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a b s t r a c t

We study the gradual covering location problem on a network with uncertain demand. A single facility

is to be located on the network. Two coverage radii are defined for each node. The demand originating

from a node is considered fully covered if the shortest distance from the node to the facility does not

exceed the smaller radius, and not covered at all if the shortest distance is beyond the larger radius. For

a distance between these two radii, the coverage level is specified by a coverage decay function. It is

assumed that demand weights are independent discrete random variables. The objective of the

problem is to find a location for the facility so as to maximize the probability that the total covered

demand weight is greater than or equal to a pre-selected threshold value. We show that the problem is

NP-hard and that an optimal solution exists in a finite set of dominant points. We develop an exact

algorithm and a normal approximation solution procedure. Computational experiment is performed to

evaluate their performance.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The maximal covering location problem [7] is one of the
classical models in facility location theory. A demand point is
considered completely covered if it is within a reasonable travel
distance, i.e., the coverage radius from at least one facility, and not
covered at all if it is outside the coverage radius from any facility.
The objective of the model is to establish facilities so as to cover
as many customers as possible. The model can be applied to
various settings, including the location of fire stations, retail
stores, etc. Readers are referred to ReVelle and Williams [11] for
a recent review of related literature.

As an extension of the above model, the gradual covering
location problem [8,1] relaxes the all-or-nothing coverage
assumption. Two coverage radii are specified. A demand point is
‘‘fully’’ covered if it is within the smaller coverage radius from the
facilities and not covered if it is at or beyond the larger coverage
radius away from the facilities. It is deemed ‘‘partially’’ covered if
its distance to the closest facility is between the two coverage
radii. A coverage decay function is introduced to determine the
proportion of customers at a partially covered demand point that
are covered by the facilities. The coverage decay function is
usually non-increasing with distance.
ll rights reserved.
In network location models, demand weights are used to
gauge the number of potential customers originated from nodes.
Demand weights are generally assumed to be constant and
known. It is noted, however, that treating demand weights as
random variables is more reasonable [9].

The expected value optimization model is commonly used to
solve stochastic decision making problems. This model is appro-
priate for a decision maker who can make the decision repeti-
tively. However, it is usually costly or infeasible to change a
strategic decision such as locating facilities. Thus the model to
maximize the probability of achieving a given threshold value
(referred to as ‘‘P’’ model by Charnes and Cooper [6]) shall be ideal
for the decision maker in such a situation who is concerned with
the risk of poor performance.

As Charnes and Cooper [6] commented, a ‘‘P’’ model can be
linked to the concept of ‘‘satisfying’’ (in contrast to ‘‘optimizing’’)
that was developed by Simon [12] in behavior theories. In this
perspective, the specified threshold value can be interpreted as an
‘‘aspiration level’’, while the objective is to maximize the like-
lihood of attaining the target.

There have been a few investigations of the ‘‘P’’ model
formulations in location theory (see, e.g., [9,2,3,5]). Berman and
Wang [4] motivated and discussed the maximal covering location
problem with probabilistic demand weights.

In this paper, we study the gradual covering problem on a
network where demand weights are independent discrete ran-
dom variables. The objective of the problem is to locate a facility
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so as to maximize the probability that the total demand weight
covered exceeds a pre-selected threshold value.

In the next section, a mathematical formulation is introduced
and the problem is shown to be NP-hard. In Section 3, we develop
an exact solution procedure to search for the optimal solution. As
a generalization, we also discuss the case where coverage decay
functions are piece-wise functions. Since the problem is NP-hard,
a normal approximation approach is suggested in Section 4.
In Section 5, a computation experiment is conducted to evaluate
the performance of the normal approximation approach for linear
coverage decay functions.
2. Problem statement

Let G be an undirected network with a set of nodes N ðjNj ¼ nÞ

and a set of links L ðjLj ¼ lÞ. Denote by lij the length of link ði,jÞAL

and by d(h,x) the shortest distance between a node h and an
arbitrary point xAG. When there is no ambiguity, the same
notation xA ½0,lij� represents both, a point on link (i,j), and the
distance of the point from node i.

Two coverage radii r̂ h and ~rh (r̂ ho ~rh) are defined for every
node hAN. If d(h,x) is between r̂ h and ~rh, node h is partially
covered by x with the level of coverage given by a coverage decay
function lhðdðh,xÞÞ. It is intuitive that the function lhð�Þ is non-
increasing with lhðr̂ hÞ ¼ 1 and lhð~rhÞ ¼ 0. Here we require that the
coverage decay function lhð�Þ for every node h is monotone
decreasing and continuous.

We assume that demand generates from the nodes only. The
demand weight Wh associated with node hAN is a discrete

random variable with possible values wh[k], k¼ 1,2, . . . ,Kh, where
Kh represents the number of realizations of Wh. Let ph½k� ¼

PðWh ¼wh½k�Þ. Without loss of generality, it is assumed that
0rwh½1�o wh½2�o � � �owh½Kh�, 8hAN.

