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a b s t r a c t

In this paper,1 we are interested in the optimization of computing time when using Monte-Carlo
simulations for the pricing of the embedded options in life insurance contracts. We propose a very simple
method which consists in grouping the trajectories of the initial process of the asset according to a
quantile. The measurement of the distance between the initial process and the discretized process is
realized by the L2-norm. L2 distance decreases according to the number of trajectories of the discretized
process. The discretized process is then used in the valuation of the life insurance contracts. We note that
a wise choice of the discretized process enables us to correctly estimate the price of a European option.
Finally, the error due to the valuation of a contract in Euro using the discretized process can be reduced
to less than 5%.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The implementation of an asset/liability management (ALM)
model for the management and economic capital evaluation of
life insurance contracts requires a very important volume of
computations within the framework of Monte Carlo simulations.
Indeed, for each trajectory of the asset, the whole of the liability
must be simulated, because of the strong interactions between
the asset and the liability through the ratchet and through the
redistribution of the financial and technical results (cf. Planchet
et al. (2011)). This leads to the well known problem of nested
simulations (cf. Bauer et al. (2010) and Gordy and Juneja (2008)).

Various approaches were developed to overcome the practical
difficulty of implementing the nested simulation approaches,
among which the most used are optimizations inspired from the
importance sampling (cf. Devineau and Loisel (2009)) and the
techniques of replicating portfolio (cf. Revelen (2009), Schrager
(2008) and Chauvigny and Devineau (2011)). More recently, Bauer
et al. (2010) have used the LSMC approach initially proposed by
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Longstaff and Schwartz (2001) for the pricing of American options.
However, optimization techniques are conceived generally for
the estimation of the quantile of the excess asset/liability in
the framework of the determination of the economic capital
and are not always suited to compute the best estimate of the
provision. Replicating portfolio approaches are wrongly adapted
to the context of French insurance life contracts because of the
complexity required when implementing clauses of redistribution
of the financial discretionary benefit.

Therefore, practitioners sometimes use a method consist in
summarizing the possible evolutions of the asset process in
a limited number of characteristic trajectories. This results in
proposing a limited number of scenarios of evolution for the
asset process, each of these scenarios being characterized by a
probability of occurrence. The difficulty is to build the scenarios
in an optimal way in order to obtain a good approximation of the
value of the provision.

The objective of this paper is to propose a method to build
these characteristic trajectories and to provide tools to measure
the impact of this simplification on the results. So we provide here
a tool for best estimate computingwhich can be used togetherwith
other optimization techniques.

To achieve this goal in an objective manner, we propose
a simple discretization of the distribution of the underlying
trajectories in an L2 Hilbert space. Many papers deal with the
question of the time discretization of the path of the process (see
for example thework of Gobet (2003) and the numerous references
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therein) and the question of the bias reduction. We will adopt in
this paper a different point of view and focus on the discretization
of the distribution of the paths.More precisely, a stochastic process
S such as those considered here can be viewed as a randomvariable
in an L2 space. The probability distribution of S is in practice
considered as continuous. What we want to do is to find a discrete
probability distribution that is ‘‘not too far’’ from the true one. We
do not think there is many works on this topics.

2. General characteristics of the discretized process

2.1. Definition

We consider a stochastic process S(t) in Ω = [0, +∞[, ] −

∞, +∞[, . . . observed on the time interval [0, T ]. In practice,
S(t) can represent a market value or a total return of assets
portfolio. We replace the sample of trajectories of this process by
the following simplified trajectories:

– at time t , we choose a partition of Ω , {[st,j−1, st,j[, 1 ≤ j ≤ p};
– we then write

ξj(t) = E(S(t)|S(t) ∈ [st,j−1, st,j[); (0.1)

– we define the process ξ(t) by selecting one of the p trajectories
of ξj(t), each trajectory being characterized by its probability
πt,j = Pr(S(t) ∈ [st,j−1, st,j[).

Technically speaking, we replace the continuous distribution of
the random variable S, which takes its values in a set of functions,
by the discrete distribution of the variable ξ . We then make a
package of trajectories according to the quantiles of the initial
process S(t). For example, we can choose the intervals so that
πt,j =

1
p , which is the approach retained in this paper. In practice,

we generally simulate trajectories of initial process S, Si(t), 1 ≤

i ≤ N , and we usually estimate E(S(t)|S(t) ∈ [st,j−1, st,j[) by the
following estimator:

ξ̃j(t) =
1
Nj


i∈Ωj

Si(t)

where Ωj = {i/Si(t) ∈ [st,j−1, st,j[} and Nj = |Ωj|.

Two errors are being made with this approximation:

– first, when replacing the trajectories of the continuous process
S(t) by the discretized process ξ(t) obtained by selecting one
of the p trajectories ξj(t) with its probability πt,j = Pr(S(t) ∈

[st,j−1, st,j[);
– second, the method of construction per simulation leads

to replacing the theoretical expectation by an empirical
estimation which introduces sampling fluctuations.

