 8z 2 Rg: ð3Þ
2.1.2. Credibility measure [18]
If A be a fuzzy event then credibility measure of A is denoted by CrðAÞ and defined as
CrðAÞ ¼ 1
2
½PosðAÞ þ NesðAÞ�:
More generally, according to Maity [2] the above form can be consider as
CrðAÞ ¼ ½qPosðAÞ þ ð1� qÞNesðAÞ� where 0 6 q 6 1:
2.2. Fuzzy expectation [39]

Let eX be a normalized fuzzy variable. The expected value of the fuzzy variable eX is denoted by E[eX] and defined by
E½eX � ¼ Z 1

0
CrðeX P rÞdr �

Z 0

�1
CrðeX 6 rÞdr: ð4Þ
When the right hand side of (4) is of form 1 to �1 the expected value is not defined.

Lemma 1 ([2]). If ~a ¼ ða1; a2; a3Þ is a TFN and r is a crisp number, then expected value of ~a, E½~a�, is given by
E½~a� ¼ 1
2
½ð1� qÞa1 þ a2 þ qa3� where 0 6 q 6 1:
2.3. Rough space [15]

Let K be a non empty set, j a r algebra of subsets of K, and D an element in j and p a trust measure. Then (K;D;j;p) is
called a rough space.

2.4. Rough variable [15]

Let (K;D;j;p) be a rough space. A rough variable n is a measurable function from the rough space (K;D;j;p) to the set of
real numbers. i.e. for every Borel set B of R; fk 2 KjnðkÞ 2 Bg 2 j.

The lower (n) and upper (n) approximations of the rough variable n are given by n ¼ fnðkÞjk 2 Dg and n ¼ fnðkÞjk 2 Kg.

2.5. Trust measure [15]

Let (K;D;j;p) be a rough space. The trust measure of event A is denoted by TrfAg and defined by

TrfAg ¼ 1
2 ðTrfAg þ TrfAgÞ, where TrfAg denotes the lower trust measure of event A, defined by TrfAg ¼ pfA

T
Dg

pfDg , and TrfAg de-

notes the upper trust measure of event A, defined by TrfAg ¼ pfAg
pfKg. When the enough information about the measure p is not

given, it may be treated as the Lebesgue measure. Then we can get the trust measure of the rough event n̂ P t; Trfn̂ P tg and
its function curve (cf. Fig. 1) as presented below where t is a crisp number, n̂ is a rough variable given by
n̂ ¼ ð½a; b�½c; d�Þ; 0 6 c 6 a 6 b 6 d.
Trfn̂ P tg ¼

0 for d 6 t;
ðd�tÞ

2ðd�cÞ for b 6 t 6 d;

1
2
ðd�tÞ
ðd�cÞ þ

ðb�tÞ
ðb�aÞ

� �
for a 6 t 6 b;

1
2
ðd�tÞ
ðd�cÞ þ 1
� �

for c 6 t 6 a;

1 for t 6 c:

8>>>>>>>><>>>>>>>>:
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Fig. 1. Tr fn̂ P tg function curve.

4 M. Mondal et al. / Applied Mathematical Modelling xxx (2012) xxx–xxx
2.6. Rough expectation [15]

Let bX be a rough variable. The expected value of the rough variable bX is denoted by E[bX] and defined by
Please
and ti
E½bX � ¼ Z 1

0
TrðbX P rÞdr �

Z 0

�1
TrðbX 6 rÞdr ð5Þ
provided that at least one of the two integrals is finite. When the right hand side of (5) is of form1 to �1 the expected value
is not defined.

Lemma 2. If n̂ ¼ ð½a; b�½c; d�Þ is a rough variable and r is a crisp number, then expected value of n̂, E½n̂�, is given by
E½n̂� ¼ 1
4
½aþ bþ c þ d�:
Proof. Since n̂ ¼ ð½a; b�½c; d�Þ is a rough variable and r is a crisp number, then from definition of trust measure we have
Trfn̂ P rg ¼

0 for d 6 r;
ðd�rÞ

2ðd�cÞ for b 6 r 6 d;

1
2
ðd�rÞ
ðd�cÞ þ

ðb�rÞ
ðb�aÞ

� �
for a 6 r 6 b;

1
2
ðd�rÞ
ðd�cÞ þ 1
� �

for c 6 r 6 a;

1 for r 6 c;

8>>>>>>>>>><>>>>>>>>>>:

Trfn̂ 6 rg ¼

0 for r 6 c;
ðr�cÞ

2ðd�cÞ for c 6 r 6 a;

1
2
ðr�cÞ
ðd�cÞ þ

ðr�aÞ
ðb�aÞ

� �
for a 6 r 6 b;

1
2
ðr�cÞ
ðd�cÞ þ 1
� �

for b 6 r 6 d;

1 for d 6 r:

8>>>>>>>>><>>>>>>>>>:

So the expected value of n̂ is calculated using (5) as follows:
E½n̂� ¼
Z 1

0
Trðn̂ P rÞdr �

Z 0

�1
Trðn̂ 6 rÞdr

¼
Z c

0
1dr þ

Z a

c

1
2
ðd� rÞ
ðd� cÞ þ 1
� �

dr þ
Z b

a

1
2
ðd� rÞ
ðd� cÞ þ

ðb� rÞ
ðb� aÞ

� �
dr þ

Z d

b

ðd� rÞ
2ðd� cÞdr ¼ 1

4
½aþ bþ c þ d�:
2.7. Fuzzy rough variable [15]

A fuzzy rough variable is a measurable function from a rough space (K;D;j;p) to the set of fuzzy variables. More gener-
ally, a fuzzy rough variable is a rough variable taking fuzzy values.

2.8. Fuzzy-rough expectation [15]

Let ~̂X be a fuzzy rough variable. The expected value of the fuzzy rough variable ~̂X is denoted by E[ ~̂X] and defined by
cite this article in press as: M. Mondal et al., A production-repairing inventory model with fuzzy rough coefficients under inflation
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Please
and ti
E½ ~̂X� ¼
Z 1

0
Trðk 2 KjE½~XðkÞ�P rÞdr �

Z 0

�1
Trðk 2 KjE½~XðkÞ� 6 rÞdr ð6Þ
provided that at least one of the two integrals is finite.