Denote by ch(x) the proportion of demand weight at node h

that is covered by the facility established at the point x. ch(x) is
expressed as

chðxÞ ¼

1, dðh,xÞr r̂ h,

lhðdðh,xÞÞ, r̂ hodðh,xÞo ~rh,

0, dðh,xÞZ ~rh:

8><
>:

Given the point x,
P

hANchðxÞWh is the total demand weight
covered by the facility located at x. Since Wh associated with
each node h follows a discrete probability distribution,P

hANchðxÞWh is also a discrete random variable. The objective
of the probabilistic gradual covering problem (referred to as the
problem (P) hereinafter) is to locate a facility at some point x so as
to maximize the probability of the total covered demand weight
exceeding a pre-determined threshold value t40:

max
xAG

f ðxÞ ¼ P
X
hAN

chðxÞWhZt

 !
: ðPÞ

Note that f ðxÞ ¼ 0 if chðxÞ ¼ 0 for every node hAN (that is, none
of the nodes is even partially covered). If the demand weights are
deterministic, the problem (P) reduces to the deterministic
gradual covering problem,

max
xAG

f uðxÞ ¼
X
hAN

chðxÞWh: ð1Þ

Suppose that the random demand weights are independent.
Given the facility location x, every node out of coverage can be
excluded from consideration without affecting the computation
of the objective value f(x). Let W(x) be the random vector of
demand weights associated with the nodes in the set EðxÞ ¼ fhANj

chðxÞ40g. Denote by B(x) the Cartesian product of realizations of
Wh, 8hAEðxÞ. We note that every vector w in B(x) is a realization
of W(x) and can be expressed as w¼ ðwhð1Þ ,whð2Þ , . . . ,whðjEðxÞjÞ Þ. Given
a vector w, we define

gwðxÞ ¼
1 if

P
hðqÞAEðxÞchðqÞ ðxÞwhðqÞZt,

0 otherwise:

(
ð2Þ

The objective value f(x) is calculated as

f ðxÞ ¼
X

wABðxÞ

gwðxÞpw, ð3Þ

where pw ¼
Q

hðqÞAEðxÞPðWhðqÞ ¼whðqÞ Þ for a given vector wABðxÞ.
We note that the problem (P) reduces to the probabilistic

maximal covering problem studied by Berman and Wang [4] if
r̂ h ¼ ~rh for every node h. They prove that computing the objective
value for the probabilistic maximal covering problem is NP-hard
when the demand weights are discrete random variables. This
conclusion can be easily generalized to the problem (P). There-
fore, the problem (P) is also NP-hard.

We next discuss some special cases for which an optimal
solution can be easily determined. Suppose that x(1) and x(2) are,
respectively, the optimal solutions to the deterministic gradual
covering problem (1) with Wh ¼wh½1� and Wh ¼wh½Kh�, 8hAN. Let
t1 ¼

P
hANchðx

ð1ÞÞwh½1� and t2 ¼
P

hANchðx
ð2ÞÞwh½Kh�. In the follow-

ing lemmas we show that the problem (P) can be solved easily if t

is sufficiently small or large.

Lemma 2.1. If trt1, x(1) is optimal to the problem (P).

Proof. It is easy to see that f ðxð1ÞÞ ¼ 1. &

Lemma 2.2. If t4t2, the objective value f ðxÞ ¼ 0 at every point

xAG.

Proof. Since
P

hðqÞAEðxð2ÞÞchðqÞ ðx
ð2ÞÞwhðqÞot for any wABðxð2ÞÞ, we have

f ðxð2ÞÞ ¼ 0. Note that
P

hðqÞAEðxÞchðqÞ ðxÞwhðqÞ ½Kh�r
P

hðqÞAEðxð2ÞÞchðqÞ ðx
ð2ÞÞ

whðqÞ ½Kh�ot holds at every point xAG. In a similar way, we can
show that f ðxÞ ¼ 0 at x. &

Next, ranges of radii are established for which an optimal solution
to the problem (P) can be easily identified. Suppose that x(0) is the
1-center of the network [10], i.e., xð0Þ ¼ argminxAG maxhANdðh,xÞ and
hence maxhANdðh,xð0ÞÞ is the network radius.

Lemma 2.3. If minhANr̂hZmaxhAN dðh,xð0ÞÞ, xð0Þ is an optimal

solution to the problem (P).

Proof. For every node h, we have dðh,xð0ÞÞr r̂ h and hence
chðx

ð0ÞÞ ¼ 1. Therefore, x(0) is optimal. &

Let node ĥ ¼ argmaxhAN PðWhZtÞ and link ða,bÞ ¼ argminði,jÞAL lij
(ties are broken arbitrarily). That is, (a, b) is the shortest link.

Lemma 2.4. If maxhAN ~rhr 1
2 lab, node ĥ is optimal to the

problem (P).

Proof. Because at most one node is fully or partially covered by a
facility established at every point, one of the nodes must be
optimal. The problem (P) reduces to maxhANf ðhÞ ¼ PðWhZtÞ. &

3. Exact solution procedure

In this section, we consider solving a general instance of the
problem (P) where minhANr̂ho maxhANdðh,xð0ÞÞ, maxhAN ~rh4 1

2 lab,
and t1otrt2. It is sufficient to solve the problem on every link of
the network. We now develop a procedure for finding an optimal
solution on an arbitrarily selected link ði,jÞAL. Without loss of
generality, we assume dði,jÞ ¼ lij because otherwise link (i,j) can be
eliminated without affecting optimality.

Suppose that the facility is located at x. Given a vector wABðxÞ,
ywðxÞ ¼

P
hAEðxÞchðxÞwh is the total demand weight covered by the

facility. As will be shown later, the objective function f(x) is a
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step-wise function of the facility location x along link (i,j) with a
finite number of jump points x¼ y, where ywðyÞ ¼ t holds for some
vector wABðyÞ. Furthermore, the optimum within the link can be
found at one of the jump points of f(x). In order to identify these
jump points, we develop a procedure in Section 3.1 to divide the
entire link into primary intervals over which the closed form
expression of function ywðxÞ for every wABðxÞ is invariant. It will
become clear later that since all functions ywðxÞ have identical
break points along the link, such a method enables us to simplify
the computational process and also focus on a subset of potential
solutions by taking advantage of dominance relations between
these jump points within each primary interval.

