
Complete EAP Method: User Efficient and
Forward Secure Authentication Protocol

for IEEE 802.11 Wireless LANs
Chun-I Fan, Member, IEEE, Yi-Hui Lin, and Ruei-Hau Hsu

Abstract—It is necessary to authenticate users who attempt to access resources in Wireless Local Area Networks (WLANs).

Extensible Authentication Protocol (EAP) is an authentication framework widely used in WLANs. Authentication mechanisms built on

EAP are called EAP methods. The requirements for EAP methods in WLAN authentication have been defined in RFC 4017. To

achieve user efficiency and robust security, lightweight computation and forward secrecy, excluded in RFC 4017, are desired in WLAN

authentication. However, all EAP methods and authentication protocols designed for WLANs so far do not satisfy all of the above

properties. This manuscript will present a complete EAP method that utilizes stored secrets and passwords to verify users so that it can

1) fully meet the requirements of RFC 4017, 2) provide for lightweight computation, and 3) allow for forward secrecy. In addition, we

also demonstrate the security of our proposed EAP method with formal proofs.

Index Terms—Wireless local area networks (WLANs), extensible authentication protocol (EAP), forward secrecy, passwords,

authentication, lightweight computation

Ç

1 INTRODUCTION

AUTHENTICATION is the process of verifying users’
identities when they want to access resources from

networks. Typically, a user provides his authentication
factors to a server, and then the server verifies them. If the
factors are correct, the user is authorized to gain the access
right to the resources provided by the server, and the server
generates a session-key material that is shared with the
user. Similarly, it is also crucial for Wireless Local Area
Networks (WLANs) to authenticate users and build secure
channels with them.

IEEE 802.11 [32], the most widely used standard, contains
definitions for the operations of WLANs. The original design
in the standard provides only some basic authentication
mechanisms, such as preshared key establishment and
password verification implemented between a user and a
server, called Wired Equivalent Privacy (WEP). WEP is not
secure because an attacker can obtain unauthorized access
through intercepted messages [22]. The security of IEEE
802.11 was latter amended to include Wi-Fi Protected Access
(WPA) and WPA2 [33].

IEEE 802.1x [34] defines the message encapsulation of
Extensible Authentication Protocol (EAP). Fig. 1 shows the
typical 802.1x message flows of successful authentication,
where a supplicant represents a mobile node, an authenti-
cator is usually an Access Point (AP), and the authentication

server is usually the RADIUS server [14] that is responsible
for authorization, authentication, and accounting. After the
supplicant and the authenticator establish a data link, the
communication between the supplicant and the authentica-
tion server starts.

Extensible Authentication Protocol (EAP), defined in
RFC 3748 [1], is a flexible authentication framework that has
been frequently utilized in WLANs. For IEEE 802.11, WPA
and WPA2 have utilized EAP as their authentication
mechanisms, such as EAP-TLS, EAP-TTLS, and EAP-SIM.
A network administrator can appropriately choose a
desired authentication mechanism, called an EAP method.
The requirements for the EAP methods used in WLAN
authentication have been defined in RFC 4017 [29].

There are several EAP methods designed for wireless
networks. These EAP methods can be classified into three
classes: 1) legacy EAP methods defined in RFC 3748 [1], [28],
2) EAP certificate-based methods that establish a tunnel and
utilities of certificates [17], [4], [20], [11], [31], and 3) EAP
methods that provide a way for two parties to convince each
other that they both know a secret without revealing
the secret to any third party who might be listening to the
conversation [24], [5], [7], [10]. The methods of Class 1 are
very efficient because no asymmetric-key computation is
involved, but they suffer from some attacks. The security is
much improved in the methods of Class 2. EAP-TLS uses
certificates in both server and client sides to achieve mutual
authentication. However, applying for a certificate is
complicated because the client and the server need to
expend extra efforts in certificate maintenance and revoca-
tion. In order to fix these weaknesses, the other certificate-
based methods, such as EAP-TTLS, EAP-PEAP, and EAP-
FAST, can choose to use the certificates or the passwords to
authenticate the clients. The methods of Class 3 accept pre-
shared secrets as authenticated credentials. They save the
cost of verifying certificates while achieving the same

672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

. The authors are with the Department of Computer Science and
Engineering, National Sun Yat-sen University, No. 70, Lienhai Rd.,
Kaohsiung 80424, Taiwan.
E-mail: cifan@faculty.nsysu.edu.tw, {yihui1223, xyzhsu}@gmail.com.

Manuscript received 26 Dec. 2011; revised 29 Mar. 2012; accepted 8 May
2012; published online 22 May 2012.
Recommended for acceptance by D. Turgut.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-12-0935.
Digital Object Identifier no. 10.1109/TPDS.2012.164.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

security as the methods in Class 2. However, Class 3
methods still utilize the asymmetric algorithms, such as the
Diffie-Hellman algorithm, in the key exchange procedure to
provide perfect forward secrecy [19].

EAP-SSC [15] was designed especially for the smart card
environment in 2004. The method builds an EAP secured
channel between a smart card and an authentication
server in both asymmetric and symmetric key-exchange
models. The computation is efficient, but it does not fulfill
some requirements of RFC 4017 and the security of
forward secrecy.

