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Variational image denoising models based on regularization of gradients have been
extensively studied. The total variation model by Rudin, Osher, and Fatemi (1992) [38]
can preserve edges well but for images without edges (jumps), the solution to this
model has the undesirable staircasing effect. To overcome this, mean curvature-based
energy minimization models offer one approach for restoring both smooth (no edges)
and nonsmooth (with edges) images. As such models lead to fourth order (instead of the
usual second order) nonlinear partial differential equations, development of fast solvers
is a challenging task. Previously stabilized fixed point methods and their associated
multigrid methods were developed but the underlying operators must be regularized by a
relatively large parameter. In this paper, we first present a fixed point curvature method for
solving such equations and then propose a homotopy approach for varying the regularized
parameter so that the Newton type method becomes applicable in a predictor–corrector
framework. Numerical experiments show that both of our methods are able to maintain all
important information in the image, and at the same time to filter out noise.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

An observed image can be contaminated with noise during recording and transmission. The common additive degrada-
tion model is

f = u + η. (1)

Here f is the observed image (known), u is the desired true image (unknown), and η is an additive noise term (also
unknown); these three quantities are functions defined on a bounded convex region Ω of R

d (d = 2 or 3, in this paper,
the 2-dimensional case is considered and we will assume Ω is a square in R

2). For other noise types, refer to [26,12]. The
task of image denoising is to remove noise while preserving the main features such as edges of the original image, which
is a phase before doing further image processing tasks e.g. edge detection, segmentation, pattern recognition, and object
tracking.

The traditional modeling methods to estimate u based on least squares [41], although simple to implement, lead to
results likely to be contaminated by Gibbs’ phenomena (ringing) near edges. The total variation (TV) model proposed by
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Rudin, Osher, and Fatemi (ROF) [38] can produce desirable results from removing noise while preserving edges for non-
smooth images. But for smooth images, the ROF model suffers from staircasing effect, namely, the transformation of smooth
regions (ramps) into piecewise constant regions (stairs). Therefore, the model cannot preserve finer details, such as texture
and round shapes. Besides this effect, it cannot preserve the intensity contrasts. In recent years, among others, researchers
have turned to higher order models [6,7,11,14,15,5,29,17,46] to remedy these unfavorable properties for a satisfactory result;
see also [8,21,22,25,39,30,28,32,36].

One effective model aiming to improve the ROF [38] is the mean curvature-based energy minimization model by Zhu
and Chan [46] where the new geometric quantity – the mean curvature of the induced image surface – is introduced and
a piecewise smooth surface (x, y, u(x, y)) is used to approximate the image surface (x, y, f (x, y)). However, the resulting
fourth order partial differential equations (PDE) arising from minimization of this model is nontrivial to solve due to appear-
ance of a high nonlinearity and stiffness term, because simple alternative methods (which worked for the TV model) such
as lagged fixed point methods [41,42] and primal–dual methods [13] do not work for this newer model, as shown in [6].
Another possible alternative for solving the mean curvature model is the split method [44,23] where one approximates the
original functional by a new functional, leading to a system of second order PDEs by introducing an intermediate variable. In
this paper, we propose a fixed point curvature method to solve a fourth order PDE using a homotopy technique to achieve
fast convergence.

Other recent and effective models, that are not studied in this paper, for improving the ROF model [38] include the total
generalized variation (TGV) method [5] and the nonlocal means based total variation (NLTV) based regularization method
[8,21,25,28].

The rest of this paper is organized as follows. In Section 2, we introduce the mean curvature-based model and then
review the existent numerical methods to solve this model. In Section 3, we present a fixed point curvature method for the
curvature Euler–Lagrange equation, and in Section 4, we give a homotopy method using this fixed point curvature method
as its correction. Finally, in Section 5, we present various numerical results obtained from the implementation of proposed
algorithm.

2. Two algorithms for a mean curvature-based denoising model

For the sake of understanding the geometrical attributes which correspond to the signal information of corners, edges
and intensity contrasts of an image, Zhu and Chan [46] introduced the mean curvature into an image denoising model with
their energy functional represented as

min
u

{
J (u) = α

∫
Ω

Φ
(
κ(u)

)
dx dy + 1

2
‖u − f ‖2

}
, (2)

where f (x, y) ∈ L2(Ω) is the observed image, u(x, y) ∈ C2(Ω) is the desired true image, | · | is the Euclidean norm in R
2,

and ‖ · ‖ is the norm in L2(Ω). The functional Φ is defined either as Φ(κ(u)) = |κ(u)|, Φ(κ(u)) = κ(u)2 or a combination
of both, here κ(u) is the mean curvature of the image which is defined by

κ(u) = ∇ · ∇u

|∇u| . (3)

To avoid division by zero, we regularize the term |∇u| by β , and define |∇u|β = √|∇u|2 + β . Thus, we have