3.1. Primary intervals

The shortest distance from node h to the point x is computed
as dðh,xÞ ¼minðdðh,iÞþx, dðh,jÞþ lij�xÞ. Define four network inter-

section points for every node h: ŷh ¼ r̂ h�dðh,iÞ, ~yh ¼ ~rh�dðh,iÞ,
ẑh ¼ dðh,jÞþ lij�r̂ h, and ~zh ¼ dðh,jÞþ lij�~rh.

To help conceptualize a network intersection point, we note
that the length of the shortest path connecting ŷh ( ~yh) and node h

via node i is exactly r̂ h (~rh), if ŷh ( ~yh) is between 0 and lij (i.e., if it is
an internal point of the link). Similarly, if ẑh (~zh) is an internal
point, then the shortest path from ẑh (~zh) to node h via node j has
a length of r̂ h (~rh). In addition, ŷh ( ~yh) o0 or ẑh (~zh) 4 lij means
that node h is out of the coverage radius r̂ h (~rh) from node i

or node j, respectively. Therefore, node h is not within the
coverage radius r̂ h (~rh) from any point on link ði,jÞ if ŷh ( ~yh) o0
and ẑh (~zh) 4 lij.

The next two lemmas are introduced to facilitate our analysis.

Lemma 3.1. Given node h and a constant r, dðh,xÞrr holds at every

point xAði,jÞ if dðh,jÞþ lij�rrr�dðh,iÞ.

Proof. Since dðh,xÞ ¼minðdðh,iÞþx, dðh,jÞþ lij�xÞ at a given point
xAði,jÞ, it follows that minfdðh,iÞ, dðh,jÞgrdðh,xÞr 1

2 ½dðh,jÞþ
lijþdðh,iÞ�. Since dðh,jÞþ lij�rrr�dðh,iÞ is equivalent to 1

2 ½dðh,jÞþ
lijþdðh,iÞ�rr, we have dðh,xÞrr at every point x. &

Lemma 3.2. Given node h and a constant r, dðh,xÞZr holds at every

point xAði,jÞ if r�dðh,iÞr0 and dðh,jÞþ lij�rZ lij.

Proof. Note minfdðh,iÞ, dðh,jÞgZr. It follows that dðh,xÞZmin
fdðh,iÞ, dðh,jÞgZr holds at every point x. &

We now divide N into four subsets:
Nfc ¼ fhANjẑhr ŷhg,
Nuc ¼ fhANj ~yhr0 and ~zhZ lijg,
Npc ¼ fhANjŷhr0, ẑhZ lij, and ~zhr ~yhg,
Nvc ¼N�Nfc�Nuc�Npc .
The next lemma characterizes Nfc, Nuc and Npc.

Lemma 3.3. For every point xA ði,jÞ, chðxÞ ¼ 1 if hANfc , chðxÞ ¼ 0 if

hANuc and 0rchðxÞr1 if hANpc .

Proof. The lemma is a natural result of Lemmas 3.1 and 3.2. &

Lemma 3.3 suggests that node h is fully covered, not covered,
and partially covered by a facility sited anywhere on link (i,j) if
hANfc , hANuc and hANpc , respectively.

As the potential facility location x moves along the link, the
closed form expression of ch(x) in terms of x for some node h

changes when (i) the coverage class of h in the set Nvc varies (e.g.,
from full coverage to partial coverage, or from partial coverage to
non-coverage) at a corresponding network intersection point; or
(ii) the shortest path to h in the set Nvc or Npc shifts (hence the closed
form expression of the function d(h,x) varies). These changes pose
difficulties to formulate function ywðxÞ for any given vector w.
Next we identify segments of the link where the above changes
cannot occur.

According to Lemma 3.1, we note that the coverage class of a
node h in Nvc does not change at ~yh and ~zh when ~zhr ~yh even
though they are internal points of the link. We call such network
intersection points redundant. Let J be the collection of the two
nodes i and j, and the non-redundant network intersection points
that are between 0 and lij on the link for every node hANvc . Sort
the elements in the set J in ascending order and arbitrarily select
two adjacent elements, denoted by x̂ and ~x. For a given segment
[x̂, ~x], Nvc is further divided into three subsets,
Mfc ¼ fhANvcjŷhZ ~x or ẑhr x̂g,
Muc ¼ fhANvcj ~yhr x̂ and ~zhZ ~xg,
Mpc ¼Nvc2Mfc2Muc .
Similar to Lemma 3.3, we have chðxÞ ¼ 1 if hAMfc , chðxÞ ¼ 0 if
hAMuc and 0ochðxÞo1 if hAMpc at every point xA(x̂, ~x). In
words, node h is fully covered, not covered, and partially covered
by a facility established everywhere inside the segment (x̂, ~x) if
hANfc [Mfc , hANuc [Muc and hANpc [Mpc , respectively. It fol-
lows that EðxÞ ¼N�Nuc [Muc . It is easy to show that the random
vector W(x) and the set B(x) do not change with x within the
segment [x̂, ~x]. For simplicity, we use the notation B to replace B(x).

The antipode on link (i,j) with respect to node h is obtained as a
point x such that dðh,iÞþx¼ dðh,jÞþ lij�x. In other words, the
shortest paths from x to node h through node i and node j have
the same length. Note that the closed form expression of the
function d(h,x) in terms of x changes at the antipode with respect
to h. In the segment [x̂, ~x], let Ju be the set of the two end points x̂,
~x and the antipode within the segment with respect to every node
hA Npc [Mpc .