Some two-factor authentication protocols designed for
WLAN environments have been proposed in the literature.
In 2003, Badra and Serhrouchni [8] proposed a key-
exchange protocol to enhance end-to-end security in WAP.
In 2004, Park and Park [26] proposed a two-factor
authenticated key-exchange protocol for public wireless
LANs. In the protocol, users accept passwords and tokens,
such as smart cards, to perform authentication with a server.
Park et al. claimed that it achieves mutual authentication,
identity privacy, half forward secrecy, and low computa-
tion. Yoon and Yoo [30] proposed a protocol in 2006 where
the number of rounds is fewer than Park et al.’s protocol, but
Yoon et al.’s plan did not provide identity privacy.

In 2008, Juang and Wu [25] pointed out that Park et al.’s
protocol did not achieve identity privacy and could not
withstand dictionary attacks due to low entropy of iden-
tities. Therefore, Juang and Wu proposed two protocols with
mutual authentication, identity privacy, and half forward
secrecy. The difference between the two protocols is the way
they achieve identity privacy. The first protocol protects the
user’s identity via a hash function, and the second one
achieves this by using a new pseudoidentity for each session.
However, we find that the first protocol also suffers from
dictionary attacks on users’ identities. Moreover, all of the
above protocols [30], [25], [26] do not satisfy the require-
ments defined in RFC 4017 and they just achieve half
forward secrecy instead of perfect forward secrecy.

In this paper, we propose an authentication protocol for
wireless LAN environments that fully satisfies the EAP
method requirements of RFC 4017 and perfect forward
secrecy. Furthermore, since mobile devices are not

suitable for high-cost computation, such as exponentiation
computation, it is necessary to adopt a lightweight and
secure authentication protocol in WLANs. Therefore, our
work avoids exponentiation computations by applying
symmetric-key algorithms, and it reduces the communica-
tion cost by employing a two-round trip, so the perfor-
mance is enormously improved. We also prove that our
protocol is secure.

Since 802.11 wireless LANs have been widely used in
computation restricted mobile devices, such as smart
phones and tablet computers, an energy-saving EAP
method is desired. Some EAP methods can fulfill the
security requirements in RFC4017 and achieves perfect
forward secrecy, but they consume much more computation
energy than our proposed EAP method. We avoid using
asymmetric cryptosystems such that our method saves
about 10,000 times computation cost in an Arm Cortex-A8
machine while it can still achieve the same security level.

The rest of the paper is organized as follows: in Section 2,
we summarize the contribution of our research. In Section 3,
we demonstrate our EAP method. In Section 4, we provide
the security model and summarize the security properties
of the proposed protocol, where the formal proofs for the
security properties are shown in the supplementary file,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2012.164. In Section 5, we compare widely used
EAP methods and other authentication protocols designed
for WLANs with our proposed EAP method. Finally, we
make conclusions about this research in Section 6.

2 CONTRIBUTIONS

Our proposed protocol will achieve the following goals.

1. Filling security requirements in RFC 4017. RFC
4017 defined the EAP requirements for EAP meth-
ods in WLANs. It has been considered as a standard
for WLANs. Our proposed EAP method fills the
following security requirements for wireless LANs:

a. Generation of symmetric keying material. Our
EAP method can generate a session key. The
session key is produced during authentication
used to protect exchanged data

b. Mutual authentication support. Our EAP meth-
od provides mutual authentication. A client
authenticates a server and vice versa. The client
can verify if the server is rogue, while the server
will know whether the client is legitimate.

c. Resistance to dictionary attacks. The proposed
EAP method provides a mechanism to with-
stand dictionary attacks when it accepts pass-
words as a credential. That is, an attacker cannot
determine whether a guessed password is
correct through the intercepted messages.

d. Protection against man-in-the-middle attacks.
In the EAP method, an attacker cannot inter-
cept, modify, and send the modified messages
to the receiver without being detected. This
protection is relevant to cryptographic binding,
integrity protection, replay protection, and
session independence.

FAN ET AL.: COMPLETE EAP METHOD: USER EFFICIENT AND FORWARD SECURE AUTHENTICATION PROTOCOL FOR IEEE 802.11... 673

Fig. 1. The message exchange procedure of IEEE 802.1x.

e. Protected cipher suite negotiation. The EAP
method can negotiate a cipher suite to protect an
EAP conversation in which the cipher suite
negotiation is also protected.

f. End-user identity hiding. The identities of the
users who participate in the exchange are
encrypted during an EAP conversation.

g. Fast reconnect. The current security association
is established in a smaller number of round trips
when a security association has been previously
established.

2. Low computation and communication cost. Due to
hardware-limited resources, low computation and
communication costs are required when using mobile
devices. Since public key encryptions usually execute
more computations, we adopt symmetric encryptions
to reduce the computation cost. Furthermore, the
number of round trips between a user and a network
system is minimized to two, which decreases the
communication cost.

3. Forward secrecy. Forward secrecy, one of the most
important security properties in communication,
makes it impossible for attackers to derive previous
session keys even though the long-term key material
has been revealed. We provide this capability in our
proposed protocol.

4. Formal security proofs. To guarantee security, the
security of an authentication protocol should be
formally defined and proved. Some EAP methods,
such as EAP-MD5 and EAP-LEAP, were believed to
be secure until some security flaws were found later.
We formally define secure mutual authentication,
secure session key exchange, and forward secrecy
according to [3], [9] and theoretically prove the
security of our protocol based on that of the secure
cryptographic components we adopted.

