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a b s t r a c t

Because weapon systems are perceived as crucial in determining the outcome of a war, selecting weapon
systems is a critical task for nations. Just as with other forms of decision analysis involving multiple cri-
teria, selecting a weapon system poses complex, unstructured problems with a huge number of points
that must be considered. Some defense analysts have committed themselves to developing efficient
methodologies to solve weapon systems selection problems for the Republic of Korea’s (ROK) Armed
Forces. In the present study, we propose a hybrid approach for weapon systems selection that combines
analytic hierarchy process (AHP) and principal component analysis (PCA) to determine the weights to
assign to the factors that go into these selection decisions. These weights are inputted into a goal pro-
gramming (GP) model to determine the best alternative among the weapon systems. The proposed
hybrid approach that combines AHP, PCA and GP process components offsets the shortcomings posed
by obscurity and arbitrariness in AHP and therefore can provide decision makers with more reasonable
and realistic decision criteria than AHP alone. A case study on weapon system selection for the air force
demonstrates the usefulness and effectiveness of the proposed hybrid AHP–PCA–GP approach.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Because weapon systems are regarded as crucial to the outcome
of war, the selection of weapon systems is a critical national deci-
sion. The rapid development of military technologies makes weap-
on systems ever more sophisticated, expensive, and quickly
accelerates research on methods for selection of these systems.

The Republic of Korea (ROK) ministry of national defense (MND)
has been raising its force investment budget to more than 30% of
its defense budget, most of which is for weapon systems procure-
ment (Ministry of National Defense of Republic of Korea, 2008).
Moreover, along with the general trend of pursuing efficiency
and rationality in budgeting and expenditures, the MND also has
been under pressure to prepare its defense budget with the same
transparency and efficiency of every other governmental expendi-
ture. In fact, the ROK MND and the joint chief of staff (JCS) have
been evaluating concepts and methodologies to improve efficiency
in military affairs, especially in procurement of weapon systems.
This effort, however, has been mainly undertaken in a way that
relies on the intuition of high-level commanders for critical
decisions rather than on a systematic decision making process.
ll rights reserved.
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This has often led to subsequent changes and revisions that waste
the defense budget and delay procurement of weapon systems.

These waste and delay have occurred despite significant trials
and developments aimed at methods to determine force require-
ments efficiently and improve force structure. This is because the
efforts mainly focused on conceptual, macroscopic and ambiguous
projects that yielded nothing more than indications of the general
direction that force development should take. This current situa-
tion demands that analysts proceed to develop concrete and tangi-
ble methods for the selection of weapon systems.

Like most real-world decision making problems, the selection of
a weapon systems requires a multiple criteria decision analysis
(MCDA). Ho (2007) classified MCDAs into two technical categories,
multiple objective decision making (MODM) and multiple attribute
decision making (MADM). MODM is mathematical programming
that has multiple objective functions and constraints. When an
MCDA involves a number of independent or competing objectives,
a multi-criteria mathematical programming approach is useful
because it forces the simultaneous resolution of various objectives.
Goal programming (GP) is an example of MODM.

MADM selects the best alternative among the various attributes
that are to be considered. One of the most popular MADM tech-
niques includes AHP. AHP structurally combines tangible and
intangible criteria with alternatives in decision making. AHP
logically integrates the judgment, experience, and intuition of
decision makers. Because of its usability and flexibility, AHP has
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been widely applied to complex and unstructured decision making
problems such as resource allocation, alternative selection, manu-
facturing, and military decision making. Recently, the analytic net-
work process has been developed to handle decision problems that
are not hierarchically structured (Saaty, 2005). Further, the fuzzy
AHP is introduced to facilitate decisions under fuzzy situations
(Kong & Liu, 2005).