Lemma 3. Let ~̂n ¼ ðn̂� L; n̂; n̂þ RÞ be a fuzzy rough variable, where n̂ ¼ ð½a; b�½c; d�Þ is a rough variable. Then expected value of ~̂n is
E½~̂n� ¼ 1
4
½aþ bþ c þ d� þ qR� ð1� qÞL

2
where 0 6 q 6 1:
Proof. Since ~̂n ¼ ðn̂� L; n̂; n̂þ RÞ where n̂ ¼ ð½a; b�½c; d�Þ is a fuzzy rough variable, then using Lemma 1 we get,
E½~̂n� ¼ E½1
2
½ð1� qÞðn̂� LÞ þ n̂þ qðn̂þ RÞ�� where 0 6 q 6¼ E½n̂þ h� where h ¼ qR� ð1� qÞL

2
:

Again using Lemma 2 we get,
E½n̂þ h� ¼ 1
4
½aþ bþ c þ d� þ h ¼ 1

4
½aþ bþ c þ d� þ qR� ð1� qÞL

2
:

Therefore
E½~̂n� ¼ 1
4
½aþ bþ c þ d� þ qR� ð1� qÞL

2
where 0 6 q 6 1:
2.9. Single objective fuzzy rough expected value model

In order to solve the uncertain model with fuzzy rough parameters, we must convert it into a deterministic one. The tech-
nique of computing the expected value is an efficient method and is easily realized.
2.9.1. Basic model
Consider the following problem with fuzzy rough coefficients
Maxf ðx; ~̂nÞ; ð7Þ
where x is decision vector, ~̂n is a fuzzy rough vector, f ðx; ~̂nÞ is objective function. As optimization of a fuzzy rough objective is
not well defined the above problem can not be solved directly. According to Liu [15], above problem is equivalent to
MaxE½f ðx; ~̂nÞ�: ð8Þ
3. Assumptions and notations for the proposed models

3.1. Assumptions

Following assumptions are made for developing the proposed production-repairing inventory model

(i) Inventory system involves only one item.
(ii) Production and repairing rates are time dependent.

(iii) Defective rate is constant and known.
(iv) Certain percentage of defective units is repairable and known.
(v) The cycle lengths are all equal.

(vi) After some production cycles repairing process starts. After that both production and repairing processes are
continued.

(vii) The effects of inflation and time value of money are considered. Let k and r be the inflation rate and discount rate
respectively. Therefore, the net discount rate of inflation, R is defined as: R = r � k.

(viii) Demand is displayed inventory level dependent.
(ix) Shortages are not allowed.
(x) Production and repairing costs are known function of production and repairing rates respectively.

(xi) This is a multi period production-inventory model with finite time horizon.
(xii) Repaired units are treated as serviceable units.
cite this article in press as: M. Mondal et al., A production-repairing inventory model with fuzzy rough coefficients under inflation
me value of money, Appl. Math. Modell. (2012), http://dx.doi.org/10.1016/j.apm.2012.07.024
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3.2. Notations

Following notations are used for developing the model
P
an
uðtÞ
lease cit
d time
ðu0 þ u1t þ u2t2Þ production rate at any time t where u0;u1 and u2 are decision variables.

d
 constant defective rate of production.

tu
 the cycle length for both production and repairing.

m
 number of production cycles with out repairing.

n
 total number of cycles.

xðtÞ
 the serviceable stock level at time t.

xRðtÞ
 the repairable stock level at time t.

pðtÞ
 ðp0 þ p1tÞ repairing rate at any time t where p0 and p1 are decision variables.

DðtÞ
 ðd0 þ d1xðtÞÞ demand rate, where d0 and d1 are constant and known.

~̂cu
 ð ~̂c0 þ ~̂c1=uðtÞ þ ~̂c2uðtÞÞ the per unit production cost where ~̂c0 is raw material cost, ~̂c1 is labour charges and ~̂c2 is

tool wear and tear cost in $.

t0ui
 the duration of production of the i-th cycle.
~̂cr
 ð ~̂cr1=pðtÞ þ ~̂cr2pðtÞÞ the per unit repairing cost where ~̂cr1 is labour charges, and ~̂cr2 is tool wear and tear cost in $.

~̂su
the set up cost of each cycle in $.
~̂ch1

the holding cost of per serviceable unit per unit time in $.
~̂ch2

the holding cost of per repairable unit per unit time in $.
T
 the finite time horizon in week.

~̂cs
the per unit selling price in $.
l
 the constant percentage of defective units for repair.

~̂cz
the per unit disposal cost in $.
q
 the degree of optimism of expected profit.
^
Symbols~; ^and~that are used on the top of the above notations, indicate fuzzy parameters, rough parameters and fuzzy
rough parameters respectively.

4. Model development and analysis

4.1. Proposed production-repairing model in fuzzy rough environment

In the development of the model it is assumed that demand of the item in the market exists for a finite time T, which is
the planning horizon of the model. Total planning horizon is divided into n cycles. At the beginning of i-th (i = 1,2, . . . ,n) cycle
production starts and continues for a time t0ui. Among produced units d% units are defective units and remaining units are
serviceable units. Among produced defective units l% units are repairable and remaining units are disposed. Repairable
units are stored for first m cycles so that its amount becomes sufficient to start repairing process. Along with production,
repairing starts simultaneously from mþ 1th cycle and repaired units are as good as non-defective (serviceable) units. From
this cycle repairing process continues in each cycle for a duration in which production process runs and at the end of last
production cum repairing process excess repairable units are disposed. Total process is depicted in Fig. 2. Demand of the item
is met using serviceable units. Production rate is quadratic function in time t and repairing rate is a linear function in time t
whose coefficients are so determined that produced serviceable (including repaired) units are just sufficient to meet the de-
mand of the cycle. Here production cost depends on production rate, repairing cost depends on repairing rate and some other
inventory costs are assumed as fuzzy rough in nature. Goal is to find decision for a DM who likes to maximize the total ex-
pected profit under inflationary effect from the planning horizon. According to these assumptions instantaneous stock xðtÞ of
serviceable units at any time t 2 ½0;mtu� is given by
dxðtÞ
dt
¼
ð1� dÞuðtÞ � DðtÞ for ði� 1Þtu 6 t 6 ði� 1Þtu þ t0ui;

�DðtÞ for ði� 1Þtu þ t0ui 6 t 6 itu;

�
ð9Þ
with boundary conditions xðði� 1ÞtuÞ ¼ 0; xðituÞ ¼ 0 for i ¼ 1;2; . . . ;m.
Solving the above differential equations we get,
xðtÞ ¼