κβ(u) = ∇ · ∇u

|∇u|β , (4)

where β is a small positive parameter (see [41,42,34,31]), and the energy functional (2) becomes

min
u

{
Jβ(u) = α

∫
Ω

Φ
(
κβ(u)

)
dx dy + 1

2
‖u − f ‖2

}
. (5)

The corresponding Euler–Lagrange partial differential equation (PDE) for (5) is, for (x, y) ∈ Ω ,

gβ(u) = α∇ ·
(

1

|∇u|β
(

I2 − ∇u∇uT

|∇u|2β

)
∇Φ ′(κβ(u)

)) + (u − f ) = 0, (6)

with homogeneous Neumann boundary condition ∇u · �ν = 0 along ∂Ω . Here I2 ∈ R
2×2 is the identity matrix, �n is the normal

vector of ∂Ω , and Φ ′(κβ(u)) is the derivative of Φ(κβ(u)). Below we shall take Φ(κβ(u)) = κβ(u)2, so Φ ′(κβ(u)) = 2κβ(u)

and ∇Φ ′(κβ(u)) = 2∇κβ(u).
The selection of β plays an important role in numerical implementations since β � 1 will lead to the Euler–Lagrange

equation of (5) too stiff to solve by numerical continuation. To deal with this problem, β will be used as a homotopy
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parameter and the numerical continuation we present here allows us to reach a relatively small value for β , still maintaining
good performance (see [24,18,20]).

Although Newton’s method as a standard unconstrained optimization method is a preferred method, it does not work
satisfactorily for our PDE problem, due to high nonlinearity, in the sense that its domain of convergence is very small when
β is small, which requires an initial guess (better than the noisy image f and) close to the true solution (see [42,34,3,9,19,
37]). Refer to [16,33] for theoretical work on the radius of convergence of Newton method for denoising models. Standard
fixed point methods and primal–dual methods are usually fast algorithms for the TV denoising model, but they do not
converge for this mean curvature-based model. Only two methods have been proposed to solve Eq. (6) (see [6,7,46]).

(1) Gradient descent methods. As used in [46], instead of the elliptic PDE, a parabolic PDE with time as an evolution param-
eter is solved by the gradient descent method

ut = −α∇ ·
(

1

|∇u|β
(

I2 − ∇u∇uT

|∇u|2β

)
∇Φ ′(κβ(u)

)) − (u − f ), (7)

with u(x, y,0) = f . This method is preferred in many situations for its simplicity and fast initial convergence, but its
overall convergence is slow (or the time step must be small for stability) to reach steady state since the parabolic term
is nearly singular for small gradients.

(2) Stabilized fixed point method and nonlinear multigrid. The idea of stabilized fixed point method is to split the Euler–
Lagrange equation (6) in two parts (convex and nonconvex) and treat the convex part implicitly and the nonconvex part
explicitly, after adding suitable stabilizing terms. Thus, the stabilized fixed point method of [6] takes the form

−γ ∇ · ∇u(k+1)

|∇u(k)|β − α∇ ·
(∇u(k) · ∇Φ ′(κβ(u(k)))

|∇u(k)|3β
∇u(k+1)

)
+ u(k+1)

= −γ ∇ · ∇u(k)

|∇u(k)|β − α∇ · ∇Φ ′(κβ(u(k)))

|∇u(k)|β + f . (8)

Further an efficient nonlinear multigrid for (6) is developed using this stabilized fixed point method as a smoother.
Although stabilization helps to derive a convergent fixed point method, the smoothing parameter β in (8) cannot be
small, and was typically chosen to be, say, 10−2 or larger. Our new methods below will allow small β in (6) (e.g.
β < 10−6).

As mentioned, if the original functional (5) is approximated by a new functional [44,23], the fourth order PDE will be
reduced to second order ones. We will tackle the PDE (6) directly and not pursue this alternative route. We also remarked
that there are competing models other than (6) for improving the TV model [5,8,28].

3. A fixed point curvature method

In the curvature model (5), we take Φ(κβ(u)) = κβ(u)2 as an example [46]. As remarked, all known fixed point methods
do not work for the model. Here we introduce a fixed point curvature method that converges for the Euler–Lagrange
equation (6). Other curvature models e.g. Φ(κβ(u)) = |κβ(u)| may be considered similarly.

Solution of the TV model. Before our new method is presented, we briefly review the minimization of the TV model [38,11],
defined by

min
u

{
E(u) = α

∫
Ω

|∇u|dx dy + 1

2
‖u − f ‖2

}
, (9)

whose Euler–Lagrange equation is the second order equation

F (u) = −α∇ · ∇u

|∇u|β + (u − f ) = 0. (10)

Much theoretical work on this TV model has been done in recent years [11,42,34,1,40,4]. The solution u to this model lies
in the space of functions with bounded variation BV(Ω); see [40].