A number of studies have integrated MADM and MODM. These
studies have included a combined AHP-mathematical programming
approach. Vaidya and Kumar (2006) performed a comprehensive
review of integrating AHP with a variety of applications. Further,
Ho (2008) surveyed numerous studies that investigated AHP-math-
ematical programming approaches. Many articles are available on
combining AHP and GP. Some applied an AHP–GP combination to
university resource allocation (Kwak & Lee, 1998), media selection
in the consumer/industrial market (Kwak, Lee, & Kim, 2005), soft-
ware architecture selection (Reddy, Naidu, & Govindarajulu, 2007),
resource planning for health-care system (Kwak & Lee, 2002; Lee &
Kwak, 1999), computer-integrated manufacturing technology selec-
tion (Yurdakul, 2004), selection of cost drivers (Schniederjans & Gar-
vin, 1997), nuclear fuel cycle scenario selection (Kim, Lee, & Lee,
1999), maintenance selection problems (Bertolini & Bevilacqua,
2006), and supply chain selection (Wang, Huang, & Dismukes,
2004, 2005). On weapon system projects, some researchers applied
combined approaches such as a hybrid AHP-integer programming
approach to screen weapon systems projects (Greiner, Fowler,
Shunk, Carlyle, & McNutt, 2003), an AHP approach based on linguis-
tic variable weights (Cheng & Lin, 2002; Cheng, Yang, & Hwang,
1999), and an approach that integrated AHP with a technique for
ordering performance by comparing alternatives to an ideal solution
under a fuzzy environment (Dagdeviren, Yavuz, & Kılın, 2009).

Despite the usefulness of AHP, its limitation lies in its overreli-
ance on the intuition of decision makers. Existing AHP–GP models
are limited in their ability to cope with both tangible data and
intangible intuitive factors. Weapon systems selection, considered
the terminal stage of a force requirement decision process, has an
enormous spectrum of criteria and data that should be taken into
account. Until now, however, analysts have made limited use of
these data. It may be unreasonable to use AHP with only intangible
factors and weighted decision elements when tangible real data
are available that can be incorporated into the decision making.

To overcome the shortcomings posed by the obscurity and arbi-
trariness in AHP, the present study integrates principal component
analysis (PCA) and AHP to determine the weights in a GP model. In
contrast with AHP, the weights obtained from PCA are derived
from actual data, and more weight is assigned to criteria that have
more information. In our proposed hybrid AHP–PCA–GP model,
tangible real data are elevated to an equal position with intangible
intuition; thus, both have the same importance in producing the
weights integrated into decision elements. This scheme pursues
reality and rationality by actively using the real data in the decision
process.
Table 1
Random consistency index according to number of elements.

n 3 4 5 6 7 8 9 10

RI 0.58 0.90 1.12 1.32 1.41 1.45 1.49 1.51
2. Analytical methods

2.1. Analytic hierarchy process

AHP, introduced by Saaty (1980), designs general decision prob-
lems based on a multilevel hierarchy of goals, criteria, subcriteria,
and alternatives. AHP is characterized by three basic principles:
hierarchical structure, the relative priority of decision criteria;
and consistent judgment. It uses a pairwise comparison technique
to derive the relative importance (or weight) of each criterion that
reflects reasonable human judgment on elements in the same cat-
egory. A pairwise comparison allows conversion of linguistic judg-
ments into numerical scales. When the importance of one element
to another can be expressed as a scale of 1–9, scale 1 means the
two elements are of equal importance, and scale 9 means one is ex-
tremely more important than the other. Pairwise comparison helps
decision makers simplify a complex problem by focusing their
interest on the comparison of just two criteria and improves their
consistency across the decision process (Badri, 1999, 2001).

Judgment by pairwise comparison produces a reciprocal matrix
A, represented as follows:

A ¼

a11 a12 . . . a1n

a21

..

.
. .

. ..
.

an1 � � � ann

0
BBB@

1
CCCA:

Each entry of A represents the relative importance of decision ele-
ments. For example, aij is the relative importance in decision ele-
ment i against decision element j, and vice versa. It satisfies
aij = 1/aji. The actual relative weights of decision elements can be
obtained by computing the normalized eigenvector of A that satis-
fies the following equation:

A �w ¼ k �w; ð1Þ

where k is the eigenvalue associated with eigenvector w. Saaty (1980)
recommended using the eigenvector, wmax = [w1, w2, . . ., wn]T corre-
sponding to the maximum eigenvalue, kmax, to represent the relative
weights of each of the n criteria.

This process should be performed at all levels of the criteria to
obtain all the relative weights of the decision elements. During the
process of deducing the weights, a consistency test can be per-
formed to verify the reasonability of the decision makers’ pairwise
comparison. The measure of consistency is obtained by a consis-
tency index (CI) and a consistency ratio (CR), which are defined
as follows:

CI ¼ kmax � n
n� 1

; ð2Þ

CR ¼ CI
RI
; ð3Þ

where n is the number of decision elements, and the random consis-
tency index (RI) is an experimental value provided by Saaty (1990)
as shown in Table 1.