ðð1�dÞu0�d0Þð1�e�d1 ðt�ði�1Þtu ÞÞ
d1

þ ð1� dÞ u1
ðt�ði�1Þtue�d1ðt�ði�1Þtu ÞÞ

d1

nh
�ð1�e�d1 ðt�ði�1Þtu ÞÞ

d2
1

o
þ u2

ðt2�ði�1Þ2t2
ue�d1 ðt�ði�1Þtu ÞÞ
d1

n
�2ðt�ði�1Þtue�d1 ðt�ði�1ÞtuÞÞ

d2
1

þ 2ð1�e�d1 ðt�ði�1Þtu ÞÞ
d3

1

oi
for ði� 1Þtu 6 t 6 ði� 1Þtu þ t0ui;

d0ðed1 ðitu�tÞ�1Þ
d1

for ði� 1Þtu þ t0ui 6 t 6 itu;

8>>>>>>>><>>>>>>>>:
ð10Þ
e this article in press as: M. Mondal et al., A production-repairing inventory model with fuzzy rough coefficients under inflation
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Fig. 2. The material flow in the production-repairing model.
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Similarly instantaneous stock xðtÞ of serviceable units at any time t 2 ½mtu; T� is given by
Please
and ti
dxðtÞ
dt
¼

ð1� dÞuðtÞ � DðtÞ þ pðtÞ for ðj� 1Þtu 6 t 6 ðj� 1Þtu þ t0uj;

�DðtÞ for ðj� 1Þtu þ t0uj 6 t 6 jtu;

(
ð11Þ
with boundary conditions xðjtuÞ ¼ 0 where j ¼ mþ 1;mþ 2; . . . ;n.
Solving the above differential equations we get,
xðtÞ ¼

ðð1�dÞu0�d0þp0Þð1�e�d1ðt�ðj�1Þtu ÞÞ
d1

þ ð1� dÞ ðu1 þ p1
1�dÞ

ðt�ðj�1Þtue�d1 ðt�ðj�1Þtu ÞÞ
d1

nh
�ð1�e�d1 ðt�ðj�1Þtu ÞÞ

d2
1

o
þ u2

ðt2�ðj�1Þ2t2
ue�d1 ðt�ðj�1Þtu ÞÞ
d1

n
�2ðt�ðj�1Þtue�d1ðt�ðj�1Þtu ÞÞ

d2
1

þ 2ð1�e�d1ðt�ðj�1Þtu ÞÞ
d3

1

oi
for ðj� 1Þtu 6 t 6 ðj� 1Þtu þ t0uj;

d0ðed1ðjtu�tÞ�1Þ
d1

for ðj� 1Þtu þ t0uj 6 t 6 jtu;

8>>>>>>>>>><>>>>>>>>>>:
ð12Þ
Instantaneous stock for repairable units at any time t 2 ½0; T� is given by
dxRðtÞ
dt

¼

lduðtÞ for ði� 1Þtu 6 t 6 ði� 1Þtu þ t0ui;

0 for ði� 1Þtu þ t0ui 6 t 6 itu;

lduðtÞ � pðtÞ for ðj� 1Þtu 6 t 6 ðj� 1Þtu þ t0uj;

0 for ðj� 1Þtu þ t0uj 6 t 6 jtu;

8>>>>>><>>>>>>:
ð13Þ
with boundary conditions xRð0Þ ¼ 0; xRðntuÞP 0; xRðði� 1Þtu þ t0uiÞ ¼ xRðituÞ; xRððj� 1Þtu þ t0ujÞ ¼ xRðjtuÞ for i ¼ 1;2; . . . ;m
and j ¼ mþ 1;mþ 2; . . . ;n.

Solving the above differential equations we get,
xRðtÞ ¼

xRðði� 1ÞtuÞ þ ld u0ðt � ði� 1ÞtuÞ½

þu1ðt2�ði�1Þ2t2
uÞ

2 þ u2ðt3�ði�1Þ3t3
uÞ

3

i
for ði� 1Þtu 6 t 6 ði� 1Þtu þ t0ui;

xRðði� 1Þtu þ t0uiÞ for ði� 1Þtu þ t0ui 6 t 6 itu

xRððj� 1ÞtuÞ � p0ðt � ðj� 1ÞtuÞ

� p1ðt2�ðj�1Þ2t2
uÞ

2 þ ld u0ðt � ðj� 1ÞtuÞ½

þu1ðt2�ðj�1Þ2t2
uÞ

2 þ u2ðt3�ðj�1Þ3t3
uÞ

3

i
for ðj� 1Þtu 6 t 6 ðj� 1Þtu þ t0uj;

xRððj� 1Þtu þ t0ujÞ for ðj� 1Þtu þ t0uj 6 t 6 jtu:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

ð14Þ
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Therefore the total profit from the planning horizon is given by
Please
and ti
êJðu0;u1;u2;p0;p1Þ ¼ ~̂cs

Z T

0
e�RtDðtÞdt � ~̂ch1

Z T

0
e�RtxðtÞdt � ~̂ch2

Z T

0
e�RtxRðtÞdt � ~̂c0

Z T

0
e�RtuðtÞdt � ~̂c1

Z T

0
e�Rtdt

� ~̂c2

Z T

0
e�RtfuðtÞg2dt � ~̂cr1

Z T

0
e�Rtdt � ~̂cr2

Z T

0
e�RtfpðtÞg2dt � ~̂czdð1� lÞ

Z T

0
e�RtuðtÞdt

� ~̂czxRðntuÞ
Z T

0
e�Rtdt � n ~̂su

Z T

0
e�Rtdt

¼ ~̂csA� ~̂ch1B1 � ~̂ch2B2 � ~̂c0P1 � ~̂c1P2 � ~̂c2P3 � ~̂cr1R1 � ~̂cr2R2 � ~̂czD1 � ~̂suS ¼ ðbJ � jl;
bJ;bJ þ jrÞ; ð15Þ
where bJ ¼ ð½j1; j2�½j3; j4�Þ and A; B1; B2; P1, P2; P3; R1; R2; D1; S are given in Appendix (cf. Eq. (30) to (39)).
Let ~̂cs ¼ ðĉs � csl; ĉs; ĉs þ csrÞ; ĉs ¼ ð½cs1; cs2�½cs3; cs4�Þ, ~̂ch1 ¼ ð ^ch1 � ch1l; ^ch1; ^ch1 þ ch1rÞ; ^ch1 ¼ ð½ch11; ch12�½ch13; ch14�Þ, ~̂ch2 ¼