In Newton’s method, the lagged fixed point method and the primal–dual methods, a descent direction must be computed
to obtain the new iterate u(k+1) using the current iterate u(k) (see [41,42,13]). The first two are based on solving (10) directly
for the primal variable u, and the third introduces a new (dual) variable w = ∇u

|∇u|β and replaces (10) by the following system

of nonlinear partial differential equations

F (u, w) = −α∇ · w + (u − f ) = 0,

G(u, w) = w|∇u|β − ∇u = 0.
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Setting δu(k) = u(k+1) −u(k) , the linearization systems of the Newton method, the lagged fixed point method and the primal–
dual method are as follows:

(1) Newton method[
−α∇ ·

(
1

|∇u(k)|β
(

I2 − ∇u(k)(∇u(k))T

|∇u(k)|2β

)
∇

)
+ 1

]
δu(k) = −F

(
u(k)

)
.

(2) Lagged fixed point method[
−α∇ ·

(
1

|∇u(k)|β ∇
)

+ 1

]
δu(k) = −F

(
u(k)

)
.

(3) Primal–dual method⎡
⎣ −α∇· 1

|∇u(k)|β I2 −(I2 − w(k)(∇u(k))T

|∇u(k)|β )∇

⎤
⎦[

δw(k)

δu(k)

]
= −

[
F (u(k), w(k))

G(u(k), w(k))

]
.

The descent direction δu(k) for E(u) is obtained by solving[
−α∇ ·

(
1

|∇u(k)|β
(

I2 − w(k)(∇u(k))T

|∇u(k)|β
)

∇
)

+ 1

]
δu(k) = −F

(
u(k)

)
and

δw(k) = 1

|∇u(k)|β
(

I2 − w(k)(∇u(k))T

|∇u(k)|β
)

∇δu(k) − w(k) + ∇u(k)

|∇u(k)|β .

Clearly all three methods take the linearized form(
αMβ

(
u(k)

) + 1
)
δu(k) = −F

(
u(k)

)
,

where u(k) is a previous iterate and Mβ(u) denotes respectively the following

Newton method MN
β (u) = −∇ ·

(
1

|∇u|β
(

I2 − ∇u∇uT

|∇u|2β

)
∇

)
,

Lagged fixed point method MFP
β (u) = −∇ ·

(
1

|∇u|β ∇
)

,

Primal–dual method MPD
β (u) = −∇ ·

(
1

|∇u|β
(

I2 − w∇uT

|∇u|β
)

∇
)

.

Solution of the curvature model. Our idea is motivated by the observation that the fourth order nonlinear operator of Euler–
Lagrange equation (6) can be considered as a second order nonlinear operator compounding another second order nonlinear
operator, therefore, (6) can be rewritten as

gβ(u) = 2α

(
∇ ·

(
1

|∇u|β
(

I2 − ∇u∇uT

|∇u|2β

)
∇

))(
∇ · ∇u

|∇u|β
)

+ (u − f )

= 2αMN
β (u)

(
−∇ · ∇u

|∇u|β
)

+ (u − f ) = 0. (11)

Thus, our FP equation is obtained by freezing the nonlinearity of the first second order nonlinear operator 2αMN
β (u) at a

known iterate u(l,0) , with (11) becoming

gβ

(
u(l,0), u

) = 2αMN
β

(
u(l,0)

)(−∇ · ∇u

|∇u|β
)

+ (u − f ) = 0. (12)

Notice that the original PDE (11) has its nonlinearity formed from multiplying a nonlinear operator 2αMN
β (u) to another

nonlinear one. In contrast, our new FP equation (12) is also a fourth order nonlinear partial differential equation but the
nonlinearity is reduced, now consisting of a linear operator 2αMN

β (u(l,0)) multiplying a nonlinear one. The reduced nonlin-
earity in (12) will enable us to construct a converging homotopy method for (11) and the details remain to discuss.
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Now we describe the discretization of the continuous formulation of the fixed point curvature method and also define
the notation used throughout the report. Let Ω = [0,1] × [0,1] with mesh size h = 1/n, containing n2 pixels (i, j), for
i, j = 1,2, . . . ,n, and ui, j represent the value of the function u at pixel (i, j), then the discrete gradient operator at pixel
(i, j) is

(∇u)i, j = (
(ux)i, j, (u y)i, j

)
with

(ux)i, j = 1

h

{
ui+1, j − ui, j if i < n,

0 if i = n,
(u y)i, j = 1

h

{
ui, j+1 − ui, j if j < n,

0 if j = n.