It can be seen that the RI increases in proportion to the order of
matrix A. kmax equals to n if the judgments by comparison are per-
fectly consistent. If the CR is less than 0.1, the judgment is consis-
tent; if the CR is greater than 0.2, the judgment is not consistent. If
the value of the CR is between 0.1 and 0.2, the judgment is accept-
able (Saaty, 1990).

2.2. Principal component analysis

We apply PCA, one of the most widely used multivariate statis-
tical techniques for dimensionality reduction, to determine the
weights of the variables (Jolliffe, 2002). PCA identifies a lower
dimensional variable set that can explain most of the variability
of the original variable set. Given the random vector that has a
sample of observations (n) for a set of p variables (i.e., XT = [X1,
X2, . . ., Xp]) and its covariance (or correlation) matrix R, the first
step of PCA is to transform the original variables X into linear com-
binations Z = aTX that are uncorrelated, where ZT = [Z1, Z2, . . ., Zp].
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Using eigenvalue analysis of R, these Zi (i = 1,. . .p) are ordered such
that the Zi with the highest eigenvalue of R corresponds to the first
PC and describes the largest amount of the variability in the origi-
nal data; the second highest is the second PC, etc. Significant
dimension reduction can be achieved if only the first few PCs are
needed to represent most of the variability in the original high-
dimensional space. This is common when there is high multicollin-
earity among the original variables. It should be noted that if the
units of the original variables are different, the data should be nor-
malized before performing PCA (Shumueli, Patel, & Bruce, 2007).
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Fig. 1. Hybrid model development procedure.
2.3. Goal programming

GP is a multi-objective decision making approach that can effec-
tively handle multiple independent or conflicting objectives simul-
taneously. As a modification and extension of linear programming,
GP serves to minimize an objective function that can be defined as
a combination of multidimensional absolute deviations from the
target value. GP has wide usability and flexibility because of its
capability to admit nonhomogeneous units of measure (Bertolini
& Bevilacqua, 2006).

GP can be classified into two widely used variants that are dis-
tinguished by the way they determine weights (or priorities) and
objective functions (Bertolini & Bevilacqua, 2006; Ignizio, 1980).
First, the preemptive GP model, also known as the lexicographic
GP model, is formed when goals are clearly ranked and deviation
variables are ranked. Second, the weighted GP model, also called
the nonpreemptive GP model, attempts to minimize the total
weighted deviations from all goals. This latter model is useful
when the relative weights of decision elements for goals are
available.

In the present study, we used the weighted GP model with addi-
tional hard constraints and integer decision variables that can be
formulated as follows (Min & Storbeck, 1991):

Min Z ¼
Xm

i¼1

ðwþi � d
þ
i þw�i � d

�
i Þ

Subject to
Xm

i¼1
aij � xj � dþi þ d�i ¼ gi; j ¼ 1;2; . . . ;n

xj P 0; j ¼ 1;2; . . . ; r

xj 2 Z; j ¼ r þ 1; r þ 2; . . . ;n

dþi ;d
�
i P 0; i ¼ 1;2; . . . ;m

where Z is the sum of weighted deviational variables; wþi ; w�i , the
positive and negative relative weight of ith deviation; d�i ; dþi , the po-
sitive and negative deviation variable from the ith goal; aij, the jth
decision coefficient of the ith goal or hard constraint; xj, the jth deci-
sion variable and gi is the ith goal or target value. The deviation
variables can also be represented as follows:

d�i ¼ gi �
Xn

j¼1

aij � xj

" #þ
;

dþi ¼
Xn

j¼1

aij � xj � gi

" #þ
;

where ½x�þ ¼maxðx;0Þ.
The relative weights ðwþi ;w�i Þ are nonnegative real numbers in