A sub-interval [x̂u, ~xu] is called a primary interval if x̂u and ~xu are
two adjacent elements in Ju. Note that [x̂u, ~xu] coincides with the
segment [x̂, ~x] if x̂ and ~x are the only two elements in Ju. For every
vector wAB, we have ywðxÞ ¼

P
hANpc[Mpc

chðxÞwhþ
P

hANfc[Mfc
wh at

any point xA[x̂, ~x]. It becomes obvious that the closed form
expression of ywðxÞ in terms of x is invariant within any primary
interval.

Link (i,j) can now be regarded as a union of primary intervals.
On the link, there are at most four network intersection points
and one antipode with respect to every node. Hence, the number
of primary intervals is of the order of O(n). Subsequently, we seek
the optimum within a primary interval [x̂u, ~xu].
3.2. Critical points

Define a critical point x, if available in the primary interval [x̂u,
~xu] with respect to a vector wAB such that ywðxÞ ¼ t. Note that one
of the following four scenarios applies at a critical point x:
(1) ywðx�eÞot and ywðxþeÞ4t; (2) ywðx�eÞ4t and ywðxþeÞot;
(3) ywðx�eÞot and ywðxþeÞot; (4) ywðx�eÞ4t and ywðxþeÞ4t (e
is a positive number sufficiently small).

The critical point in the primary interval [x̂u, ~xu] with respect to
each vector w can be obtained by solving the equation ywðxÞ ¼ t

for x (note that the equation may have no root, one root or
alternative roots within the primary interval). Denote by S the set
of all these critical points with respect to every vector in B at
which one of the first three scenarios applies. The theorem below
claims that the objective function f(x) is step-wise with the
critical points in the set S as break points.

Theorem 3.1. If the set S is not empty, then one of the elements in S

is optimal to the problem (P) over the primary interval [x̂u, ~xu].
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Proof. If S is empty, then the objective function f(x) is constant
over [x̂u, ~xu]. Otherwise, suppose that xAS is a critical point inside
[x̂u, ~xu] with respect to a vector w. It is evident that yw ðxÞ ¼ t,
yw ðx�eÞ at, yw ðxþeÞ at, and gw ðxÞ changes value only at x when
x moves from x�e to xþe along the link. By (3), f(x) is a step-wise
function that breaks at the critical points in S. Hence, one of the
elements in S is optimal. &

By the above theorem, any critical point is a jump point of the
objective function f(x). A straightforward approach to find the
maximum within a primary interval is to evaluate and compare
values of f(x) at the critical points in set S. However, we note that
dominance relations in S can be developed so that some critical
points could be excluded from further consideration.

Sort all the elements in S in ascending order and denote by sq

the qth element. We further construct the following three subsets
of S:

Sl ¼ fxjx is a critical point with respect to w, ywðx�eÞ4t and
ywðxþeÞotg,
Sg ¼ fxjx is a critical point with respect to w, ywðx�eÞot and
ywðxþeÞ4tg,
Sm ¼ fxjx is a critical point with respect to w, ywðx�eÞot and
ywðxþeÞotg.

We note that a point in S may be ‘‘critical’’ with respect to various
vectors in B and thus may belong to one, two or all three of the
subsets defined above.

We now introduce two lemmas that characterize the domi-
nated points in the set Sl.

Lemma 3.4. If sq, sqþ1ASl with qo jSj and sqþ1=2Sg [ Sm, then

f ðsqÞ4 f ðsqþ1Þ.

Proof. There exists a vector wAB such that yw ðsq�eÞ4t,
yw ðsqÞ ¼ t and yw ðsqþeÞot. The Lemma follows because
gw ðsqÞ ¼ 1 and gw ðsqþ1Þ ¼ 0. &

Lemma 3.5. If sqASg [ Sm, sqþ1ASl with qo jSj and sqþ1=2Sg [ Sm,
then f ðsqÞZ f ðsqþ1Þ.

Proof. If sqASl, by Lemma 3.4 we have f ðsqÞ4 f ðsqþ1Þ. In a similar
way to the proof for Lemma 3.4, we can show that f ðsqÞ4 f ðsqþ1Þ

also holds if sqASm, and f ðsqÞ ¼ f ðsqþ1Þ holds if sqASg , but
sq=2Sl [ Sm. &

The above two lemmas suggest that a critical point sq belong-
ing to the set Sl is dominated and can be ignored in the
optimization process unless it is the smallest element (q¼ 1) or
it is also in the set Sg or the set Sm.

The next two lemmas on the set Sg can be proven easily.

Lemma 3.6. If sq, sqþ1ASg with qo jSj and sq=2Sl [ Sm, then

f ðsqÞo f ðsqþ1Þ.

Lemma 3.7. If sqASg , sqþ1ASm with qo jSj and sq=2Sl [ Sm, then

f ðsqÞo f ðsqþ1Þ.

Lemmas 3.6 and 3.7 imply that a critical point sq in the set Sg

can be excluded from consideration unless (1) it also belongs to
the set Sl or the set Sm; or (2) it is the largest element in the set Sg;
or (3) its neighbor sq +1 is in the set Sl only.