The discrete divergence operator is the negative adjoint of the gradient operator from the analysis of the continuous
setting, namely ∇· = −∇∗ . Therefore, it can be defined as follows:

(∇ · w)i, j = 1

h

⎧⎪⎨
⎪⎩

(w1)i, j − (w1)i−1, j if 1 < i < n

(w1)i, j if i = 1

−(w1)i−1, j if i = n

+ 1

h

⎧⎪⎨
⎪⎩

(w2)i, j − (w2)i, j−1 if 1 < j < n

(w2)i, j if j = 1

−(w2)i, j−1 if j = n.

For ease of the notation, since α is a parameter to be chosen, we drop h from now on without loss of generality and
loss of accuracy; refer also to [6,44,23,10,35,45]. Once we stack the grid functions u along rows of Ω into a vector

u = (u1,1, . . . , un,1, u1,2, . . . , un,2, . . . , u1,n, . . . , un,n)
T ,

as commonly done, then u ∈ R
N , where N = n2. The discrete gradient (∇u)i, j can be expressed by a multiplication of the

matrix AT
l ∈ R

2×N , for l = 1,2, . . . , N , to the vector u:

AT
l u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ul+1 − ul;ul+n − ul) if l mod n 	= 0 and l + n � N,

(0;ul+n − ul) if l mod n = 0 and l + n � N,

(ul+1 − ul;0) if l mod n 	= 0 and l + n > N,

(0;0) if l mod n = 0 and l + n > N.

We also stack the grid functions AT
l u along rows into a vector. We form the matrix A by concatenating the matrices Al ,

l = 1,2, . . . , N , that is,

A = (A1, . . . , AN ) ∈ R
N×2N .

In this notation, the divergence ∇ · ∇u is simply −∑
i Ai(AT

i u). Denoted by MN
β (u), MFP

β (u), MPD
β (u), Mβ(u), gβ(u), and

gβ(u(l,0),u) the discretization of MN
β (u), MFP

β (u), MPD
β (u), Mβ(u), gβ(u), and gβ(u(l,0), u), respectively, then

MN
β (u) =

∑
i

Ai

[
1

|AT
i u|β

(
I2N − AT

i u ⊗ (AT
i u)T

|AT
i u|2β

)
AT

i

]
,

MFP
β (u) =

∑
i

Ai

(
AT

i

|AT
i u|β

)
,

MPD
β (u) =

∑
i

Ai

[
1

|AT
i u|β

(
I2N − w ⊗ (AT

i u)T

|AT
i u|β

)
AT

i

]
,

where I2N ∈ R
2N×2N is an identity matrix. The discretizations of (11) and (12) are

gβ(u) = 2αMN
β (u)

(∑
j

A j

( AT
j u

|AT
j u|β

))
+ (u − f) = 0, (13)

gβ

(
u(l,0),u

) = 2αMN
β

(
u(l,0)

)(∑
j

A j

( AT
j u

|AT
j u|β

))
+ (u − f) = 0. (14)

Here (14) is still nonlinear. It can be successively linearized as[
2αMN

β

(
u(l,0)

)
Mβ

(
u(l,k)

) + IN
](

u − u(l,k)
) + gβ

(
u(l,0),u(l,k)

)
= M̃β

(
u(l,0),u(l,k)

)(
u − u(l,k)

) + gβ

(
u(l,0),u(l,k)

) = 0, k = 0,1,2, . . . (15)
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where IN ∈ R
N×N is an identity matrix and Mβ(u(l,k)) can be one of these three operators

MN
β

(
u(l,k)

)
, MFP

β

(
u(l,k)

)
, MPD

β

(
u(l,k)

)
,

corresponding to the use of the Newton method, the lagged fixed point method, and the primal–dual method respectively.
Although such a notation includes three separate methods, our recommendation will be the third choice for a fixed point
curvature method with primal–dual iterations.

We now address the solvability of (15) and will show M̃β(u(l,0),u(l,k)) is a positive definite matrix by the following two
propositions.

Proposition 1. The matrices MN
β (u) and MFP

β (u) are symmetric positive semidefinite, and MPD
β (u) is positive semidefinite if |wi | � 1

at all grid points.

Proof. For any v ∈ R
N , we have

MN
β (u)(v,v) =

∑
i

1

|AT
i u|β

(∣∣AT
i v

∣∣2 − (AT
i u, AT

i v)2

|AT
i u|2β

)
.

It is clear that |AT
i v|2 − (AT

i u,AT
i v)2

|AT
i u|2β

� 0 for any β > 0, then, MN
β (u)(v,v) � 0, and MN

β (u) = (MN
β (u))T , so the matrix MN

β (u)

is symmetric positive semidefinite. By a similar procedure we can prove MFP
β (u) and MPD

β (u) are positive semidefinite
matrices. �
Proposition 2. If A ∈ R

N×N is a symmetric positive semidefinite matrix and B ∈ R
N×N is a positive semidefinite matrix, then the

eigenvalues of the product of these two matrices are nonnegative.