ð ^ch2 � ch2l; ^ch2; ^ch2 þ ch2rÞ; ^ch2 ¼ ð½ch21;ch22�½ch23; ch24�Þ, ~̂c0 ¼ ðĉ0 � c0l; ĉ0; ĉ0 þ c0rÞ; ĉ0 ¼ ð½c01; c02�½c03;c04�Þ, ~̂c1 ¼ ðĉ1 � c1l; ĉ1; ĉ1 þ c1rÞ;
ĉ1 ¼ ð½c11; c12�½c13; c14�Þ, ~̂c2 ¼ ðĉ2 � c2l; ĉ2; ĉ2 þ c2rÞ; ĉ2 ¼ ð½c21; c22�½c23; c24�), ~̂cr1 ¼ ðĉr1 � cr1l; ĉr1; ĉr1 þ cr1rÞ; ĉr1 ¼ ð½cr11; cr12�
½cr13; cr14�Þ, ~̂cr2 ¼ ðĉr2 � cr2l; ĉr2; ĉr2 þ cr2rÞ; ĉr2 ¼ ð½cr21; cr22�½cr23; cr24�Þ, ~̂cz ¼ ðĉz � czl; ĉz; ĉz þ czrÞ; ĉz ¼ ð½cz1; cz2�½cz3; cz4�Þ and
~̂su ¼ ðŝu � sul; ŝu; ŝu þ surÞ; ŝu ¼ ð½su1; su2�½su3; su4�Þ. therefore
j1 ¼ cs1A� ch12B1 � ch22B2 � c02P1 � c12P2 � c22P3 � cr12R1 � cr22R2 � cz2D1 � su2S; ð16Þ

j2 ¼ cs2A� ch11B1 � ch21B2 � c01P1 � c11P2 � c21P3 � cr11R1 � cr21R2 � cz1D1 � su1S; ð17Þ

j3 ¼ cs3A� ch14B1 � ch24B2 � c04P1 � c14P2 � c24P3 � cr14R1 � cr24R2 � cz4D1 � su4S; ð18Þ

j4 ¼ cs4A� ch13B1 � ch23B2 � c03P1 � c13P2 � c23P3 � cr13R1 � cr23R2 � cz3D1 � su3S; ð19Þ

jl ¼ cslA� ch1rB1 � ch2rB2 � c0rP1 � c1rP2 � c2rP3 � cr1rR1 � cr2rR2 � czrD1 � surS ð20Þ

and jr ¼ csrA� ch1lB1 � ch2lB2 � c0lP1 � c1lP2 � c2lP3 � cr1lR1 � cr2lR2 � czlD1 � sulS: ð21Þ

So the problem reduces to
MaximizeêJðu0;u1;u2;p0;p1Þ: ð22Þ
4.2. Equivalent deterministic representation of the proposed model

According to the Section 2.8. the expected value of êJðu0;u1;u2; p0; p1Þ is given by
E½êJðu0;u1;u2; p0; p1Þ� ¼ Ej ¼
1
4
½j1 þ j2 þ j3 þ j4� þ

qjr � ð1� qÞjl

2
: ð23Þ
Then according to Section 2.9. the above problem (22) reduces to following single objective optimization problem:
MaximizeE½êJðu0;u1; u2; p0; p1Þ�: ð24Þ
Now the problem stated in (24) is solved using a gradient based optimization technique-Generalized Reduced Gradient
method (LINGO 9.0 software).

5. Numerical illustration

5.1. Input data

To illustrate the above production-repairing model numerically, following input data are considered:
d0 ¼ 18; d1 ¼ 0:2; T ¼ 25; d ¼ 0:1; R ¼ 0:0757, l ¼ 0:85; ~̂cs = ðr� 0:8;r;rþ 0:5Þ; r ¼ ð½7;7:3�½6:8;7:5�Þ, ~̂ch1 ¼ ðf1�

0:02; f1; f1 þ 0:03Þ; f1 ¼ ð½0:18;0:2�½0:15;0:22�Þ, ~̂ch2 ¼ ðf2 � 0:01; f2; f2 þ 0:02Þ; f2 ¼ ð½0:13;0:16�½0:11;0:18�Þ, ~̂c0 ¼ ða0 � 0:2;

a0;a0 þ 0:3Þ; a0 ¼ ð½1:8;2:1�½1:5;2:2�Þ, ~̂c1¼ða1�0:05;a1;a1þ0:05Þ; a1¼ð½0:8;1:2�½0:5;1:3�Þ, ~̂c2¼ða2�0:003;a2;a2þ0:005Þ;
a2 ¼ ð½0:04;0:08�½0:03;0:1�Þ, ~̂cr1 ¼ ðb1 � 0:05; b1; b1 þ 0:05Þ; b1 ¼ ð½0:8;1:0�½0:65;1:15�Þ, ~̂cr2 ¼ ðb2 � 0:005; b2; b2 þ 0:007Þ;
b2 ¼ ð½0:03;0:05�½0:025;0:053�Þ, ~̂cz ¼ ðc� 0:03; c; cþ 0:04Þ; c ¼ ð½0:08;0:12�½0:05;0:16�Þ, ~̂su ¼ ðc1 � 0:5; c1; c1 þ 0:5Þ; c1 ¼
ð½4:5;5�½4;5:5�Þ.

5.2. Results and discussion

For these input data optimal values of u0; u1; u2, p0; p1; Ej and production time duration t0ui of each cycle i for different m
and n are obtained for q ¼ 0:5 and presented in Table 1.
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From Table 1 it is found that for the assumed parametric values that one production cycle with out repairing and two
production cycles with repairing gives maximum expected profit. It is also observed that as number of cycles increases ini-
tially profit increases and reaches a maximum value and then again it decreases. It happens because as the number of cycles
increases expected holding cost decreases but expected set up cost increases. But initially gain due to decrease of expected
holding cost dominates loss due to expected set up cost, as a result total expected profit increases with n. But after some
cycles (n ¼ 3) loss due to increase of expected set up cost dominates over the gain due to decrease of expected holding cost
and as a result profit decreases with n for n > 3. It is interesting to note from Table 1 that for any value of n; m ¼ 1 gives
maximum expected profit, i.e., profit will be maximum if repair process starts from second cycle. It happens because holding
cost of repairable units increases if repair starts after few cycles, which decreases expected profit. This observation agrees
with reality. So for the assumed parametric values, m ¼ 1 and n ¼ 3 gives maximum expected profit. Due to this reason, fur-
ther numerical studies are made for m ¼ 1 and n ¼ 3.

A parametric study is made with different optimism parameter (q) and the optimum results are presented in Table 2. As
per expectation, it is found that expected profit is increased with increase of q. All these observations agree with reality.