Taking advantage of the properties stated above, we can rule
out dominated critical points in our search for an optimum point
within the primary interval [x̂u, ~xu]. Actually, we can consider only
the dominant points below: (1) sqASl \ Sg; (2) sqASm; (3) sqASg ,
if sq is the largest element in the set Sg or sqþ1=2Sg [ Sm; and (4) s1

if s1ASl.
For a critical point xAS, define

pSl
ðxÞ ¼

P
wARðxÞ

pw if xASl,

0 otherwise,

8<
:

where RðxÞ ¼ fwABjx is a critical point with respect to w, yw

ðx�eÞ4t and ywðxþeÞotg. Note that for every vector wARðxÞ (the
cardinality of the set R(x) may be greater than 1), we have
gwðx�eÞ ¼ gwðxÞ ¼ 1 and gwðxþeÞ ¼ 0. Similarly, we can define
pSg
ðxÞ and pSm

ðxÞ.
Since there may exist more than one critical point inside the

primary interval ½ ~xu, ~xu� with respect to a vector w, we further
define a collection of the combinations of critical points and the
corresponding random vectors:

Q ¼ fðx,wÞjxASl, wARðxÞ, x is the only or the smallest critical
point in the primary interval ½x̂u, ~xu� with respect to wg. Given
ðx,wÞAQ , we note gwðyÞ ¼ 1 at every point yA ½x̂u,x� and gwðyÞ ¼ 0
at every point yAðx,xu�, where xu is either the second smallest
critical point with respect to w if available, or the right end point
~xu otherwise.

Let A¼ fwABjywðxÞ4t for every xA ½x̂u, ~xu�g. That is, gwðxÞ ¼ 1
always holds over the primary interval ½x̂u, ~xu� for every vector
wAA.

The next lemma is natural.

Lemma 3.8. f ðx̂uÞZ
P

wAApwþ
P
ðx,wÞAQ pw.

We now introduce an algorithm to solve the problem on link
(i,j). The procedure starts with dividing the link into primary
intervals. Then the algorithm formulates the function ywðxÞ for
every vector wAB and identifies and evaluates dominant critical
points within each primary interval. The dominant point with the
highest objective value is returned as the optimum. fn and xn

contain, respectively, the incumbent optimal objective value and
optimal solution. To quickly determine whether a specific critical
point sq is the last element in the set Sg for a given primary
interval, we introduce a variable qu to indicate the position of the
current critical point under examination.

Algorithm 1 (Solving the Problem (P) on Link (i,j).).
Step 1:
 On link (i,j) compute the network intersection points
ŷh, ~yh, ẑh, and ~zh for every node h and then construct
the sets Nfc, Nuc, Npc, Nvc and J as defined above. Sort the
set J in an ascending order. Let f � ¼ �1.
Step 2:
 Select a pair of consecutive elements x̂ and ~x in the set
J. If all such pairs have been examined, go to Step 10.
Step 3:
 Construct the sets Mfc, Muc, Mpc, B and Ju as defined
above for the segment [x̂, ~x ]. Sort the set Ju in ascending
order.
Step 4:
 Select a pair of consecutive elements x̂u and ~xu in the set
Ju. If all such pairs have been examined, go to Step 2.
Step 5:
 For the primary interval [x̂u, ~xu], construct the sets S, Sl, Sg,
Sm, Q and A and compute pSl

ðxÞ, pSg
ðxÞ and pSm

ðxÞ at
each critical point xAS. Sort the set S in an ascending
order. P P
Step 6:
 Let q¼ qu¼ 0 and c¼ wAApwþ ðx,wÞAQ pw. If c4 f �,
let x� ¼ x̂u and f � ¼ c.
Step 7:
 If q40 and c4 f �, let x� ¼ sq and f � ¼ c.

Step 8:
 Increase q by 1. If q4 jSj, go to Step 4. Let c¼

c�pSl
ðsq�1Þ�pSm

ðsq�1ÞþpSg
ðsqÞþpSm

ðsqÞ (let pSl
ðsq�1Þ ¼

pSm
ðsq�1Þ ¼ 0 when q¼ 1). If sq=2Sg [ Sm, repeat Step 8.

If sqASg , increase qu by 1.

Step 9:
 If any of the following cases occurs, go to Step 7;

otherwise, go to Step 8.
� sqASl [ Sm;
� qu¼ jSg j (i.e., sq is the last element in the set Sg);
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� quo jSg j and sqþ1=2Sg [ Sm (i.e., sq is not the last
element in the set Sg and sq +1 is not in the set Sg

nor the set Sm).
1

istr

cay

erse
Step 10:
 Stop. Return xn as the optimal solution with an objec-
tive value fn.
To illustrate Algorithm 1, consider the 4-node network as shown
in Fig. 1. The probabilistic distributions of the demand weights are
defined in Table 1. Assume that the coverage decay function is
linear in d(h,x) and formulated as lhðdðh,xÞÞ ¼ ahþbhdðh,xÞ for every
node h. The coverage radii and the coefficients of the coverage
decay functions are presented in Table 2. Let t¼ 11. We next
apply Algorithm 1 to solve the problem (P) on link (1,2).

From the network structure, we can obtain the shortest
distances from any node to the two end nodes of link (1,2):
dð1,2Þ ¼ dð2,1Þ ¼ 10:0, dð3,1Þ ¼ 6:0, dð3,2Þ ¼ 6:0, dð4,1Þ ¼ 7:0 and
dð4,2Þ ¼ 4:0. The network intersection points on link (1,2) are
summarized in Table 3. By definition, we have Nfc ¼ |, Nuc ¼ f3g,
Npc ¼ |, Nvc ¼ f1,2,4g and J¼ f0,1:0,3:0,4:0,6:0,7:0,8:0,10:0g. Let us
examine segment [6.0, 7.0]. It is easy to derive Mfc ¼ f2g, Muc ¼ |
3

2

4

10

6

7

2

4

Fig. 1. A 4-node network.

ibutions of the demand weights.

k wh[k] ph[k]

1 2 0.3

2 4 0.7

1 5 0.6

2 8 0.4

1 0 0.2

2 5 0.8

1 2 0.4

2 4 0.4

3 6 0.2

functions.

r̂ h ~r h ah bh

4 8 2 �0.25

4 9 1.8 �0.2

3 6 2 �1/3

7 10 10/3 �1/3

ction points.