which the greater their value, the greater their relative importance
of the ith goal. The weighted sum of deviation variables should be
minimized to achieve an optimal solution of the problem. When
the target value of a goal should not be exceeded, then it is neces-
sary to minimize the respective positive deviation variable. Simi-
larly, the GP problem minimizes the negative deviation variable
of goals that should not be underachieved. If it is desirable to have
a goal exactly match its target value, the summation of both of the
deviation variables must be minimized. The GP model is in the
class of NP-hard problems, so the best algorithms to solve it
require exponential computational time in the worst case scenario.
Branch-and-bound is the most prevalent of such algorithms and is
used within most integer programming commercial software. In
the special case in which there are no integer decision variables
(r = n), the GP model can be solved using linear programming
methods. Such methods include interior point methods, some of
which have polynomial complexity, as well as the simplex method,
which works well in practice and is also prevalent in commercial
software. When solving the GP model, there may be cases in which
multiple equally optimal solutions exist. Although the decision
maker would likely be satisfied with any such equally optimal
solution, she/he may wish to reconsider the weights in the pair-
wise comparison matrix of the AHP component of the method to
break ties.
3. The proposed hybrid approach

Fig. 1 displays an overview of the proposed AHP–PCA–GP hybrid
approach.

Setting up the problem requires decomposing all of the complex
multi-criteria into a hierarchical structure in which all of the deci-
sion elements can be arranged. Decision elements consist of all the
goals, criteria, subcriteria, and alternatives identified as necessary
to arrive at an optimal solution to the problem. Each element
should be defined and hierarchically designed so that it describes
the problem realistically and helps reach a proper decision.

Data of the terminal subcriteria are then collected. All of the
data should be in quantitative or metric form. If quantitative data
are not available, conversion of the qualitative data into quantita-
tive data by a suitable technique is recommended. The conversion
methods include Delphi method and AHP. It should be stated that
when applying this approach to a real problem, the data collection
is often time-consuming and challenging.

Next, we determine weights by the AHP and PCA. For AHP, all
decision makers use their experience and knowledge to conduct
pairwise comparisons with those decision elements in the same



Fig. 2. Hierarchical structure for missile systems selection.
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cluster. Then comparison matrices are formed with each cluster to
determine the relative importance of the components at the crite-
ria and subcriteria levels. To check for consistency of judgments,
consistency tests are performed in every cluster. If the consistency
ratio exceeds the limit, the pairwise comparisons should be re-
vised. After all the pairwise comparisons and consistency tests
are performed at every level of criteria, the final relative weights
of criteria and subcriteria are obtained by aggregating all of the
decision makers’ relative weights that have been derived through
the above process.

In PCA, the reduced dimensions, Zi’s are each a linear combina-
tion of the original variables with the loading values (aij,
i = 1, 2, . . ., p; j = 1, 2, . . ., p). The Zi’s can be represented as follows:

Z1 ¼ a11X1 þ a12X2 þ � � � þ a1pXp

Z2 ¼ a21X1 þ a22X2 þ � � � þ a2pXp

..

.

Zp ¼ ap1X1 þ ap2X2 þ � � � þ appXp

ð4Þ

The loading values represent the importance of each variable to
form a PC. For example, aij indicates the degree of importance of
the jth variable in the ith PC. This idea can be extended to k PCs
of interest. Determination of the number of PCs (i.e., k) to retain
is subjective. Typically, the scree plot that effectively visualizes
the variability of each PC is used (Johnson & Wichern, 2002). A
PCA loading value for the jth original variable can be computed
from the first k PCs. Thus, an overall PCA weight for jth variable
can be represented as follows:

wPCAj ¼
Xk

i¼1

jaijjxi; j ¼ 1;2; . . . ;p; ð5Þ

where xi represents the proportion of total variance explained by
the ith PC. In other words, wPCAj is a linear combination of k loading
values weighted by their variability and thus reflect the contribu-
tion of jth variable to form k PCs.

The weights obtained from the AHP and PCA can be synthesized
by the following equation to calculate the overall weight of the ith
criterion, wSYNi:

wSYNi ¼
wAHPi �wPCAiPm
i¼1wAHPi �wPCAi

ð6Þ

where m is the number of criteria.
We built a weighted zero–one GP model with the synthesized

weights in an effort to select the best weapon system. This process
includes defining the decision variables and their parameters and
constructing constraints and objective functions. Because the devi-
ations are measured with different units or scales, the objective
functions must be normalized to ensure the comparability of any
deviations from the goals.

Finally, the optimal solution (alternative) for the GP problem is
obtained by using the LINGO, version 11.0 (Lindo systems, Chicago,
IL), mathematical programming solution package. The optimal
solution determines the best weapon system alternative that satis-
fies the constraints.