A parametric study is made with different resultant effect of inflation and time value of money (R) and the optimum re-
sults are presented in Table 3. Results are also obtained ignoring the inflationary effect and results are presented in Table 3.
As per expectation, it is found that expected profit is maximum when there is no inflationary effect. It is also observed that
expected profit decreases with increase of R. All these observations agree with reality.

Another parametric investigation is made for the different values of shape parameter of the demand function i.e. d1. These
results are shown in the Table 4. It is found that expected profit increases with d1. It happens because increase of d1, in-
creases demand of the item as a whole, which forces to increase production rate, production duration and repairing rate
and ultimately fetches more expected profit.

Due to the assumptions made in 3.1., the serviceable stock, repairable stock (i.e. accumulated defective stock for repair),
demand, production and repairing rates are dynamic, i.e. function of t implicitly or explicitly. These values vary with t within
the fixed time horizon, T ¼ 25 units. Values of the parameters for different t’s are given in Table 5 for R ¼ 0:0757 and
d1 ¼ 0:2. Pictorial representation of the optimal stocks, demand, production and repairing rates are presented in Fig. 3. From
Table 5 as well as from Fig. 3 it is found that the nature of behavior of production rate, serviceable stock, repairable stock,
repairing rate and demand are as per expectation.
6. Particular cases

In this section, the results of several particular production repairing inventory models with different demand, production
and repairing rates and costs in fuzzy-rough, fuzzy and rough environments are presented.
6.1. With different production and repairing rates

In model formulation (cf. Section 4), production and repairing rates are considered as uðtÞ ¼ u0 þ u1t þ u2t2;

pðtÞ ¼ p0 þ p1t. As particular cases,following six subcases are considered depending upon the different functional form of
production and repairing rates

Subcase-S1 : uðtÞ ¼ u0 þ u1t þ u2t2; pðtÞ ¼ p0 þ p1t (General Model).
Subcase-S2 : uðtÞ ¼ u0 þ u1t þ u2t2; pðtÞ ¼ p0.
Subcase-S3 : uðtÞ ¼ u0 þ u1t; pðtÞ ¼ p0 þ p1t.
Subcase-S4 : uðtÞ ¼ u0 þ u1t; pðtÞ ¼ p0.
Subcase-S5 : uðtÞ ¼ u0; pðtÞ ¼ p0 þ p1t.
Subcase-S6 : uðtÞ ¼ u0; pðtÞ ¼ p0.
Table 1
Optimum results of fuzzy rough model.

m n�m u0 u1 u2 p0 p1 Ej t0u1 t0u2 t0u3 t0u4 t0u5

1 1 18.000 1.332 �0.0344 2.337 0.150 678.03 11.33 9.83 – – –

1 2 23.714 1.164 �0.0330 1.679 0.164 684.30 7.02 6.02 5.80 – –
2 1 21.207 1.955 �0.0768 3.932 0.212 652.74 7.02 6.37 5.88 – –

1 3 28.863 0.587 �0.0094 1.394 0.182 682.54 4.85 4.30 4.04 3.86 –
2 2 27.123 1.224 �0.0457 2.655 0.193 658.27 4.89 4.49 3.96 4.04 –
3 1 26.157 1.497 �0.0625 5.576 0.279 630.37 4.91 4.48 4.47 3.86 –

1 4 32.317 �0.485 0.0578 1.275 0.208 666.54 3.68 3.43 3.17 2.82 2.44
2 3 30.528 0.860 �0.0304 2.111 0.192 650.16 3.64 3.42 3.03 2.97 3.00
3 2 29.607 1.186 �0.0497 3.639 0.228 629.94 3.67 3.39 3.31 2.90 3.02
4 1 29.999 1.003 �0.0431 7.138 0.342 603.95 3.66 3.43 3.37 3.45 2.71
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Table 2
Optimal results of fuzzy rough model due to different optimism parameter q.

q u0 u1 u2 p0 p1 Ej t0u1 t0u2 t0u3

0.0 23.807 1.139 �0.0321 1.676 0.163 659.27 7.02 6.02 5.81
0.1 23.788 1.144 �0.0323 1.677 0.163 664.27 7.02 6.02 5.80
0.2 23.769 1.149 �0.0325 1.677 0.163 669.28 7.02 6.02 5.80
0.3 23.751 1.154 �0.0326 1.678 0.163 674.28 7.02 6.02 5.80
0.4 23.732 1.159 �0.0328 1.678 0.164 679.29 7.02 6.02 5.80
0.5 23.714 1.164 �0.0330 1.679 0.164 684.30 7.02 6.02 5.80
0.6 23.696 1.169 �0.0331 1.679 0.164 689.30 7.02 6.01 5.80
0.7 23.678 1.174 �0.0332 1.679 0.164 694.31 7.02 6.01 5.80
0.8 23.660 1.178 �0.0334 1.680 0.164 699.31 7.02 6.01 5.80
0.9 23.643 1.183 �0.0336 1.680 0.164 704.32 7.02 6.01 5.79
1.0 23.626 1.188 �0.0338 1.681 0.164 709.33 7.02 6.01 5.79

Table 3
Optimum results of fuzzy rough model due to different R (resultant effect of inflation and discount rate).

R u0 u1 u2 p0 p1 Ej t0u1 t0u2 t0u3

0.00 36.726 0.285 �0.0081 2.042 0.201 1676.98 5.94 5.43 5.28
0.05 28.239 0.778 �0.0203 1.796 0.176 948.64 6.64 5.83 5.61
0.08 22.966 0.232 �0.0353 1.660 0.162 650.84 7.08 6.05 5.83
0.11 18.283 1.682 �0.0505 1.532 0.149 476.15 7.52 6.25 6.07
0.14 18.066 1.101 �0.0237 1.437 0.139 369.57 7.82 6.59 6.17
0.17 18.000 0.562 �0.0030 1.369 0.132 301.16 8.14 6.90 6.18
0.20 18.000 0.626 �0.0055 1.311 0.126 254.22 8.15 6.98 6.42

Table 4
Optimum results of fuzzy rough model due to different d1.

d1 u0 u1 u2 p0 p1 Ej t0u1 t0u2 t0u3

0.15 22.061 1.349 �0.0407 1.650 0.162 669.51 7.01 5.78 5.57
0.175 22.989 1.250 �0.0366 1.667 0.163 677.77 7.01 5.90 5.68
0.20 23.714 1.164 �0.0330 1.679 0.164 684.30 7.02 6.02 5.80
0.225 24.315 1.088 �0.0297 1.687 0.164 689.70 7.04 6.13 5.91
0.25 24.837 1.020 �0.0268 1.694 0.164 694.37 7.09 6.25 6.03