3 THE PROPOSED EAP METHOD

In our proposed EAP method, we define three participants,
U , AP, and AS, which denote a user, an access point, and an
authentication server, respectively. We assume that the
communication channel between AS and AP is secure. The
execution flow of the proposed method is shown in Fig. 2.
In the registration phase, U and AS negotiate shared
credentials for future authentication. The registration phase
is performed offline. After registering with AS, U first
normally authenticates AS and AP . In the normal authen-
tication process, AS updates some parameters shared with
U and helps U and AP share time-limited credentials for a
fast reconnect process. To accelerate the following authen-
tication processes, U is able to perform the fast reconnect
process with frequently visited APs. To deal with an AP
that is not frequently visited, U and AP periodically delete
their expired credentials if the time interval between the last
visit and the present visit exceeds a certain predefined limit.
Thus, U can perform the fast reconnect process only with
frequently visited APs if the shared credentials exist.
Otherwise, U performs the normal authentication process.
Besides, if the fast connect process fails due to some reasons
(e.g., man-in-the-middle attacks, asynchronous updating of

shared credentials, or a crashed AP), U will perform the
normal authentication process to refresh the shared
credentials with the AP .

In the registration phase, the server AS and the user U
share credentials, which is performed offline. The creden-
tials are 1) a long-term key k, 2) a password pw chosen by
the user, and 3) a random one-time key y for protecting the
long-term key in the current session. Then, the user stores
ðUID;SID; k; yÞ and the server stores ðUID; k; y; pw; �Þ and
ð�y; ��Þ as a registration record of the user in its database,
where UID and SID are the identities of the user and the
server, respectively, � ¼ Ek�yðUIDÞ, and the variables,
ð�y; ��Þ, are initially null. The cryptographic functions
utilized in the method are 1) H, a one-way hash function
and 2) ðEK;DKÞ, symmetric encryption and decryption
functions with a key K.

In the normal authentication process of our EAP
method (see Fig. 3), there are eight steps in the authentica-
tion after EAP-Request/Identity (i.e., Step 2 in the proce-
dure of IEEE 802.1x shown in Fig. 1).

1. U ! AP : The user computes tid1 ¼ Ek�yðUIDÞ and
tid2 ¼ Ek�yðUIDkNCÞ, whereNC is a string randomly
chosen by the user, and sends a temporal identity
TID ¼ ftid1; tid2g to respond to the identity request.

2. AP ! AS: AP forwards TID ¼ ftid1; tid2g to AS.
3. AS ! AP : AS searches its database to find UID and

then extracts the correct encryption key. There are
two cases of finding the user U and the correct
encryption key.

Case 1: If � ¼ tid1 and UID is a prefix of
Dk�yðtid2Þ, AS 1) retrieves the suffix of Dk�yðtid2Þ
as NC , 2) sets ð�y; ��Þ null if they are not null, and
3) continues performing the processes.

Case 2: If �� ¼ tid1 and UID is a prefix of
Dk��yðtid2Þ, AS 1) retrieves the suffix of Dk��yðtid2Þ
as NC , 2) sets yN y, where yN is the one-time key
used in the next session of the normal authentication
process, y �y, � �� , and ð�y; ��Þ null, and 3) con-
tinues performing the processes.

Otherwise, AS aborts the session.

674 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Fig. 2. User execution flowchart of the proposed method.

Then, AS randomly chooses 1) a nonce NS , 2) yN if

it has not been assigned, and 3) another one-time key

y0 and a temporal key TK, where ðy0; TKÞ will be

shared between AP and U for the fast reconnect

process, and computesAuthS ¼HðNCÞ � Ek�yðSIDk
NSkyNky0kTKÞ. Finally, AS sendsAuthS andReAuth

to AP , where ReAuth contains y0, TK, and a

temporal identity UID0 ¼ HðUIDky0Þ.
4. AP ! U :AP savesReAuth and forwardsAuthS toU .
5. U ! AP : U computes Dk�yðAuthS �HðNCÞÞ. If a

prefix of the decryption result is SID, U stores
ðNS; yN; y

0; TKÞ obtained from the decryption
result and sets y yN and then sends AuthC ¼
HðUIDkpwkyNky0kTKÞ to AP . Otherwise, U aborts
the session.

6. AP ! AS: AP forwards AuthC to AS.
7. AS ! AP : If AS receives AuthC and AuthC ¼

HðUIDkpwkyNky0kTKÞ holds, AS sets y yN and
� Ek�yðUIDÞ and sends “Accept/EAP-Success” to
AP . The session key SK is HðNS �NCÞ. Otherwise,
AS sets �y y, y yN , �� � , and � Ek�yðUIDÞ
and aborts the session.

8. AP ! U : AP forwards “EAP-Success” to U if it
receives an acceptance notification from AS; other-
wise, AP deletes ReAuth.

The shared credential y is updated in every session in
the proposed scheme, so it is required to synchronize the
updating of y between AS and U . In our protocol, AS is in
charge of the synchronization. If AS does not receive
AuthC or AuthC ¼ HðUIDkpwkyNky0kTKÞ does not hold in
Step 7 of the normal authentication process, AS has no idea
whether U has updated y and thus an asynchronous
updating of y might occur.

To deal with the asynchronous updating,AS keeps both y

and yN by setting �y y and y yN and determines which

one is correct in the next run of the normal authentication.
In the next session, AS can determine whether U has

updated y in Step 3. If TID is successfully decrypted with

k� y, AS knows that U has set y yN . If TID is

successfully decrypted with k� �y, U uses �y as the current

credential. AS does not know that TID is sent from U or

replayed by the adversary until it receives the correctAuthC .
The server can cope with the problem of asynchronous

updating on the one-time key in the client side because the

server always saves both the old and the new one-time keys

when it does not receive the correct response AuthC . Fig. 4

shows an example. In a situation where the client fails to

update the old one-time key yi to the new one, the server

can use the saved yi to communicate with the client until the

client finally updates the one-time key to yiþ1.
In the fast reconnect process (see Fig. 5), ðUID0; y0; TK; � 0Þ

has been shared between AP and U in advance, where � 0 ¼
ETK�y0 ðUID0Þ. There are four steps in the fast reconnect

process after EAP-Request/Identity takes place.