4. Case study

To illustrate the procedure involved in the proposed hybrid ap-
proach and to demonstrate its effectiveness, we present a case
study on surface-to-air missile system selection.

4.1. Problem setup and data

The problem is designed as a hierarchical structure of four lev-
els: First the goal of the decision problem, followed by the criteria,
subcriteria, and alternative levels. As shown in Fig. 2, to select an
optimal alternative, we considered six candidate missile systems
as decision variables (x1, x2, . . ., x6) and evaluated them based on
three criteria and 19 subcriteria.

Each subcriterion, identified and structured in the previous stage,
has its own characteristic data about the candidate missile systems
(Table 2). The criteria and characteristic data were identified by the
research team on the basis of confidential materials on missile sys-
tems and Ahn’s study (2003). Because of the confidentiality issue,
part of the data was arbitrary but meaningfully generated.

We also have target values, or goals, for each subcriterion that
should be achieved in the decision making process. Usually the
JCS and Armed Forces determine the target values in the form of
requirements for operational capability that describe the capabili-
ties demanded for successful operational performance.

4.2. Hybrid AHP–PCA model

In the process of obtaining the weights by the AHP in this case
study, five defense procurement experts were consulted to derive
individual relative preferences through pairwise comparison. Each
weight was determined by relative preference matrices that used
the eigenvector method. The relative preference matrices produced
by each expert were input to Expert Choice version 11.5 (Expert
choice, Arlington, VA) software to establish the weights of the cri-
teria and subcriteria. These weights were then aggregated to estab-
lish a single set of weights. A consistency test is required to verify
the decision makers’ judgment. Because all the CRs were less than
0.1 in the case study, the pairwise judgments were found to be
reasonable.

The PCA weights of individual variables were also calculated by
(5). We selected the first 5 PCs (i.e., k = 5) that account for 99% of
the variability in the entire dataset. We used MATLAB (MathWork
Inc., Natick, MA) to generate PCA weights. The resulting weights for
AHP (wAHP), PCA (wPCA) and AHP + PCA (wSYN) are shown in Table 3.
For example, the synthesized weight for the acquisition cost vari-
able (14th variable) was calculated as follows:

wSYN14 ¼
wAHP14 �wPCA14P19

i¼1wAHPi �wPCAi

¼ 0:029 � 0:044
0:045

¼ 0:028
4.3. Hybrid GP model

A weighted integer GP model can be formulated with a decision
variable of xj (0 or 1) to indicate whether missile system j is se-
lected. Because we have 19 goals to satisfy, 19 goal constraints



Table 2
Characteristic data on alternative missile systems.

Criteria Subcriteria Target values Alternative missile systems

Missile 1 Missile 2 Missile 3 Missile 4 Missile 5 Missile 6

Basic capabilities Range 150 150 160 135 140 155 170
Altitude 25 24 28 22 24 28 30
Hit probability 0.8 0.75 0.8 0.75 0.75 0.8 0.8
Reaction time 10 12 9 13 12 10 9
Setup time 5 5.5 5 6 5.5 5 5
Detection targets 100 95 110 85 95 100 100
Engagement targets 8 6 9 6 6 8 8

Operational capabilities Interoperability 0.7 0.75 0.8 0.65 0.65 0.7 0.7
ECM 0.7 0.65 0.75 0.65 0.65 0.75 0.75
Anti–ARM 0.8 0.75 0.8 0.65 0.7 0.7 0.8
Mobility 0.7 0.65 0.65 0.75 0.75 0.75 0.7
Trainability 0.7 0.75 0.75 0.7 0.65 0.65 0.65
ILS availability 0.8 0.8 0.8 0.75 0.75 0.75 0.75

Cost and technical effects Acquisition cost 1100 1100 1250 950 1050 1050 1100
Maintenance cost 11 12 14 8 8 9 12
Offset trade 0.6 0.5 0.45 0.75 0.6 0.6 0.45
Technological effect 1 0.9 0.9 1.1 1 0.9 0.9
Industrial effect 1 0.8 0.8 1.2 1.1 1 0.8
Corporation growth 1 0.9 0.9 1.1 1 1 0.8

Table 3
Weight-deriving process for criteria.