Table 5
Optimum values of xðtÞ;DðtÞ;uðtÞ; xRðtÞ and pðtÞ for fuzzy rough model due to different t.

t 0 3.5 7.02 7.75 12.0 14.35 15.5 20.0 22.47 23.5 25

xðtÞ 0 13.20 27.12 11.14 37.34 53.06 23.65 41.96 59.39 31.49 0
DðtÞ 18 20.64 23.42 20.23 25.47 28.61 22.73 26.39 29.39 24.30 18
uðtÞ 23.71 27.38 30.26 – 32.94 33.63 – 33.81 33.23 – –
xRðtÞ 0 7.62 16.26 16.26 14.01 11.65 11.65 5.67 0 – –
pðtÞ – – – – 3.64 4.03 – 4.95 5.35 – –
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For the assumed parametric values, results of all the subcases due to m ¼ 1; n ¼ 3, are obtained and presented in Table 6.
It is observed that general quadratic production and linear repairing rates draws maximum expected profit i.e., general
model gives maximum expected profit compared to other subcases. In fact in subcase-S1, production and repairing rate
functions are more general compared to other subcases. As production and repairing rates are control variables in general
case, these rates are more effective compared to others in maximizing profit. Actually more appropriate production rate
decreases holding cost as well as production and repairing cost which intern increases profit.

6.2. With constant demand:

The production-repairing model with quadratic dynamic production rate, dynamic linear repairing rate and constant
demand (DðtÞ ¼ d0) is formulated following earlier process. In this case also different subcases are considered depending
upon the production and repairing rates, which are as follows-.

Subcase-S7: uðtÞ ¼ u0 þ u1t þ u2t2; pðtÞ ¼ p0 þ p1t.
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Fig. 3. Optimal production, repairing, demand, serviceable and repairable stocks.

Table 6
Optimal results of fuzzy rough model for different production and repairing rates.

Subcases u0 u1 u2 p0 p1 Ej t0u1 t0u2 t0u3

S1 23.714 1.164 �0.0330 1.679 0.164 684.30 7.02 6.02 5.80
S2 23.027 1.154 �0.0316 4.122 – 672.90 7.10 6.02 5.92
S3 25.754 0.491 – 1.700 0.165 683.45 7.03 6.12 5.64
S4 25.018 0.504 – 4.150 – 669.80 7.12 6.13 5.75
S5 29.807 – – 1.558 0.150 678.26 6.78 6.35 6.20
S6 29.211 – – 3.82 – 666.45 6.86 6.36 6.36
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Subcase-S8: uðtÞ ¼ u0 þ u1t þ u2t2, pðtÞ ¼ p0.
Subcase-S9: uðtÞ ¼ u0 þ u1t; pðtÞ ¼ p0 þ p1t.
Subcase-S10: uðtÞ ¼ u0 þ u1t; pðtÞ ¼ p0.
Subcase-S11: uðtÞ ¼ u0; pðtÞ ¼ p0 þ p1t.
Subcase-S12: uðtÞ ¼ u0; pðtÞ ¼ p0.

The numerical results of these models are presented in Table 7. From this table it is found that as usual, optimum profit
decreases gradually with quadratic, linear and constant production forms and also with linear and constant repairing forms.
Moreover, from Tables 6,7, it can be concluded that for all production forms, stock dependent demand draws much more
expected profit than the constant demand.

6.3. General model with cost and coefficients as fuzzy parameters:

In this case total profit eJ from the planning horizon is fuzzy in nature and is given by
Please
and ti
eJðu0;u1;u2;p0;p1Þ ¼ ~csA� ~ch1B1 � ~ch2B2 � ~c0P1 � ~c1P2 � ~c2P3 � ~cr1R1 � ~cr2R2 � ~czD1 � ~suS ¼ ðjf 1; jf 2; jf 3Þ; ð25Þ
where A; B1; B2; P1; P2; P3; R1; R2; D1 are S are given in Appendix (cf. Eq. (30) to (39)).
Let ~cs ¼ ðcfs1; cfs2; cfs3Þ, ~ch1 ¼ ðcfh11; cfh12; cfh13Þ, ~ch2 ¼ ðcfh21; cfh22; cfh23Þ, ~c0 ¼ ðcf 01; cf 02; cf 03Þ, ~c1 ¼ ðcf 11; cf 12; cf 13Þ, ~c2 ¼ ðcf 21; cf 22;

cf 23Þ, ~cr1 ¼ ðcfr11; cfr12; cfr13Þ, ~cr2 ¼ ðcfr21; cfr22; cfr23Þ, ~cz ¼ ðcfz1; cfz2; cfz3Þ and ~su ¼ ðsfu1; sfu2; sfu3Þ. therefore
jf 1 ¼ cfs1A� cfh13B1 � cfh23B2 � cf 03P1 � cf 13P2 � cf 23P3 � cfr13R1 � cfr23R2 � cfz3D1 � sfu3S; ð26Þ

jf 2 ¼ cfs2A� cfh12B1 � cfh22B2 � cf 02P1 � cf 12P2 � cf 22P3 � cfr12R1 � cfr22R2 � cfz2D1 � sfu2S; ð27Þ

jf 3 ¼ cfs3A� cfh11B1 � cfh21B2 � cf 01P1 � cf 11P2 � cf 21P3 � cfr11R1 � cfr21R2 � cfz1D1 � sfu1S: ð28Þ
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Table 7
Optimal results of fuzzy rough model for different production and repairing rates with constant demand.