ŷh
~yh ẑh ~zh

4 8 16 12

�6 �1 6 1

�3 0 13 10

0 3 7 4
and Mpc ¼ f1,4g. Hence for this segment, WðxÞ ¼ ðW1,W2,W4Þ is the
random demand weight vector of interest. The elements in the
set B are shown in Table 4. Since the antipode with respect to
node 4 is x¼ 3:5 on the link, we have Ju¼ f6:0,7:0g, i.e., [6.0, 7.0] is
a primary interval.

Note that for the vector w3 ¼ ð2,5,6Þ in the set B, the total
demand weight covered by a facility at some point xA ½6:0,7:0� is
expressed as yw3

ðxÞ ¼ 1:5xþ1. Solving the equation 1:5xþ1¼ 11,
we obtain x¼ 6:67 as the critical point with respect to w3. Since
1:5ð6:67�eÞþ1o11 and 1:5ð6:67þeÞþ1411, we add x¼ 6:67
into the set Sg. A similar analysis on all vectors in the set B results
in the set of critical points S¼ f6:0,6:67,7:0g with Sl ¼ f7:0g,
Sg ¼ f6:0,6:67g, pSl

ð7:0Þ ¼ 0:112, pSg
ð6:0Þ ¼ 0:084 and pSg

ð6:67Þ ¼
0:036. It is easy to see that Q ¼ fð7:0,w10Þg and A¼ fw5,w6,
w11,w12g. The process of identifying and evaluating the dominant
critical points within the segment is shown below:
Step 6:
Table 4
Elements

m

1

2

3

4

5

6

7

8

9

10

11

12

Table 5
An optim

[0,1.0]

[1.0,3.0

[3.0,4.0

[4.0,6.0

[6.0,7.0

[7.0,8.0

[8.0,10.
Let q¼ qu¼ 0 and c¼ 0:048þ0:024þ0:112þ0:056þ
0:112¼ 0:352.
Step 7:
 Go to Step 8.

Step 8:
 q¼1. c¼ 0:352þ 0:084¼ 0:436. Because s1ASg , qu¼ 1.

Step 9:
 Go to Step 8.

Step 8:
 q¼ 2. c¼ 0:436þ0:036¼ 0:472. qu¼ 2.

Step 9:
 Because s2 is the last element in the set Sg, go to Step 7.

Step 7:
 Because c4 f �, let x� ¼ 0:667 and f � ¼ 0:472.

Step 8:
 q¼ 3. Repeat Step 8.

Step 8:
 q¼ 4. Since q4 jSj ¼ 3, go to Step 4.
In the above process, x¼ 6:67 is found to be the dominant
critical point and an optimal point within the segment.

An optimal solution within any other segment can be obtained
in a similar way (see Table 5). Comparing these optimal points,
we obtain x¼ 6:67 as an optimal solution on the entire link.

3.3. Piece-wise coverage decay functions

Though not stated explicitly, it is assumed in the previous two
sub-sections that the closed form expression of any coverage
in the set B for the segment [6.0, 7.0].

wm pwm

(2,5,2) 0.072

(2,5,4) 0.072

(2,5,6) 0.036

(2,8,2) 0.048

(2,8,4) 0.048

(2,8,6) 0.024

(4,5,2) 0.168

(4,5,4) 0.168

(4,5,6) 0.084

(4,8,2) 0.112

(4,8,4) 0.112

(4,8,6) 0.056

al solution within each segment.

Optimal point x f(x)

0 0

] 1.0 0

] 3.5 0

] 6.0 0.436

] 6.67 0.472

] 7.0 0.472

0] 8.0 0.36
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decay function lhðdðh,xÞÞ does not change in terms of dðh,xÞA ½r̂ h, ~rh�.
Now consider a generalized case where for any node h, lhðdðh,xÞÞ is a
continuous piece-wise function with Zh�1 break points. Suppose
lhðdðh,xÞÞ ¼ lðeÞh ðdðh,xÞÞ for any dðh,xÞA ½rðe�1Þ

h ,rðeÞh �, where r̂ h ¼ rð0Þh o
rð1Þh o � � � or

ðZhÞ

h ¼ ~rh and lðeÞh ðdðh,xÞÞ is a monotone decreasing
function with no break points inside the interval ðrðe�1Þ

h ,rðeÞh Þ.
Since chðxÞ ¼ lhðdðh,xÞÞ if r̂ hodðh,xÞo ~rh, we note that piece-

wise coverage decay functions may also cause functions ywðxÞ to
break along link (i,j). To identify such additional break points, we
examine an arbitrarily selected primary interval [x̂u, ~xu] defined
in Section 3.1. Given node h, define coverage intersection points

yðeÞh ¼ rðeÞh �dðh,iÞ and zðeÞh ¼ dðh,jÞþ lij�rðeÞh for e¼ 1,2, . . . ,Zh�1.
Following our analysis in Section 3.1, we regard yh

(e) and zh
(e) as

redundant if zðeÞh ryðeÞh holds. It turns out that any function ywðxÞ

breaks within the primary interval [x̂u, ~xu] at each non-redundant
coverage intersection point, if available, associated with some
node hANpc [Mpc . These break points divide [x̂u, ~xu] into non-
overlapping sub-intervals. It follows that the closed form expres-
sion of any function ywðxÞ remains the same in each of these sub-
intervals. Algorithm 1 can be easily adapted for this case.
4. Normal approximation

For each primary interval [x̂u, ~xu] examined in Algorithm 1, the
cardinality of the set B and the set S in the worst-case is in the
order of Kn, where K ¼maxhANKh. Note that the basic principle
underlying Algorithm 1 is to identify, evaluate and compare the
critical points in S for each primary interval [x̂u, ~xu]. We realize that
this exact solution procedure will consume lots of CPU time and
computer memory when the number of nodes n increases. In this
section, a normal approximation approach is developed to solve
the problem (P).