1. U ! AP : The user computes and sends a temporal
identity TID0 ¼ fETK�y0 ðUID0Þ, ETK�y0 ðUID0k �NCÞg,
where �NC is a randomly chosen string, to respond to
the identity request.

2. AP ! U : After receiving TID0 ¼ ftid01; tid02g, AP
searches its database to check whether � 0 ¼ tid01 exists,
and it computes DTK�y0 ðtid02Þ to check if the corre-
sponding UID0 is a prefix of the decryption result. If
not, AP aborts the session. Then, AP randomly
chooses a nonce �NS and a one-time key y0N , which
will be used in the next session of the fast reconnect
process with the same AP to replace y0, and then
computes ReAuthS ¼ Hð �NCÞ�ETK�y0 ðSIDk �NSky0NÞ.
Finally, AP sends ReAuthS to U .

3. U ! AP : U computes DTK�y0 ðReAuthS �Hð �NCÞÞ. If
the prefix of the decryption result is SID, U stores
ð �NS; y

0
NÞ and then sets y0 y0N and sends ReAuthC ¼

HðUID0ky0NÞ to AP . Otherwise, U aborts the session
and starts a new session of the normal authentication
process.

4. AP ! U : AP verifies whether ReAuthC ¼ HðUID0k
y0NÞ. If the condition holds, AP sets y0 y0N and � 0
ETK�y0 ðUID0Þ and sends “EAP-Success” to U . The
session key SK is Hð �NS � �NCÞ. Otherwise, AP
aborts the session.

4 FORMAL SECURITY MODEL

In this section, we define a formal security model for mutual

authentication, secure key exchange, and forward secrecy.

4.1 The Security Model

Bellare and Rogaway first proposed a theoretical security

proof for an authentication and key agreement protocol

with a symmetric two-party setting case, called BR93-Model

FAN ET AL.: COMPLETE EAP METHOD: USER EFFICIENT AND FORWARD SECURE AUTHENTICATION PROTOCOL FOR IEEE 802.11... 675

Fig. 4. The resynchronization procedure for the one-time key.

Fig. 3. The normal authentication process.

[9]. We use BR93-Model as a foundation to prove that our

protocol meets all of the EAP security requirements.
�i
A;B denotes the client oracle that plays the role A to

interact with B in the ith session, and �j
B;A denotes the

server oracle that plays the role B to interact with A in the
jth session. Let P be the proposed symmetric-based
authentication protocol. During the execution of P , there
exists an adversary E, which is a probabilistic polynomial-
time Turing machine. Our communication model and
security notions follow BR93-Model. In P , there are two
partner oracles, �i

A;B and �j
B;A, and an adversary E that can

control the entire network and obtain the transmitted data in
the past processes. We define the capability of adversary E,
which can be captured by the following queries:

. Executeð�i
A;B;�

j
B;AÞ. This query models all kinds of

passive attacks in which a passive adversary can
eavesdrop all transmitted data between �i

A;B and
�j
B;A in P .

. Sendð�i
A;B;mÞ. This query models active attacks in

which an adversary sends a message to �i
A;B. The

adversary gets the response message according to
the sending message m in P . An adversary can also
initiate a session by setting m ¼ �.

. Sendð�j
B;A;mÞ. This query models active attacks in

which an adversary sends a message to �j
B;A. The

adversary gets the response message according to
the sending message m in P .

. Revealð�i
A;BÞ. This query models the exposure of the

session key of instance i. This query is only valid to
A when the role actually holds a session key.

. Corruptð�i
A;BÞ. This query models the compromise

of the long-term key of instance i. This query is
only valid to A when the role actually holds a long-
term key.

. Testð�i
A;BÞ. When �i

A;B accepts and shares a session
key with the partner oracle �i

B;A, adversary E can
make this query and try to distinguish a real session

key from a random string. This query models an
adversary’s query to the Test oracle. It will return
the real session key or a randomly chosen string to
the adversary according to the value of a random
coin bit.

4.2 The Security Definitions

Definition 1 (Matching conversations). Fix a number of
moves R ¼ 2�� 1 and an R-move protocol P . Run P in the
presence of an adversary E and consider two oracles �s

A;B and
�t
B;A that engage in conversations K and K0, respectively.
ð�m; �m; �mÞ encodes that some oracle was asked �m and
responded with �m at time �m.

1. We say that K0 is a matching conversation to K if
there exists �0 < �1 < � � � < �R and �1; �1; . . . ; ��; ��
such that K is prefixed by ð�0; �; �1Þ; ð�2; �1, �2Þ,
ð�4; �2; �3Þ; . . . ; ð�2��4, ���2; ���1Þ, ð�2��2, ���1; ��Þ
and K0 is prefixed by ð�1; �1; �1Þ; ð�3, �2; �2Þ,
ð�5; �3; �3Þ; . . . ; ð�2��3; ���1; ���1Þ.