Proof. By the assumption that A is a symmetric positive semidefinite matrix, then there exists a matrix C ∈ R
N×N , such

that A = CC T .
We will prove AB = CC T B and C T BC share the same eigenvalues by proving they have the same characteristic polyno-

mial. The proof starts by computing(
IN −C

0 λIN

)(
C λIN

IN C T B

)
=

(
0 λIN − CC T B

λIN λC T B

)
. (16)

By taking determinant of both sides in (16), we obtain

λN

∣∣∣∣∣ C λIN

IN C T B

∣∣∣∣∣ = λN(−1)N
∣∣λIN − CC T B

∣∣. (17)

Similarly, since(
IN 0

−C T B λIN

)(
C λIN

IN C T B

)
=

(
C λIN

λIN − C T BC 0

)
, (18)

we have

λN

∣∣∣∣∣ C λIN

IN C T B

∣∣∣∣∣ = λN(−1)N
∣∣λIN − C T BC

∣∣. (19)

Comparing (17) with (19), we can draw the conclusion that∣∣λIN − CC T B
∣∣ = ∣∣λIN − C T BC

∣∣,
namely, AB = CC T B and C T BC have the same characteristic polynomial.

If we can prove the eigenvalues of the matrix C T BC are nonnegative, then we arrive at our conclusion. For any given
vector x, set y = Cx, since B is a positive semidefinite matrix, then yT B y � 0, namely xT C T BCx � 0. Since x is any given
vector, then C T BC is a positive semidefinite matrix. Therefore, the eigenvalues of C T BC and hence those of AB are nonneg-
ative. �

From Propositions 1 and 2, we know the eigenvalues of MN
β (u(l,0))Mβ(u(l,k)) are nonnegative. Therefore,

M̃β

(
u(l,0),u(l,k)

) = 2αMN(
u(l,0)

)
Mβ

(
u(l,k)

) + IN
β



F. Yang et al. / Applied Numerical Mathematics 62 (2012) 185–200 191
is a positive definite matrix. Clearly, all eigenvalues are larger than or equal to 1, which guarantees the existence of

δu(l,k) = −M̃β

(
u(l,0),u(l,k)

)−1
gβ

(
u(l,0),u(l,k)

)
.

Moreover, the linear system M̃β(u(l,0),u(l,k))δu(l,k) = −gβ(u(l,0),u(l,k)) can be solved by suitable iterative solvers; here we
use a preconditioned conjugate gradient method.

From [42,13,34,31,16], for the TV equation (10), the lagged fixed point method and the primal–dual method converge
for any nonzero β . However, the Newton method only converges for large β . For the curvature equation (14), the same
observations can be made. But we hope to use a Newton type method whenever possible. To achieve this, we require a
homotopy algorithm. For now, assuming that a good initial solution u(0,0) is available, we simply describe how (13) will be
solved in preparation for a homotopy algorithm.

Algorithm 1. [u, l,flag] ← EL_solver(u(0,0), f, tol1, tol,maxit1,maxit,α,β)

Step 1. Compute Jβ(u(0,0)) and set l := 1.
Step 2. [u(l,0), iter,flag] ← FP_solver(u(l−1,0), f, tol,maxit,α,β).

Compute the energy function Jβ(u(l,0)).
Step 3. If | Jβ(u(l,0)) − Jβ(u(l−1,0))| < tol1 or l = maxit1, then

return with u = u(l,0) .
Else set l = l + 1, then return to Step 2.

The FP_solver in Step 2 of Algorithm 1 is the following.

Algorithm 2. [u,k,flag] ← FP_solver(u(l,0), f, tol,maxit,α,β)

Step 1. Set k := 0, flag := 1, compute MN
β (u(l,0)), gβ(u(l,0),u(l,0)), and res0 := ‖gβ(u(l,0),u(l,0))‖2.

Step 2. Choose one linear operator for gβ(u(l,0),u) to compute M̃β(u(l,0),u(l,k)), u(l,k+1) = u(l,k) − M̃β(u(l,0),u(l,k))−1 ×
gβ(u(l,0),u(l,k)), and k = k + 1.

Step 3. Compute gβ(u(l,0),u(l,k)), then set relres := ‖gβ(u(l,0),u(l,k))‖2/res0.
Step 4. If relres � tol, then

record the iteration, then return u = u(l,k) (solution has been found).
Else

if the maxit iterations have been performed, then
set u = u(l,0) and flag = 0.

Else return to Step 2.

In summary, since the fixed point curvature method via Algorithm 1 uses u(0,0) = f at the very first iteration, the follow-
ing u(l+1,0) is the solution of gβ(u(l,0),u) = 0. The whole process consists of a succession of the following two steps.

1. Solve gβ(u(l,0),u) = 0 by Algorithm 2, and denote its solution by u(l+1,0) .
2. Set l = l + 1 and continue iterations till termination by some tolerance.