Generally speaking, this approximation is made within the
framework of the valuation of options in life insurance contracts,
and the projections are thus made under the risk neutral
probability, which we shall suppose henceforward. In this context,
for r ≥ 0 interest free rate, t → e−rtS(t) is a martingale under
the risk neutral probability. In this paper, we are interested in
the properties of the discretized process ξ(t), which we call the
discretized process associated with S(t). We try to quantify and
minimize the error generated by using this process to pricing
embedded options of life insurance contracts.

First of all, we are going to study some characteristics of the
discretized process (ξ(t))t≤T . We begin by estimating distribution
of this process. This distribution is established in a general context
not requiring knowing characteristics of the initial process S(t)
(Section 2.2). The L2-norm between the initial process and the
discretized process gives a first vision of the error due to usage of
the discretized process ξ(t) (Section 2.3).
2.2. Distribution of the discretized process

ξ(t) is a discrete process because it can take a finite number of
values. Indeed, ξ(t) takes p possible values {ξj(t), i = 1 . . . p} with
probabilities {πt,j, i = 1 . . . p}. We note that ξj(t) are deterministic
because the partitions of Ω , {[st,j−1, st,j[, 1 ≤ j ≤ p} are not
random. The process ξ(t) is well defined and the mean of the
random variables ξ(t) is identical to themean of the initial process
S(t) at the same time: E(ξ(t)) = E(S(t)).
Proof. When E(X |A) =

1
Pr(A)

E(X1A), we can write:

E(ξ(t)) =

p
j=1

πjξj(t)

=

p
j=1

πjE(S(t)|S(t) ∈ [st,j−1, st,j[)

=

p
j=1

πj


1

Pr(S(t) ∈ [st,j−1, st,j[)
E

S(t)1S(t)∈[st,j−1,st,j[


.

By using the definition πt,j = Pr(S(t) ∈ [st,j−1, st,j[) we have

E(ξ(t)) = E


S(t)

p
j=1

1S(t)∈[st,j−1,st,j[



= E

S(t)1 p

j=1
{S(t)∈[st,j−1,st,j[}


= E(S(t))

because {[st,j−1, st,j[, 1 ≤ j ≤ p} is a partition of Ω . �

2.3. L2-norm between ξ(t) and S(t)

We want to estimate the L2-norm between the initial process
and the discretized process. This norm is defined by:

∥S − ξ∥L2 = E
 T

0
(S(t) − ξ(t))2dt

 1
2

. (0.2)

It can be correctly calculated by using

∥S − ξ∥L2 =

 p
j=1

 T

0
Var(Xj(t))dt



=

 T

0

p
j=1

Var(Xj(t))dt (0.3)

where Xj(t) = S(t)|S(t) ∈ [st,j−1, st,j[. The proof of this result is
shown below.

Proof. We are interested in calculating E(
 T
0 (S(t) − ξ(t))2dt).

Because {[st,j−1, st,j[, 1 ≤ j ≤ p} is a partition ofΩ , the intersection
of two distinct sets {S(t) ∈ [st,j−1, st,j[} is empty. Thus, we can
write

E
 T

0
(S(t) − ξ(t))2dt



= E

 T

0


p

j=1

(S(t) − ξj(t))1S(t)∈[st,j−1,st,j[

2

dt


= E


p

j=1

 T

0
(S(t) − ξj(t))21S(t)∈[st,j−1,st,j[dt



=

p
j=1

E
 T

0
(S(t) − ξj(t))21S(t)∈[st,j−1,st,j[dt


.
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If Xj(t) = S(t)|S(t) ∈ [st,j−1, st,j[, we have

E
 T

0
(S(t) − ξ(t))2dt


=

p
j=1

E
 T

0
(Xj(t) − E(Xj(t)))2dt


.

An application of Fubini’s theorem shows that, for all j

E
 T

0
(Xj(t) − E(Xj(t)))2dt


=

 T

0
E((Xj(t) − E(Xj(t)))2)dt.

We finally obtain the result we want. In particular, we deduce the
following property

∥S − ξ∥L2 ≤

 T

0
Var(S(t))dt. � (0.4)

Proof. By construction, the process ξp converges almost surely
towards S when p → +∞ and the function f (p) = ∥S − ξ∥L2 is
decreasing. Thus, f (1) ≥ f (p), ∀p ≥ 1, which gives the result. �

3. The particular case of geometric Brownian motion

After having specified the main properties of the discretized
process within a general framework, we are now considering
the case when S(t) is a geometric Brownian motion, as in the
model of Black and Scholes (1973). In the first two sections of this
part, we deduct some properties of the discretized process. In the
third section, we show that the process ξ(t) allows the correct
estimation of the price of a European option.