2. We say that K is a matching conversation to K0 if
there exists �0 < �1 < � � � < �R and �1; �1; . . . ; ��; ��
such that K0 is prefixed by ð�1; �1; �1Þ; ð�3; �2; �2Þ,
ð�5; �3; �3Þ; . . . , ð�2��3; ���1; ���1Þ; ð�2��1; ��; �Þ and
K is prefixed by ð�0; �; �1Þ; ð�2; �1, �2Þ; ð�4; �2,
�3Þ; . . . , ð�2��4; ���2; ���1Þ; ð�2��2; ���1; ��Þ.

Definition 2 (Mutual authentication). We say that � is a
secure mutual authentication protocol if for any polynomial
time adversary E.

1. Matching conversation implies acceptance. If oracles
�s
A;B and �t

B;A have matching conversations, both
oracles accept.

2. Acceptance implies matching conversation. The prob-
ability of No�MatchingEðkÞ is negligible, where k is
a security parameter and No�MatchingEðkÞ is the
event that there exists s, t, P , and Q, such that �s

P;Q

accepted and there is no oracle �t
Q;P which engaged in

a matching conversation.

A secure mutual authentication protocol also with-
stands man-in-the-middle attacks since [9] has proved that
the probability of Multiple�MatchingEðkÞ is negligible for
a secure mutual authentication protocol, where Multiple�
MatchingEðkÞ is the event that there are at least two
oracles �t

Q;P and �t0

Q;P which have matching conversations
with �s

P ;Q.

Definition 3 (Secure key exchange). A protocol � is a secure
mutual authentication and key exchange protocol if � is a
secure mutual authentication protocol and the following
properties are satisfied.

1. An adversary engages in the execution of � with �s
A;B

and its partner �t
B;A. Then both oracles always share

the same session key.
2. For any polynomial-time adversary

E; advantageEðkÞ ¼ ðPr½Good�GuessEðkÞ� � 1=2Þ

is negligible where k is the security parameter and
Good�GuessEðkÞ is the event that the adversary E
outputs the right answer to the Test query.

676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Fig. 5. The fast reconnect process.

Definition 4 (Forward secrecy). A protocol provides forward

secrecy if, for any polynomial-time adversary E, the advantage

advantageEðkÞ ¼ ðPr½Good�GuessEðkÞ� � 1=2Þ of distin-

guishing a previous session key from a random string is

negligible after the long-term private keys of all parties are

compromised.

4.3 Security Against an Adaptively Chosen
Ciphertext Attack

We introduce the adaptively chosen ciphertext attack in a

symmetric encryption scheme. Let � ¼ ðK;E;DÞ be a

symmetric encryption scheme where K is a key generation

algorithm that takes a security parameter k as an input, E is

a probabilistic encryption algorithm, and D is the determi-

nistic decryption algorithm.
Step 1: The key generation algorithm generates a secret

key k.
Step 2: The adversary makes a series of encryption/

decryption queries by sending a sequence of ciphertexts/

plaintexts, such as ðy0; ‘‘decrypt’’Þ, ðy1; ‘‘encrypt’’Þ; . . . , ðyi;
‘‘encrypt’’Þ, to the encryption/decryption oracles. The oracles

make use of the secret key k and returns the corresponding

ciphertext/plaintext to the adversary for every input.
Step 3: The adversary selects two messages, x00 and x01, as

plaintexts and sends them to the encryption oracle. The

encryption oracle chooses b 2 f0; 1g by tossing a coin, and

then encrypts x0b and returns the result y0b to the adversary.
Step 4: The adversary performs Step 2 again by making a

series of encryption/decryption queries. But the adversary is

not allowed to query the decryption oracle with the input y0b.
Step 5: Finally, the adversary outputs b0 2 f0; 1g as the

guess of the value of b.
A symmetric encryption scheme is secure against the

adaptively chosen ciphertext attack if, for any polynomial-

time adversary, ðPr½b0 ¼ b� � 1=2Þ is negligible.

4.4 The Security Properties

We can formally prove that the proposed protocol possesses

the properties of mutual authentication, secure key ex-

change, and forward secrecy if the underlying symmetric

encryption scheme is secure against the adaptively chosen

ciphertext attack.

Theorem 1 (Mutual authentication). If the symmetric

encryption scheme used in the proposed protocol � is secure

against the adaptively chosen ciphertext attack, then protocol

� is a secure mutual authentication protocol.

Theorem 2 (Secure key Exchange). If the encryption scheme

used in the proposed protocol � is secure against the adaptively

chosen ciphertext attack, then protocol � is a secure key

exchange protocol.

Theorem 3 (Forward secrecy). If the encryption scheme used in

the proposed protocol � is secure against the adaptively chosen

ciphertext attack, then protocol � satisfies forward secrecy.

The proofs for the three theorems are shown in the

supplementary file, which is available online.

5 COMPARISONS

We compare the previous EAP methods and authentication
mechanisms for WLANs with our proposed EAP method.
We compare them from the viewpoints of the EAP method
requirements defined in RFC 4017 and other key properties,
including forward secrecy, and maintenance of certificates
in Table 1, and we also show the computation time
comparison among the methods achieving all security
properties in Table 2

The mandatory requirements. EAP-MD5 does not
achieve both mutual authentication and session key
generation. Besides, it is vulnerable to dictionary attacks
and man-in-the-middle attacks [23]. Certificate-based EAP
methods, such as EAP-TLS, EAP-TTLS, EAP-PEAP, and
EAP-FAST provide mutual authentication and session-key
generation. These methods can withstand dictionary
attacks and man-in-the-middle attacks. EAP-LEAP has
been shown to be vulnerable to dictionary attacks [36]. In
addition, the symmetric-based methods, such as EAP-
SPEKE, EAP-TLS-SEM, EAP-double-TLS, EAP-SRP use the
Diffie-Hellman key exchange [27] to generate session keys,
which provide mutual authentication and are also im-
mune to man-in-the-middle attacks and dictionary attacks.
Besides, EAP-SSC, and the protocols of Park et al., Yoon et
al., and Juang et al. are compliant with the mandatory
requirements. Our proposed EAP method also satisfies the
mandatory requirements defined in RFC 4017.