4. Homotopy method for the curvature Euler–Lagrange equation

A homotopy method offers a convergent solution for a large class of nonlinear equations. As a globally convergent
method, the homotopy method has versatility and robustness, and has become an important tool for solving nonlinear
problems; see [24,18,20,2,27,43]. The basic idea of a homotopy algorithm is to construct a continuous map H(u, t) with
parameter t which deforms a simple function H(u,0) to the given function H(u,1) as t varies from 0 to 1.

To find a required solution from tracking the solution curve Γ emanating from the solution of H(u,0) = 0, the homotopy
algorithm requires Γ obey strict smoothness conditions. There are many continuous maps that can satisfy these conditions.
For example, to solve (13), the following simple homotopy

H(u, t) = tgβ(u) + (1 − t)(u − f) = 2tαMN
β (u)

(∑
j

A j

( AT
j u

|AT
j u|β

))
+ (u − f) = 0

can be considered. However, the singularity and nonlinearity of H(u, t) = 0 is the same as that of (13) even for t not near 1.
To construct a better homotopy for solving (13), we hope to reduce its level of singularity and nonlinearity when t is not

near 1. Our suggested homotopy map is as follows
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H(u, t) = 2α
∑

i

Ai

[
1

|AT
i u|β(t)

(
I2N − AT

i u ⊗ (AT
i u)T

|AT
i u|2β(t)

)
AT

i

][∑
j

A j

( AT
j u

|AT
j u|β(t)

)]
+ (u − f) = 0, (20)

where β(t) = (1 − t)/t2, t ∈ (0,1]. When t > 0 is small, β(t) is large and the level of singularity and nonlinearity of
H(u, t) = 0 is lower than (13), and easier to solve. Other choices of β(t) may be permitted as long as they ensure a
positive and monotonically decreasing β(t) such that β(1) = 0 and β(t0) > 0 is large when t0 ≈ 0. To allow t = 0, rewrite
Eq. (20) as

H(u, t) = 2α
∑

i

Ai

[
t√

t2|AT
i u|2 + (1 − t)

(
I2N − t2 AT

i u ⊗ (AT
i u)T

t2|AT
i u|2 + (1 − t)

)
AT

i

]

·
[∑

j

A j

( t AT
j u√

t2|AT
j u|2 + (1 − t)

)]
+ (u − f) = 0, (21)

since

1

|AT
i u|β(t)

= 1√
|AT

i u|2 + (1 − t)/t2
= t√

t2|AT
i u|2 + (1 − t)

. (22)

Here H(u,0) = u − f implies that our initial solution is the given image (as commonly used in denoising algorithms) and
H(u,1) = 0 will give the solution for (13) with β = 0.

We can solve a sequence of equations H(u, tk) = 0 for adaptively increasing tk up to 1 (in practice, we will stop at certain
t∗ < 1 near 1 such that β(t∗) = β , a prescribed small enough smooth parameter). The solution of H(u, tk−1) = 0 serves as
the good initial guess for iteratively solving H(u, tk) = 0. The whole process is a special predictor–corrector path following
procedure with a staircase predictor. The technique consists of the following two phases.

• Predictor step. For t0 = 0, the solution of H(u, t0) = 0 is known, namely u0 = f. After we have obtained an approximate
solution uk−1 of H(u, tk−1) = 0 for some tk−1 ∈ [0,1), increase t with some predictor steplength θk−1 to reach tk =
tk−1 + θk−1 and the solution of H(u, tk) = 0 is provided with the initial guess uk−1.

• Corrector steps. From the initial point uk−1, approximately solve H(u, tk) = 0 by the fixed point curvature method.
Because the parameter t is introduced into Eq. (21) to compute 1/|AT

i u|β(t) , the fixed point curvature method used
here is slightly different from Algorithms 1 and 2 in replacing the parameter β = β(t) by t . If θk−1 is suitably chosen,
uk−1 will be close to the solution of H(u, tk) = 0, and hence, the convergence of the fixed point curvature method is
assured.

As we know, the prediction phases and the correction phases mutually affect each other. The predictor steplength θ is
adjusted according to the performance of the corrector procedure as done below in Algorithm 3. When a corrector step
terminates within prescribed steps of iter1, θ is considered too small for the next predictor and is increased, when the
iterations terminate over some iter2 > iter1 steps and converge, θ is considered too large and will be decreased, while
if the iterations diverge, the predictor–corrector step is abandoned and then is restarted starting with a smaller θ . The
predictor–corrector path following procedure is shown as follows:

Algorithm 3 (Homotopy method). u ← homotopy(f, tol1, tol,maxit1,maxit, θ,α,β)

Step 1. Set k = 1, uk−1 := f and tk−1 := 0.
Step 2. Set tk := tk−1 + θ .