Subcases u0 u1 u2 p0 p1 Ej t0u1 t0u2 t0u3

S7 21.437 �0.393 0.0085 1.000 0.0803 552.52 8.33 8.27 8.33
S8 21.278 �0.349 0.0076 2.376 – 552.03 8.33 8.01 8.33
S9 20.35 �0.103 – 1.232 0.0900 548.90 8.33 7.39 7.14
S10 20.37 �0.121 – 2.676 – 548.55 8.33 7.27 7.23
S11 20.00 – – 1.211 0.0800 546.71 8.33 7.38 7.13
S12 20.00 – – 2.673 – 546.55 8.33 7.25 7.25

Table 8
Optimum results of fuzzy production inventory model.

m n�m u0 u1 u2 p0 p1 E½eJ� t0u1 t0u2 t0u3 t0u4 t0u5

1 1 18.508 1.396 �0.0377 2.390 0.154 717.49 11.21 9.75 – – –

1 2 24.602 1.111 �0.0312 1.710 0.167 726.61 6.93 5.96 5.74 – –
2 1 22.056 1.925 �0.0764 4.002 0.216 694.28 6.94 6.31 5.83 – –

1 3 29.579 0.545 �0.0078 1.414 0.185 725.69 4.79 4.26 4.01 3.82 –
2 2 27.776 1.213 �0.0459 2.692 0.195 701.01 4.82 4.44 3.92 4.01 –
3 1 26.859 1.471 �0.0618 5.656 0.283 672.68 4.85 4.43 4.43 3.82 –

1 4 32.884 �0.526 0.0602 1.292 0.211 709.40 3.64 3.40 3.15 2.79 2.41
2 3 31.077 0.852 �0.0305 2.137 0.195 692.97 3.60 3.39 3.00 2.95 2.97
3 2 30.184 1.170 �0.0493 3.684 0.231 672.53 3.62 3.36 3.28 2.87 2.99
4 1 30.569 0.988 �0.0427 7.232 0.346 646.25 3.62 3.40 3.33 3.42 2.68
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So, using Lemma 1 expected profit of eJ; E½eJ� is given by
Please
and ti
E½eJ � ¼ ð1� qÞjf 1 þ jf 2 þ qjf 3:
To illustrate this production-repairing model numerically, following input data are considered:

d0 ¼18; d1 ¼ 0:2; T ¼25; d¼ 0:1; l¼0:85;R¼0:0757, ~cs = ð6;7;8Þ; ~ch1 ¼ ð0:13;0:2;0:25Þ, ~ch2 ¼ ð0:1;0:15;0:2Þ, ~c0 ¼ ð1:3;2:0;2:5Þ,
~c1 ¼ ð0:5;1:0;1:3Þ; ~c2 ¼ ð0:027;0:075;0:105Þ, ~cr1 ¼ ð0:6;1;1:20Þ, ~cr2 ¼ ð0:025;0:04;0:055Þ, ~cz ¼ ð0:05;0:09;0:16Þ, ~su ¼
ð4;5;6Þ.

For these input data optimal values of u0; u1; u2, p0; p1; E½eJ� and production time duration t0ui of each cycle i for different
m and n are obtained for q ¼ 0:7 and presented in Table 8.

From Table 8 it is found that for the assumed parametric values, one production cycle with out repairing and two pro-
duction cycles with repairing gives maximum expected profit from the planning horizon. It is also observed that as number
of cycles increases initially profit increases and reaches a maximum value (for n ¼ 3) and then again it decreases. This obser-
vation agrees with the results obtained in general model (cf. Table 1). As per expectation, it is also noticed that from Table 8,
for any value of n; m ¼ 1 gives maximum expected profit, i.e., profit will be maximum if repair process starts from second
cycle, because holding cost of repairable units increases if repair starts after few cycles, which decreases expected profit.
Due to this reason for further study of this model it is assumed that m ¼ 1 and n ¼ 3.

A parametric study is made on the optimism parameter (q) for m ¼ 1 and n ¼ 3 and the optimum results are presented in
Table 9. As per expectation, it is found that the expected profit increases with increase in degree of optimism q, which agrees
with reality.
6.3.1. Model with ‘‘about d% of mid values’’ of fuzzy parameters:
Here, a parametric study with the fuzzy costs and coefficients taken as ‘‘about d% of the mid-values’’ of the fuzzy numbers

where d ¼ 5;10;20;30;40;50 are made. These results are presented in Table 10. Here m ¼ 1; n ¼ 3; d0 ¼ 18,
d1 ¼ 0:2; T ¼ 25; d ¼ 0:1; l ¼ 0:85; R ¼ 0:0757, the mid values of different costs and coefficients such as for cs ¼ 7:0,
ch1 ¼ 0:2; ch2 ¼ 0:15; c0 ¼ 2:0; c1 ¼ 1:0; c2 ¼ 0:075, cr1 ¼ 1:0; cr2 ¼ 0:04; cz ¼ 0:09; su ¼ 5:0 are considered.

From Lemma 1 it is clear that q is degree of optimism for expected profit E½eJ ¼ ðjf 1; jf 2; jf 3Þ� ¼ ð1� qÞjf 1 þ jf 2 þ qjf 3. q ¼ 0
means least possible profit (jf 1) maximized and q ¼ 1 means most optimistic profit (jf 3), which is least feasible, is maximized.
Increase of d increase jf 3, decrease jf 1 but jf 2 remains unchanged. Again amount of increase of jf 1 = amount of decrease of jf 3.
As a result E½eJ� remains unchanged for q ¼ 0:5. i.e. for q ¼ 0:5, there is no effect on optimal expected profit. But for pessimis-
tic DM (q < 0:5) if fuzziness increases i.e. d increases expected profit decreases and for optimistic DM (q > 0:5) expected
profit increases with increase of fuzziness. But for pessimistic DMs’ much risk involves as they give weightage on least fea-
sible profit (jf 3). So increase of fuzziness has a very bad impact on inventory control problems.
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Table 9
Optimal results of fuzzy model due to different optimism parameter q.

q u0 u1 u2 p0 p1 E½eJ� t0u1 t0u2 t0u3

0.0 18.117 0.592 �0.0195 1.128 0.106 249.08 8.22 7.42 7.36
0.1 18.000 0.605 �0.0160 1.177 0.111 308.66 8.21 7.31 7.09
0.2 18.000 0.573 �0.0101 1.231 0.116 369.28 8.20 7.20 6.81
0.3 18.000 0.807 �0.0179 1.303 0.124 431.73 8.04 6.96 6.60
0.4 18.000 1.157 �0.0315 1.387 0.133 497.87 7.81 6.67 6.42
0.5 19.602 1.229 �0.0348 1.484 0.143 568.36 7.54 6.42 6.20
0.6 21.992 1.175 �0.0332 1.592 0.154 644.43 7.23 6.19 5.97
0.7 24.602 1.111 �0.0312 1.710 0.167 726.61 6.93 5.96 5.74
0.8 27.464 1.035 �0.0285 1.840 0.181 815.47 6.63 5.73 5.51
0.9 30.619 0.946 �0.0251 1.984 0.196 911.68 6.32 5.50 5.27
1.0 34.118 0.842 �0.0209 2.145 0.214 1016.05 6.02 5.26 5.03

Table 10
Optimal results of fuzzy model due to different d.