End-user identity hiding. End-user identity hiding
means that a user’s identity is encrypted during the

FAN ET AL.: COMPLETE EAP METHOD: USER EFFICIENT AND FORWARD SECURE AUTHENTICATION PROTOCOL FOR IEEE 802.11... 677

TABLE 1
The Comparison Table

authentication processes. EAP-TTLS, EAP-PEAP, and EAP-
FAST all establish secure tunnels after the server is
authenticated by the client. Then the client is authenticated
by the server using a legacy method via the secure tunnel.
Since the user’s identity is transmitted in the secure tunnel
before she/he is authenticated by the server, the user’s
identity is protected by encryption. Therefore, these EAP
methods are able to hide the end-user identities. The user
identities in EAP-SEM and EAP-double-TLS are also
protected because they use TLS tunnels. EAP-MD5, EAP-
LEAP, EAP-SPEKE, and EAP-SSC do not provide identity
privacy due to the lack of establishing secure tunnels.
Badra and Urien [6] and Dierks and Rescorla [18] can
provide EAP-TLS for end-user identity hiding. Besides, the
protocols of Park et al. and Yoon et al. and the first
protocol of Juang et al. are vulnerable to an offline
dictionary attack upon identity privacy. A user’s identity
will be known by attackers owing to a low entropy of each
of all possible users’ identities. Therefore, their schemes do
not meet identity privacy. Our method can provide
identity privacy because the user identity UID is en-
crypted in the communication.

Fast reconnect. Certificate-based EAP methods support

fast reconnections to improve performance. These methods

quickly establish a connection between a client and a server.

This capability can reduce the number of exchanged

messages or trips. EAP-FAST, EAP-SEM, EAP-double-

TLS, and EAP-SRP are able to support fast reconnections

and our method also achieves this.
Forward secrecy. The protocols of Park et al., Yoon

et al., and Juang et al. only support half forward secrecy.

If adversaries know the long-term keying material on the

client’s side, the adversaries can compute the past session

keys. Therefore, they only provide half forward secrecy.

In addition, EAP-MD5 and EAP-SSC do not support
forward secrecy.

Maintenance of certificate. All of the certificate-based
EAP methods rely on certificate authorities issuing certifi-
cates to the servers, but only EAP-TLS requires that all
clients must apply the certificates. Each client must install a
certificate on its device. This will greatly increase the cost
of administration, and maintaining certificate revocation
lists adds an additional heavy load. In symmetric-key-
based methods, AS can simply revoke the users by
discarding the shared secrets.

The number of EAP request/response round trips.

EAP-MD5 only requires two EAP request/response round
trips for authentication, but it does not achieve mutual
authentication. EAP-TLS takes four EAP request/response
round trips for authentication, but it requires that the
certificates should be installed on the server and the
clients. In EAP-TTLS and EAP-PEAP, it is unnecessary to
install certificates on the clients, and after finishing server
authentication using a TLS handshake, legacy EAP
methods, such as EAP-MD5, are used to authenticate the
clients. Therefore, EAP-TTLS and EAP-PEAP require five
and seven EAP request/response round trips for authen-
tication, respectively. EAP-LEAP performs the Microsoft
Challenge Handshake Authentication Protocol (MS-CHAP)
twice for mutual authentication. Therefore, it requires four
EAP request/response round trips. EAP-FAST adopts the
TLS handshake to establish a tunnel key. Then the actual
authentication uses MS-CHAP or One-Time Password
(OTP) [11]. Therefore, EAP-FAST needs at least five EAP
request/response round trips for authentication. EAP-
SPEKE contains three EAP request/response round trips.
The protocols of Park et al., Yoon et al., and Juang et al.
are not based on the EAP format. Our proposed EAP

678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

TABLE 2
Comparison of Computation Time

method satisfies all of the properties with only two EAP
request/response round trips.

Computation time comparison. EAP-TLS, EAP-TTLS,
EAP-PEAP, EAP-FAST, EAP-SEM, and EAP-double-TLS
allow a client and a server to communicate securely using a
handshake procedure. In the handshake procedure, both
the client and the server perform the key exchange
algorithm. Moreover, the client must verify the certificate
of the server in EAP-TLS, EAP-TTLS, EAP-PEAP, and EAP-
FAST and the server must verify the signature signed by the
client in EAP-TLS. These procedures rely on public-key
computations, such as RSA, DSA, or Diffie-Hellman
computations. In Table 2, we compare the computation
time of the handshake performed in EAP-TLS, EAP-TTLS,
EAP-PEAP, EAP-FAST, EAP-SEM, EAP-double-TLS, and
EAP-SRP with that of our proposed method.

We assume that the key exchange algorithm and
certificate verification are implemented by Diffie-Hellman
and RSA, respectively. We adopted AES and SHA-256 to
implement our proposed method. All simulations are
performed by the CryptoPP cryptographic library on an
Arm Cortex-A8 machine with CPU frequency 0.72 GHZ. It
is important to note that a 2,048-bit DH key and a 2,048-bit
RSA key are approximately with the same strength as a 128-
bit AES key. Therefore, we compare the performance of the
proposed method with that of 2,048-bit DH key agreement
and 2,048-bit RSA verification.