If tk � 2/(1 + √
1 + 4β), then

tk = 2/(1 + √
1 + 4β),

[uk, iter,flag] ← EL_solver(uk−1, f, tol1, tol,maxit1,maxit,α, tk).
If flag = 1, then

return u = uk (solution has been found).
Else set θ = θ/2, tk = tk−1 + θ(1 − tk−1).

Step 3. [uk, iter,flag] ← EL_solver(uk−1, f, tol1, tol,maxit1,maxit,α, tk).
if flag = 1, then

set k = k + 1.
If the iteration count iter is less than iter1, then

increase θ by θ := 1.2θ .
If the iteration count iter is more than iter2, then

reduce θ slightly by θ := θ/1.2.
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Return to Step 2.
Else reduce θ by θ := θ/2.
If θ is unreasonably small, then

return with an error Flag.
Else return to Step 2.

5. Numerical experiments and discussions

In this section we test our restoration algorithms on several images of 2 resolutions, 128 × 128, 256 × 256 and 512 × 512
pixels, with an intensity range of [0,255]. Energy values of the minimizing functional from (5), the signal to noise ratio
(SNR), the peak signal to noise ratio (PSNR), and the difference between a digital image and its denoised version are used
to measure the quality of the restored images, and we define the latter three by

SNR =
∑n

i=1
∑n

j=1 u2
i, j∑n

i=1
∑n

j=1(ui, j − ũi, j)
2
, PSNR = 10 log10

2552

1
n2

∑n
i=1

∑n
j=1(ui, j − ũi, j)

2
,

and

diff(ũ) = ũ − f ,

where u, ũ and f are respectively the original image, the restored image and the noisy image.
Below we shall refer to the method of Algorithm 1 with a fixed β (with Algorithm 2 by a primal–dual method) as

our fixed point curvature method. As such, in following figures, “Inner iterations” will mean the “number of accumulated
primal–dual iterations” for the fixed point curvature method, and the homotopy method.

5.1. Comparisons of our fixed point curvature method with our homotopy method

In this section, we use a 128 × 128 “triangle” contaminated with zero mean Gaussian random noise (see Fig. 1) as the
test image. The denoised images by the fixed point curvature method and our homotopy method can be seen in Figs. 6
and 7 respectively. Fig. 2 shows maxit1 = 1 is slightly better than maxit1 = 2 when we take β = 10−6 in our homotopy
method, so we use maxit1 = 1 in the following tests.

• α-dependence test. Here we analyze how sensitive the performance of our fixed point curvature method and our ho-
motopy method is when α = 50, 100, 150, 200, while β = 1 is unchanged. We can see a clear process of the changes
of SNR using fixed point curvature method and homotopy method with different α in Fig. 3. Although both of them
improve the quality of the image for the different values of α, we see that the performance of our fixed point curvature
method for α = 50 is less efficient while the homotopy method is more consistently behaved.

• β-dependence test. After the analysis of the effect of α, we analyze how β affects the performance of fixed point curva-
ture method and homotopy method. Here we take α = 150 and vary β = 1, 10−2, 10−6, 10−8. Fig. 4 shows the history
of SNR using fixed point curvature method and homotopy method with different β . Obviously, both of them improve
the quality of the image for the different values of β and as expected the number of the iterations is increased when
β is small. We can also observe the quality of the image recovered by Algorithm 1 is somewhat sensitive as β reduces,
but the homotopy method is not.

Fig. 5 shows the comparisons of the number of accumulated primal–dual iterations, SNR, and energy value between fixed
point curvature method and homotopy method with α = 150, β = 10−4. We can draw the conclusion that our homotopy
method is faster and more robust than our fixed point curvature method.

Fig. 1. The original “triangle” image (left) and noisy image (right).
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Fig. 2. The comparison of the correction phase using maxit1 = 1 and maxit1 = 2.

Fig. 3. Comparisons of fixed point curvature method (left) and homotopy method (right) for different α.

Fig. 4. The descriptions for the change of SNR with different β by fixed point curvature method (left) and homotopy method (right).

Fig. 5. The comparison of fixed point curvature method with homotopy method for SNR (left) and the energy values (right) with α = 150, β = 10−4.
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Fig. 6. Image denoised by fixed point curvature method (left) and the difference image (right) with α = 150, β = 1.

Fig. 7. Image denoised by homotopy method (left) and the difference image (right) with α = 150, β = 1.

Fig. 8. Original “chart” image (left) and noisy image (right).

5.2. Comparisons of the TV model and surface fitting method with homotopy method for mean curvature model

The classical TV model is known to yield satisfactory results for removing noise while preserving edges and contours of
nonsmooth objects. Surface fitting method for a high order model proposed by Lysaker, Osher and Tai [30] improves the
quality of restoration by enhancing the recovery of smooth subsurfaces contained in the image. In this section, we conduct
numerical experiments to compare these methods with our homotopy method for a mean curvature-based model.