Criteria wAHP wPCA wSYN

Basic capabilities (0.410)
Range (0.119) 0.049 0.044 0.047
Altitude (0.089) 0.037 0.062 0.051
Hit probability (0.260) 0.107 0.017 0.039
Reaction time (0.143) 0.059 0.086 0.111
Setup time (0.112) 0.046 0.041 0.042
Detection targets (0.107) 0.044 0.040 0.039
Engagement targets (0.169) 0.069 0.083 0.127

Operational capabilities (0.449)
Interoperability (0.181) 0.081 0.042 0.076
ECM (0.274) 0.123 0.038 0.104
Anti–ARM (0.254) 0.114 0.037 0.093
Mobility (0.107) 0.048 0.034 0.036
Trainability (0.067) 0.030 0.024 0.016
ILS availability (0.118) 0.053 0.014 0.017

Cost and technical effects (0.141)
Acquisition cost (0.204) 0.029 0.044 0.028
Maintenance cost (0.124) 0.018 0.116 0.045
Offset trade (0.096) 0.014 0.097 0.029
Technological effect (0.262) 0.037 0.039 0.032
Industrial effect (0.145) 0.021 0.089 0.040
Corporation growth (0.168) 0.024 0.051 0.027
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are also present. The constraints on the basic capabilities are ex-
pressed as follows:

150x1 þ 160x2 þ 135x3 þ 140x4 þ 155x5

þ 170x6 � dþ1 þ d�1 ¼ 150 ð7Þ
24x1 þ 28x2 þ 22x3 þ 24x4 þ 28x5 þ 30x6 � dþ2 þ d�2 ¼ 25 ð8Þ
0:75x1 þ 0:8x2 þ 0:75x3 þ 0:75x4

þ 0:8x5 þ 0:8x6 � dþ3 þ d�3 ¼ 0:8 ð9Þ
12x1 þ 9x2 þ 13x3 þ 12x4 þ 10x5 þ 9x6 � dþ4 þ d�4 ¼ 10 ð10Þ
5:5x1 þ 5x2 þ 6x3 þ 5:5x4 þ 5x5 þ 5x6 � dþ5 þ d�5 ¼ 5 ð11Þ
95x1 þ 110x2 þ 85x3 þ 95x4 þ 100x5

þ 100x6 � dþ6 þ d�6 ¼ 100 ð12Þ
6x1 þ 9x2 þ 6x3 þ 6x4 þ 8x5 þ 8x6 � dþ7 þ d�7 ¼ 8 ð13Þ

The constraints on operational capabilities are:
0:75x1 þ 0:8x2 þ 0:65x3 þ 0:65x4 þ 0:7x5

þ 0:7x6 � dþ8 þ d�8 ¼ 0:7 ð14Þ
0:65x1 þ 0:75x2 þ 0:65x3 þ 0:65x4 þ 0:75x5

þ 0:75x6 � dþ9 þ d�9 ¼ 0:7 ð15Þ
0:75x1 þ 0:8x2 þ 0:65x3 þ 0:7x4 þ 0:7x5

þ 0:8x6 � dþ10 þ d�10 ¼ 0:8 ð16Þ
0:65x1 þ 0:65x2 þ 0:75x3 þ 0:75x4 þ 0:75x5

þ 0:7x6 � dþ11 þ d�11 ¼ 0:7 ð17Þ
0:75x1 þ 0:75x2 þ 0:7x3 þ 0:65x4 þ 0:65x5

þ 0:65x6 � dþ12 þ d�12 ¼ 0:7 ð18Þ
0:8x1 þ 0:8x2 þ 0:75x3 þ 0:75x4 þ 0:75x5

þ 0:75x6 � dþ13 þ d�13 ¼ 0:8 ð19Þ

A set of the constraints on cost and technical effects are:

1100x1 þ 1250x2 þ 950x3 þ 1050x4 þ 1050x5

þ 1100x6 � dþ14 þ d�14 ¼ 1100 ð20Þ
12x1 þ 14x2 þ 8x3 þ 8x4 þ 9x5 þ 12x6 � dþ15 þ d�15 ¼ 11 ð21Þ
0:5x1 þ 0:45x2 þ 0:75x3 þ 0:6x4 þ 0:6x5