These methods require at least an asymmetric computa-
tion in the server and the client. Our protocol performs only
symmetric encryption/decryption without asymmetric
ones, which are time-consuming or energy-consuming.
Thus, the computation cost of our protocol is greatly
reduced by more than 99.9 percent as compared to the
other protocols that have the same level of security as ours.

6 CONCLUSION

The proposed EAP method satisfies the requirements
defined in RFC 4017. Other important features, such as
forward secrecy, were also included in our proposed EAP
method. In addition, we took advantage of secure sym-
metric encryption schemes and hash functions to avoid
exponentiation computations and to achieve security
requirements without maintaining certificates. Finally, we
have also provided formal security proofs to demonstrate
that our EAP method is truly secure.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Council of the Taiwan under grants NSC 101-2219-E-110-
003, NSC 101-2219-E-110-005, and “Aim for the Top
University Plan” of the National Sun Yat-sen University
and Ministry of Education, Taiwan, R.O.C.

REFERENCES

[1] B. Adoba, L. Blunk, J. Vollbrecht, J. Carlson, and E. Levkowetz,
“Extensible Authentication Protocol (EAP),” RFC 3748, June 2004.

[2] B. Adoba, D. Simon, and R. Hurst, “The EAP-TLS Authentication
Protocol,” RFC 5216, Mar. 2008.

[3] R. Anderson, Proc. Fourth ACM Ann. Conf. Computer and Comm.
Security, Invited Lecture, 1997.

[4] H. Andersson, S. Josefsson, G. Zorn, D. Simon, and A. Parlekar,
“Protected EAP Protocol (PEAP),” IETF Draft, draft-
josefsson-pppext-eap-tls-eap-04.txt, Sept. 2002.

[5] M. Badra and I. Hajjeh, “Key-Exchange Authentication Using
Shared Secrets,” Computer, vol. 39, no. 3, pp. 58-66, 2006.

[6] M. Badra and P. Urien, “Adding Client Identity Protection to
EAP-TLS SmartCards,” Proc. IEEE Wireless Comm. and Networking
Conf., 2007.

[7] M. Badra and P. Urien, “EAP-Double-TLS Authentication Proto-
col,” http://tools.ietf.org/html/draft-badra-eap-double-tls-
04, Oct. 2005.

[8] M. Badra and A. Serhrouchni, ”A New Secure Session Exchange
Key Protocol for Wireless Communications,” Proc. IEEE 14th Int’l
Symp. Personal, Indoor and Mobile Radio Comm. (PIMRC), pp. 2765-
2769, 2003.

[9] M. Bellare and P. Rogaway, “Entity Authentication and Key
Distribution,” Proc. 13th Ann. Int’l Cryptology Conf. Advances in
Cryptology, pp. 22-26, 1993.

[10] J. Carlson, B. Aboba, and H. Haverinen, “EAP SRP-SHA1
Authentication Protocol,” July 2001.

[11] N. Cam-Winget, D. McGrew, J. Salowey, and H. Zhou, “The
Flexible Authentication via Secure Tunneling Extensible Authen-
tication Protocol Method (EAP-FAST),” RFC 4851, May 2007.

[12] J.C. Chen, M.C. Jiang, and Y.W. Liu, “Wireless LAN Security and
IEEE 802.11i,” IEEE Wireless Comm., vol. 12, no. 1, pp. 27-36, Feb.
2005.

[13] J. Chen and Y. Wang, “Extensible Authentication Protocol (EAP)
and IEEE 802.1x tutorial and empirical experience,” IEEE Comm.
Magazine, vol. 43, no. 12, pp. 26-32, Dec. 2005.

[14] P. Congdon, B. Aboba, A. Smith, G. Zorn, and J. Roese, “IEEE
802.1X Remote Authentication Dial in User Service (RADIUS),”
RFC 3580, Sept. 2003.

[15] M.T. Dandjinou and P. Urien, “EAP-SSC Protocol,” Proc. Third
Int’l Conf. Networking (ICN ’04), 2004.

[16] R. Dantu, G. Clothier, and A. Atri, “EAP Methods for Wireless
Networks,” Computer Standards and Interfaces, vol. 29, no. 3,
pp. 289-301, Mar. 2007.

[17] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246,
Jan. 1999.

[18] T. Dierks and E. Rescorla, “The TLS Protocol Version 1.2,” RFC
5246, Aug. 2008.

[19] P. Eronen and H. Tschofenig, “Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS),” RFC 4279, Dec. 2005.

[20] P. Funk and B.W. Simon, “EAP Tunneled TLS Authentication
Protocol Version 0 (EAP-TTLSv0),” IETF Draft, draft-funk-eap-
ttls-v0-00.txt, Feb. 2005.

[21] M. Gast 802.11 Wireless Network: The Definitive Guide,
O’REILLY, 2002.

[22] R. Housley and W. Arbaugh, “Security Problems in 802.11-Based
Networks,” Comm. ACM, vol. 46, no. 5, pp. 35-39, 2003.

[23] H. Hwang, G. Jung, K. Sohn, and S. Park, “A Study on MITM
(Man in the Middle) Vulnerability in Wireless Network Using
802.1X and EAP,” Proc. Int’l Conf. Information Systems Security,
pp. 164-170, 2008.