q d% E½eJ� d% E½eJ� d% E½eJ� d% E½eJ� d% E½eJ� d% E½eJ�
0.0 454.03 385.66 254.50 127.34 4.59 �117.22
0.1 468.07 412.65 306.51 203.08 102.48 4.59
0.2 482.22 440.12 359.10 280.43 203.08 127.34
0.3 496.49 468.06 412.65 359.10 306.51 254.50
0.4 510.88 496.49 468.06 440.12 412.65 385.66
0.5 5 525.39 10 525.39 20 525.39 30 525.39 40 525.39 50 525.39
0.6 540.03 554.83 584.90 615.61 646.95 678.93
0.7 554.83 584.90 646.95 711.55 778.72 848.48
0.8 569.79 615.61 711.55 813.28 920.86 1034.40
0.9 584.90 646.95 778.72 920.86 1073.60 1237.22
1.0 600.18 678.93 848.48 1034.40 1237.22 1457.62
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6.4. General model with cost and coefficients as rough parameters:

In this case total profit bJ from the planning horizon is rough in nature and is given by
Please
and ti
bJðu0;u1;u2;p0;p1Þ ¼ ĉsA� ^ch1B1 � ^ch2B2 � ĉ0P1 � ĉ1P2 � ĉ2P3 � ĉr1R1 � ĉr2R2 � ĉzD1 � ŝuS; ð29Þ
where A; B1; B2; P1; P2; P3; R1; R2; D1 and S are given in Appendix (cf. Eq. (30) to (39)).
Let ĉs ¼ ð½cs1; cs2�½cs3; cs4�Þ, ^ch1 ¼ ð½ch11; ch12�½ch13; ch14�Þ, ^ch2 ¼ ð½ch21; ch22�½ch23; ch24�Þ, ĉ0 ¼ ð½c01; c02�½c03; c04�Þ, ĉ1 ¼ ð½c11; c12�

½c13; c14�Þ, ĉ2 ¼ ð½c21; c22�½c23; c24�), ĉr1 ¼ ð½cr11; cr12�½cr13; cr14�Þ, ĉr2 ¼ ð½cr21; cr22�½cr23; cr24�Þ, ĉz ¼ ð½cz1; cz2�½cz3; cz4�Þ and ŝu ¼ ð½su1; su2�
½su3; su4�Þ.

So, using Lemma 2 expected profit of bJ; E½bJ� is given by
E½bJ� ¼ 1
4
½j1 þ j2 þ j3 þ j4�;
where j1, j2; j3 and j4 are given by Eq. (16) to (19).
To illustrate the above production-repairing model numerically, following input data are considered:

d0 ¼ 18; d1 ¼ 0:2; T ¼ 25; d ¼ 0:1, l ¼ 0:85; R ¼ 0:0757; ĉs ¼ ð½7;7:3�½6:8;7:5�Þ, ^ch1 ¼ ð½0:18;0:2�½0:15;0:22�Þ, ^ch2 ¼
ð½0:13;0:16�½0:11;0:18�Þ, ĉ0 ¼ ð½1:8;2:1�½1:5;2:2�Þ, ĉ1 = ð½0:8;1:2�½0:5;1:3�Þ, ĉ2 ¼ ð½0:04;0:08�½0:03; 0:1�Þ, ĉr1 ¼ ð½0:8;1:0�
½0:65;1:15�Þ, ĉr2 ¼ ð½0:03;0:05�½0:025;0:053�Þ, ĉz ¼ ð½0:08;0:12�½0:05;0:16�Þ, ŝu ¼ ð½4:5;5�½4;5:5�Þ.

For these input data the optimal values of u0; u1, u2; p0; p1; E½bJ� and production time duration of each cycle are found
and these optimal values are presented in Table 11.

From this subcase also, it is observed that one production cycle with out repairing and two production cycles with repair-
ing gives maximum expected profit from the planning horizon (cf. Table 11).
7. Conclusion

In this paper, a production-repairing decision-making model in fuzzy rough environment is considered. Till now, no pro-
duction inventory model has been formulated in such an environment. Here the cost and other parameters are assumed to be
fuzzy rough variables. Production and repairing rates are dynamic control variables, i.e. function of t, where coefficients are
decision variable. From the results obtained in numerical illustration section, following conclusions can be drawn
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Table 11
Optimum results of rough production inventory model.

m n�m u0 u1 u2 p0 p1 E½bJ� t0u1 t0u2 t0u3 t0u4 t0u5

1 1 18.000 1.333 �0.0344 2.338 0.150 685.87 11.33 9.83 – – –
1 2 23.712 1.168 �0.0331 1.680 0.164 692.88 7.01 6.01 5.80 – –
2 1 21.202 1.959 �0.0770 3.935 0.212 660.93 7.02 6.36 5.88 – –
1 3 28.876 0.589 �0.0094 1.395 0.183 691.77 4.85 4.30 4.04 3.86 –
2 2 27.137 1.225 �0.0458 2.657 0.193 667.18 4.88 4.48 3.96 4.04 –
3 1 26.169 1.499 �0.0626 5.580 0.279 638.94 4.91 4.47 4.47 3.86 –
1 4 32.339 �0.484 0.0578 1.276 0.209 676.24 3.68 3.43 3.17 2.82 2.44
2 3 30.549 0.861 �0.0305 2.112 0.192 659.63 3.64 3.42 3.03 2.97 3.00
3 2 29.630 1.187 �0.0497 3.641 0.228 639.15 3.66 3.39 3.31 2.89 3.02
4 1 30.022 1.003 �0.0431 7.143 0.342 612.85 3.66 3.43 3.36 3.45 2.71
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� Increase of uncertainties of parameters pushes the DMs into much uncertain situations specially who belongs to optimis-
tic class. On the other hand, increase of uncertainties decreases expected profit for pessimistic DMs.
� When production rate is dynamic control variable, more generalized production rate fetches more profit i.e. linear pro-

duction rate is better than constant production rate, quadratic production rate is better than linear production rate.
� When repairing rate is dynamic control variable, repairing should start from second cycle.
� Presence of inflation has a negative impact on expected profit for any production-repairing model.

Though the model is considered with displayed inventory level dependent demand, time dependent production rate and
repairing rate with out shortages, the present analysis can be extended to various inventory problems and production mod-
els with time dependent demand, variable rate of reworking, price discount etc. In this paper, the fuzzy/rough variables have
been transformed to equivalent crisp value in general form, using degree of optimism/pessimism q=ð1� qÞ. So DM can find
decisions for his/her organization according to their optimism/pessimism. Hence, the problem in other areas such as trans-
portation, portfolio selection etc. can be solved with fuzzy rough parameters, using this approach.
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