þ 0:45x6 � dþ16 þ d�16 ¼ 0:6 ð22Þ
0:9x1 þ 0:9x2 þ 1:1x3 þ x4 þ 0:9x5 þ 0:9x6 � dþ17 þ d�17 ¼ 1 ð23Þ
0:8x1 þ 0:8x2 þ 1:2x3 þ 1:1x4 þ x5 þ 0:8x6 � dþ18 þ d�18 ¼ 1 ð24Þ
0:9x1 þ 0:9x2 þ 1:1x3 þ x4 þ x5 þ 0:8x6 � dþ19 þ d�19 ¼ 1 ð25Þ

where decision variables are the missile system alternatives.

xj ¼
1 if the jth alternative is selected;
0 otherwise;

�
; j ¼ 1;2; . . . ;6:

The model also includes the following hard constraint:

X6

j¼1

xj ¼ 1

The objective function is to minimize the total weighted devia-
tions from the goals that satisfy the above constraints. It can be ex-
pressed as follows:
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Fig. 3. Comparison of the decision results between the AHP–PCA–GP and AHP–GP
models. AHP–GP approach chose the alternative 6 with the objective value of 2.295
and AHP–PCA–GP approach chose the alternative 5 with the objective value of
1.705.
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Min Z ¼ 0:047d�1 þ 0:051d�2 þ 0:039d�3 þ 0:111dþ4
þ 0:042dþ5 þ 0:039d�6 þ 0:127d�7 þ 0:076d�8
þ 0:104d�9 þ 0:093d�10 þ 0:036d�11 þ 0:016d�12

þ 0:017d�13 þ 0:028dþ14 þ 0:045dþ15 þ 0:029d�16

þ 0:032d�17 þ 0:04d�18 þ 0:027d�19: ð26Þ

The weights of the deviation variables in the objective function
are wSYN as shown in Table 3. The objective function of the GP prob-
lem is a combination of the heterogeneous units of measure. Thus,
the constraints should be normalized before solving the problem
so that the deviation variables in the objective function are ad-
justed to the same unit of measure. We used Lingo to solve the
GP model. Because the purpose of the problem is to select the best
missile system, the optimal alternative in our case study was mis-
sile system 5.

Because of the conflicts that typically accompany any selection
result, whatever it is, more information, such as the degree of pref-
erence the optimal selection represents, is necessary. A selection
chosen as an overwhelming preference of the decision makers is
likely to gain wide support and follow-up measures will be accel-
erated in the execution stage. On the other hand, a solution se-
lected by a slight margin may provoke controversy and questions
about the reliability and validity of the decision process.

Fig. 3 shows the values of the objective function with the selec-
tion of each alternative, with x5 shown as the best choice with an
objective value of 1.705, and x3 is the least favorable choice with
an objective value of 12.394. For comparison, we constructed the
GP model with AHP alone (AHP–GP) and solved the same problem.
The AHP–GP model yielded a different decision result from the
AHP–PCA–GP model in that the optimal solution of the AHP–GP
model is x6 with an objective value of 2.295.

5. Conclusion

We have proposed a hybrid AHP–PCA–GP model and applied
this model to the decision making process for selection of a weap-
on system. In deriving the relative weights to assign to various
decision elements necessary for the GP model, we used PCA to off-
set the shortcomings of AHP when used alone. The proposed model
for decision making goes beyond the previous AHP–GP combined
model. This improvement is achieved by identifying the attributes
affecting weapon systems selection and by reflecting the real data
characteristics of weapon systems as well as the intuition of ex-
perts in the decision process.
As with other MCDA, weapon systems selection presents tre-
mendous challenges because such systems and the decisions they
involve are complex, unstructured, and detailed. Because the deci-
sion involves both tangible and intangible factors and both quanti-
tative and qualitative scales, decision makers have difficulty in
structuring the problem and evaluating each criterion under the
same conditions. The proposed approach will help to solve these
problems.

Although we have restricted ourselves to the problem of weap-
on systems selection, the proposed hybrid model has so much flex-
ibility that with slight modification, it could be applied widely in
fields other than military ordnance.

Confronted with the trend of increased demand for rationality
and transparency in defense budget expenditures, decision makers
in the ROK MND and JCS place increasing emphasis on methods,
the validity of the decision process, and the reliability of data used
in decisions on military affairs. This trend will only intensify with
the increase in the national defense expenditures and the shorter
life cycle of weapon systems that is a result of the pace of military
technology development. The proposed hybrid approach may con-
tribute to satisfying the demands for rationality and transparency
in defense expenditures by strengthening the underlying rationale
behind military procurement decisions.
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