[24] D. Jablon, “The SPEKE Password-Based Key Agreement
Methods,” IETF Draft, draft-jablon-speke-02.txt, Oct. 2003.

[25] W.S. Juang and J.L. Wu, “Two Efficient Two-Factor Authenticated
Key Exchange Protocols in Public Wireless LANs,” Computers and
Electrical Eng., vol. 35, no. 1, pp. 33-40, 2009.

[26] Y.M. Park and S.K. Park, “Two Factor Authenticated Key
Exchange (TAKE) Protocol in Public Wireless LANs,” IEICE
Trans. Comm., vol. E87-B, no. 5, pp. 1382-1385, 2004.

[27] E. Rescorla, “Diffie-Hellman Key Agreement Method,” RFC 2631,
June 1999.

[28] W. Simpson, “PPP Challenge Handshake Authentication Protocol
(CHAP),” RFC 1994, Aug. 1996.

[29] D. Stanley, J. Walker, and B. Aboba, “Extensible Authentication
Protocol (EAP) Method Requirements for Wireless LANs,” RFC
4017, Mar. 2005.

[30] E.J. Yoon and K.Y. Yoo, “An Optimized Two Factor Authenticated
Key Exchange Protocol in PWLANs,” Proc. Sixth Int’l Conf.
Computational Science (ICCS ’06), pp. 1000-1007, 2006.

[31] H. Zhou, N. Cam-Winget, J. SaloweyFlexible, and S. Hanna,
“Authentication via Secure Tunneling Extensible Authentication
Protocol Version 2,” http://tools.ietf.org/html/draft-ietf-emu-
eap-tunnel-method-00, May 2011.

FAN ET AL.: COMPLETE EAP METHOD: USER EFFICIENT AND FORWARD SECURE AUTHENTICATION PROTOCOL FOR IEEE 802.11... 679

[32] ANSI/IEEE Standard 802.11, “Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” Dec.
1999.

[33] IEEE 802.11i-2004, “Amendment 6: Wireless LAN Medium Access
Control (MAC) Security Anhancements,” July 2004.

[34] IEEE Standard 802.1X-2001, “Port-Based Network Access Con-
trol,” June 2001.

[35] Cisco SAFE, “WLAN Security in Depth,” http://www.cisco.com/
warp/public/cc/so/cuso/epso/sqfr/safwl_wp.pdf, 2012.

[36] Dictionary Attack on Cisco LEAP, http://www.cisco.com/warp/
public/707/cisco-sn-20030802-leap.shtml, 2012.

Chun-I Fan received the MS degree in compu-
ter science and information engineering from
National Chiao Tung University, Taiwan, in
1993, and the PhD degree in electrical engineer-
ing at National Taiwan University in 1998. From
1999 to 2003, he was an associate researcher
and project leader of Telecommunication La-
boratories, Chunghwa Telecom Co. Ltd, Taiwan.
In 2003, he joined as a faculty of the Department
of Computer Science and Engineering, National

Sun Yat-sen University, Kaohsiung, Taiwan, and has been a full
professor since 2010. He was also the editor-in-chief of Information
Security Newsletter and is an executive director of Chinese Cryptology
and Information Security Association. His current research interests
include applied cryptology, cryptographic protocols, information and
communication security, and he has published more than 100 technical
papers. He won the Dragon PhD Thesis Award from Acer Foundation,
Best PhD Thesis Award from Institute of Information & Computing
Machinery in 1999, Best Student Paper Awards in National Conference
on Information Security 1998 and 2007, Best Master Thesis Award from
Taiwan Association for Web Intelligence Consortium in 2011, Out-
standing Master Dissertation Award from Taiwan Institute of Electrical
and Electronic Engineering in 2011, and Master Thesis Award from
Chinese Cryptology and Information Security Association in 2012. He is
a member of the IEEE and the IEEE Computer Society.

Yi-Hui Lin received the BS degree in computer
science and information engineering from Tung
Hai University, Taichung, Taiwan in 2004, and
the MS degree in computer science and
engineering from National Sun Yat-sen Univer-
sity, Kaohsiung, Taiwan in 2006. Currently, she
is working toward the PhD degree at National
Sun Yat-sen University. Her current research
interests include information security and priv-
acy, authentication protocols, and security

proofs. From June to September 2010 and March 2011 to February
2012, she earned scholarships, granted by Deutscher Akademischer
Austausch Dienst (DAAD), Germany, and National Science Council
(NSC), Taiwan, as a visiting scholar at Center for Advanced Security
Research Darmstadt (CASED) in Technische Universität Darmstadt.

Ruei-Hau Hsu received the BS and MS
degrees in computer science from Tunghai
University, Taiwan, in 2002 and 2004, respec-
tively. Currently, he is working toward the PhD
degree in computer science and engineering at
National Sun Yat-sen University. From 2004 to
2005, he was a technical engineer of the
Computer Center of Hsiuping Institute of Tech-
nology, Dali, Taiwan. From August to December
2007, he joined the International Collaboration

for Advancing Security Techonology (iCAST) program to be a visiting
researcher in Carneige Mellon University, America. His current research
interests include information security, information privacy, and crypto-
graphic primitives of wireless related authentication protocols and
signature schemes. From June to September 2010 and March 2011 to
February 2012, he earned scholarships, granted by Deutscher
Akademischer Austausch Dienst (DAAD) Germany and National
Science Council (NSC) Taiwan, as a visiting scholar at Center for
Advanced Security Research Darmstadt (CASED) in Technische
Universit€at Darmstadt.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