Denote by mh and s2
h , respectively, the mean and variance of

the demand weight Wh which are calculated as follows:

mh ¼
XKh

k ¼ 1

ph½k�wh½k�,

s2
h ¼

XKh

k ¼ 1

ph½k�ðwh½k��mhÞ
2:

According to the Central Limit Theorem, the total covered
demand weight

P
hAEðxÞchðxÞWh at a given point x on link (i,j) is

approximately a normal random variable with a mean mðxÞ ¼P
hAEðxÞchðxÞmhðxÞ and a variance s2ðxÞ ¼

P
hAEðxÞchðxÞ

2s2
h if jEðxÞj is

sufficiently large. Pð
P

hAEðxÞchðxÞWhZtÞ can therefore be com-
puted as

P
X

hAEðxÞ

chðxÞWhZt

0
@

1
A� 1�F

t�mðxÞ
sðxÞ

� �
,

where Fð Þ denotes the cumulative distribution function of the
standard normal variable.

Let f̂ ðxÞ ¼ ðt�mðxÞÞ=sðxÞ. Since Fð Þ is increasing in f̂ ðxÞ, the
problem (P) is equivalent to minimizing f̂ ðxÞ. For the primary
interval ½x̂u, ~xu� defined in the previous section, divide the set Npc [

Mpc into two subsets NL and NR, where

NL ¼ fhANpc [Mpcjdði,hÞþ ~xurdðj,hÞþ lij�x̂ug,

NR ¼Npc [Mpc�NL:

It is obvious that the two sets NL and NR remain the same and
the functional form of d(x,h) for every node hANpc [Mpc does not
change within the primary interval. Therefore, the closed form
expression of f̂ ðxÞ remains unchanged inside the primary interval
[x̂u, ~xu]. We next discuss minimizing the function f̂ ðxÞ over such
a primary interval. An analytical form of the stationary point
for f̂ ðxÞ is derived below when the coverage decay functions
lhðdðh,xÞÞ ¼ ahþbhdðh,xÞ are linear. A similar approach can be
applied when the coverage decay functions are nonlinear.

For a given node hANpc [Mpc , we have dðx,hÞ ¼ dði,hÞþx if
hANL and dðx,hÞ ¼ lijþdðj,hÞ�x otherwise. Let kh ¼ ahþbhdðh,iÞ if
hANL and kh ¼ ahþbhdðh,jÞþbhlij if hANR. Given a point xA ½x̂u, ~xu�,
f̂ ðxÞ is expressed as

f̂ ðxÞ ¼
t�
P

hANfc[Mfc
mh�

P
hANL
ðkhþbhxÞmh�

P
hANR
ðkh�bhxÞmhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

hANfc[Mfc
s2

hþ
P

hANL
ðkhþbhxÞ2s2

hþ
P

hANR
ðkh�bhxÞ2s2

h

q :

ð4Þ

Taking the first-order derivative of (4) with respect to x, we
have

df̂ ðxÞ

dx
¼

dxþZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
hANfc[Mfc

s2
hþ
P

hANL
ðkhþbhxÞ2s2

hþ
P

hANR
ðkh�bhxÞ2s2

h

q� �3
,

ð5Þ

where

d¼
X

hANL

bhs2
h

X
gANL

ðbhkg�bgkhÞmgþ
X

gANR

ðbhkgþbgkhÞmg�bhtþbh

X
g ANfc[Mfc

mg

2
4

3
5

þ
X

hANR

bhs2
h

X
gANL

ðbhkgþbgkhÞmgþ
X

gANR

ðbhkg�bgkhÞmg�bhtþbh

X
g ANfc[Mfc

mg

2
4

3
5,

and

Z¼
X

hANL

khs2
h

X
gANL

ðbhkg�bgkhÞmgþ
X

gANR

ðbhkgþbgkhÞmg�bhtþbh

X
gANfc[Mfc

mg

2
4

3
5

þ
X

hANR

khs2
h

X
gANL

ð�bhkg�bgkhÞmgþ
X

gANR

ð�bhkgþbgkhÞmgþbht�bh

X
gANfc[Mfc

mg

2
4

3
5

þ
X

hANfc[Mfc

s2
h �

X
gANL

bgmgþ
X

gANR

bgmg

 !
:

Equating (5) to 0 gives us a stationary point x� ¼�Z=d. Since d
and Z are constant over the primary interval, the numerator of (5)
is a linear function of x. The first-order derivative df̂ ðxÞ=dx

changes sign at xn and therefore xn must be a minimum or
maximum (not an inflection point) as long as xn is inside the
primary interval. The conclusion of the above discussion is that
function f̂ ðxÞ is unimodal within the sub-interval ½x̂u, ~xu�.