Example 1. It is known that the TV model yields piecewise constant images, so it works well for “blocky” images. A block
image with zero mean Gaussian random noise is taken in our first test; the original image and the noisy image are shown
in Fig. 8. From the restored results of Figs. 9–11, we see that the recovered image by the TV model preserves the edges well
and has a clearer background than the other two methods, and images recovered by surface fitting method and homotopy
curvature method are also visually acceptable. In case of the difference images, it is remarkable that mainly the maximum
of the difference decreases, comparing the surface fitting method or the homotopy method with classical TV model, while
the minimum stays constant. This indicates a change in the average intensity of the results (mean of difference image not
zero). On the other side, a decrease in structure can be observed in these figures.

Example 2. Our next example uses the “Barbara” image, see Fig. 12. The challenge with this image is to maintain both
texture details and smooth transitions in the face during restoration. From the restored results of Figs. 13–15, we see that
the restored images by the surface fitting method and our homotopy curvature method are visually better than the TV
model. Similar to Example 1, the difference images indicate some textures on the scarf are oversmoothed by the TV model.
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Fig. 9. Image denoised by classical TV model (left) and the difference image (right).

Fig. 10. Image denoised by surface fitting method (left) and the difference image (right).

Fig. 11. Image denoised by homotopy method for mean curvature-based model (left) and the difference image (right).

Fig. 12. Original “Barbara” image (left) and noisy image (right).

However, some textures are preserved by surface fitting method and homotopy curvature method. Further, our homotopy
curvature method does better than the surface fitting method.

5.3. Comparison of a nonlocal means algorithm with our homotopy method

Test results obtained from comparing the nonlocal means algorithm [8] and our homotopy method for curvature de-
noising using images of “cameraman” (Fig. 16) and “aircraft” (Fig. 21) with random noise are now shown in Figs. 17–18
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Fig. 13. Image denoised by classical TV model (left) and the difference image (right).

Fig. 14. Image denoised by surface fitting method (left) and the difference image (right).

Fig. 15. Image denoised by homotopy method (left) and the difference image (right).

Fig. 16. Original “cameraman” image (left) and noisy image (right).

and 20–21 respectively. In particular, Fig. 22 zooms into a subregion of “aircraft” and Fig. 23 displays the differences of the
two methods.

As seen from the recovered images, both methods are able to maintain all important information in the images, and at
the same time to filter out noise. As far as the difference images are concerned, one observes that the maximum of the
difference for our homotopy curvature method decreases and the nonlocal means algorithm contains less edge structures
in the difference image than our homotopy curvature method. However, the nonlocal means algorithm removes more fine
details so the maximum of the difference is larger although both recovered subregions (see Fig. 23) provide good visualiza-
tion. The tests suggest that the mean curvature denoising model is better for contrast preserving and the nonlocal means
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Fig. 17. Image denoised by nonlocal means algorithm (left PSNR = 33.7) and the difference image (right).

Fig. 18. Image denoised by homotopy method for mean curvature-based model (left PSNR = 33.4) and the difference image (right).

Fig. 19. The original “aircraft” image (left) and noisy image (right PSNR = 23.37).

Fig. 20. Images denoised by nonlocal means method (left PSNR = 24.41) and the difference image (right).

algorithm is better for structure preserving, while both are good at reducing staircasing effect of the TV model. In our future
work, we hope to compare with the TGV method [5].

6. Conclusions

Curvature-based variational denoising models can restore effectively both blocky images (of piecewise constant intensi-
ties) and smooth images (with no clear jumps). For the former case, the restored quality is similar to that from a TV model
and for the latter it is much better than the TV. However, the resulting fourth order PDE of a curvature model is much
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Fig. 21. Images denoised by homotopy method for mean curvature-based model (left PSNR = 24.43) and the difference image (right).

Fig. 22. Marked subregion of “aircraft” image (left), the selected original (middle) and the noisy subregion (right PSNR = 23.37).

Fig. 23. The subregion denoised by nonlocal means method (left) and homotopy method for mean curvature-based model (right).

more complicated, presenting difficulties for many numerical techniques. Firstly, no simple lagged fixed point methods can
be constructed, a working fixed point method from [6] requires stabilization and a relatively large regularization param-
eter β . Secondly, reformulation methods such as from [44] can provide an elegant solution approach only by solving an
approximated problem. This paper first gave a fixed point curvature method for directly solving the fourth order PDE and
then proposed a homotopy method with curve tracking to choose the regularizing parameter β adaptively. The resulting
method turns out to be able to drive the Newton type method (as a corrector) to convergence for a range of test images
and for any small parameter β . Numerical experiments can demonstrate advantages of our method over both the TV model
and the smoothed normal model. Future work will consider how to make use of our method in a multigrid context as well
as for other applications where curvature is used. Of course, it will be of interest to study the solution methods for other
effective denoising models [5,28].
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