We recommend the following algorithmic approach to solve
the problem (P) with linear coverage decay functions using the
normal approximation method: divide link (i,j) into non-over-
lapping primary intervals as defined in Section 3; for each
primary interval ½x̂u, ~xu�, f̂ ðxÞ at the two end points x̂, ~x and the
stationary point xn (if xn is an internal point) are calculated and
compared to find the minimal solution. By comparing these
minima obtained for all the sub-intervals, we identify an opti-
mum point on the link.

Our previous analysis suggests that there are O(n) primary
intervals on each link. Hence, f̂ ðxÞ is a piece-wise function on a
link with O(n) break points. It takes O(n) steps to compute these
break points and OðnlognÞ steps to sort them. For each primary
interval ½x̂u, ~xu�, determining the coverage class for all nodes and
computing the stationary point requires O(n) time and O(n2) time,
respectively. It takes O(n) time to evaluate f̂ ðxÞ at a given point.
Hence, the time complexity of the normal approximation
approach is in the order of O(n3) on every link and O(n3l) on the
entire network.



Table 7
Summary of performance measures when n¼ 15.

Measure K EP NA

Hit rate 2 100% 85.42%

3 81.25% 60.42%

Error 2 0 1.02�10�3

3 0.0259 1.06�10�4

Time 2 27.23 o1

3 10,800 o1
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5. Computational experience

We conducted a computational experiment to evaluate the
solution quality and CPU time of the exact solution procedure and
the normal approximation approach for the problem (P) with
linear coverage decay functions. Test instances of the problem (P)
were randomly generated. We chose the number of nodes n¼ 5,
10,15 and 20; the number of links l randomly selected from the set
fnðn�1Þ=8,nðn�1Þ=4,3nðn�1Þ=8,nðn�1Þ=2g or n�1, whichever is
larger; and the number of realizations of the random demand
weight associated with each node hAN is K ¼ Kh ¼ 2, 3 and 4. For
each combination (n, l, K), 12 instances were randomly generated (in
total we had 576 test instances). For each instance, n points were
produced at random in a square with 100 units length in each side.
These points served as the nodes of the network. The node-distance
matrix fdhjg was calculated using Euclidean distances. For every
node h, wh[k] values were selected randomly in the set f1,2, 3, . . . ,
10g and ph[k] values were first generated from the uniform
distribution in the interval (0,1) and then normalized. The two
coverage radii r̂ h and ~rh were randomly generated from the intervals
(0, r1) and (r1, r2) for every node h, respectively, where r1 is the
network radius and r2 ¼maxiAN maxxAG dði,xÞ is the longest
distance between a node and a point of the network. The value of
t for each test instance was randomly generated from the uniform
distribution in the interval (t1, t2), where t1 and t2 (defined in
Section 2) were obtained by solving the corresponding deterministic
gradual covering problems.

Denote the exact solution procedure and the normal approx-
imation procedure, respectively, by EP and NA. Both procedures
were employed to solve the 576 test instances on a Pentium IV PC
with 512 MB memory. EP was terminated and the incumbent
solution was returned if 10,800 s (3 h) CPU time had been
reached. The following performance measures were computed
for these two methods:

Hit rate: The proportion of test instances for which the best

solution was returned. (EP returned the exact optimal solution if it
stopped within the specified time limit. Otherwise, NA might
obtain the best solution.)

Error: The average relative deviation of the objective value
returned by a procedure from the best solution obtained.

Time: The average CPU time in seconds that a procedure took
to solve an instance.

A summary of the computational results in terms of n is
presented in Table 6. We can clearly see the effect of n on the
performance of EP. As n increased, the CPU time required to solve
an instance grew dramatically and thus the procedure was often
Table 6
Summary of computational results in terms of n.

Measure n EP NA

Hit rate 5 100% 60.42%

10 98.61% 78.47%

15a 90.62% 72.92%

20b 75% 100%

Error 5 0 0.0297

10 3.15�10�7 1.20�10�3

15a 0.0129 5.60�10�4

20b 3.99�10�4 0

Time 5 o1 o1

10 1098.82 o1

15a 6733.62 o1

20b 3483.33 o1

a Instances with K¼4 were not solvable by EP.
b Instances with K¼3 and 4 were not solvable by EP.
terminated after reaching the time limit. As a consequence, the
solution quality of EP deteriorated. We note that the effect of K on
the performance of EP shows a similar pattern, but the effect of
l is not significant (this observation is based on summaries of
the computation results in terms of K and l, which are not
shown here).

In the experiment, EP failed to run when n¼15, K¼4 and n¼20,
K¼3 and 4 due to insufficient memory. Though it could run to solve
the test instances with n¼20 and K¼2, it did not stop within 8 h
CPU time for 25% of them. The above observations validated our
remark on Algorithm 1 made at the beginning of the previous
section. Since the set B(x) at some point x is in the order of Kn, to
store and evaluate the critical points in the set S makes EP very
demanding with respect to the system memory and CPU time. We
therefore conclude that EP is generally not appropriate for instances
where Kn is greater than 2�107 or n is greater than 20.

NA performed well even for medium-sized instances. Com-
pared to EP, the solution quality of NA improved in general as the
problem size increased. Table 7 shows that the Error measure of
NA dropped rapidly and that NA and EP became comparable in
terms of solution quality as n reached 15. In addition, NA solved
all the test instances within 1 s. The experiment suggested that EP
became less efficient when Kn4315

¼ 1:43� 107. Note that
neither the time complexity nor the space complexity of NA is
dependent of Kn. Therefore, we recommend the normal approx-
imation method for solving the problem (P) with linear coverage
decay functions if the number of nodes n is 15 or above or if Kn

reaches the magnitude of 1�107. The exact solution approach is
recommended for solving smaller instances.
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