3.1. Density distribution of the process

We suppose that S(t) is a Geometric Brownian motion:

S(t) = S0 exp


r −
σ 2

2


t + σB(t)


. (0.5)

In this case, Ω = [0, +∞[. Y (t) =
S(t)
S0

has a log-normal

distribution with parameters (mt = (r −
σ 2

2 )t, ω2
t = σ 2t). The

density of the log-normal distribution is given by

f (y) =
1

ωty
√
2π

exp


−

1
2


ln(y) − mt

ωt

2


. (0.6)

We can deduce the density of the truncated log-normal distribu-
tion Yj = Y (t)|Y (t) ∈ [yj−1, yj[

fj(y) =
1

ωtyπj
√
2π

exp


−

1
2


ln(y) − mt

ωt

2

1[yj−1,yj[(x) (0.7)

where yj =

⌢S j
S0

, πj = F(yj) − F(yj−1) and F(y) = Φ(
ln(y)−m

ω
) with

Φ being the cumulative distribution function of a standard normal
distribution. Note that

E(Yj) = E(Y (t)|Y (t) ∈ [yj−1, yj[)

= E

S(t)
S0

S(t)S0
∈


st,j−1

S0
,
st,j
S0


and we deduce that E(Xj) = S0 × E(Yj). But we also have

E(Yj) =
1

ωtπj
√
2π

 yj

yj−1

exp


−

1
2


ln(y) − mt

ωt

2

dy.
Let u =
ln(y)−mt

ωt
− ωt , du =

dy
yωt

= exp(−(mt + ωt × u + ω2
t ))

dy
ωt
,

we find that

E(Yj) =
1

πj ×
√
2π

 bj,t

bj−1,t
exp


−

1
2
(u + ωt)

2


× exp(mt + ωtu + ω2
t )du,

where bj,t =
ln(yj)−mt

ωt
− ωt and

E(Yj) =
exp(mt +

ω2
t
2 )

π∗

j

 bj,t

bj−1,t

1
√
2π

exp

−

u2

2


du

=
Φ(bj, t) − Φ(bj−1, t)

Φ(bj,t + ωt) − Φ(bj−1,t + ωt)
exp


mt +

ω2
t

2


.

Wecan find,with a unique interval b0,t = −∞ and b1,t = +∞, the

expectation of a log-normal distribution: E(Y1) = exp(mt +
ω2
t
2 ).

Finally

E(S(t)|S(t) ∈ [st,j−1, st,j[) = S0 × E(Yj)

= S0 ×
Φ(bj,t) − Φ(bj−1,t)

Φ(bj,t + ωt) − Φ(bj−1,t + ωt)
exp


mt +

ω2
t

2


⇒ ξj(t) =

Φ(bj,t) − Φ(bj−1,t)

Φ(bj,t + ωt) − Φ(bj−1,t + ωt)
S0 exp(rt) (0.8)

where bj,t =
ln(

st,j
S0

)−mt

ωt
− ωt .

To summarize, in a Black and Scholes model, the discretized
process ξ(t) has a discrete distribution and ξ(t) = ξj(t) =

π ′
j,t
πj

S0 exp(rt) with probability πj such that

π ′

j,t = Φ(bj,t) − Φ(bj−1,t) et πj = Φ(bj,t + ωt) − Φ(bj−1,t + ωt)

bj,t =

ln


st,j
S0


− mt

ωt
− ωt

mt =


r −

σ 2

2


t et ω2

t = σ 2t

3.2. L2-norm

We can establish a closed formula of the L2-norm between the
initial process S(t) and the discretized process ξ(t). To get it, we
only need to determine the second moment of Yj

E(Y 2
j ) =

1

ωtπj
√
2π

 yj

yj−1

y exp


−

1
2


ln(y) − mt

ωt

2

dy.

Let u =
ln(y)−mt

ωt
− ωt , we have y = exp(uωt + ω2

t + mt) and
du =

dy
yωt

= exp(−(mt + ωt × u + ω2
t ))

dy
ωt
, and we find that

E(Y 2
j ) =

1

πj ×
√
2π

 bj,t

bj−1,t
exp


−

1
2
(u + ωt)

2


× exp(2mt + 2ωtu + 2ω2
t )du,

where bj,t =
ln(yj)−mt

ωt
− ωt and thus

E(Y 2
j ) =

1

πj ×
√
2π

 bj,t

bj−1,t

exp

−

1
2
u2

− ωtu

−
1
2
ω2

t + 2mt + 2ωtu + 2ω2
t


du

=
1

πj ×
√
2π

 bj,t

bj−1,t

exp

−

1
2
u2

+ ωtu
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−
1
2
ω2

t + 2mt + 2ω2
t


du

=
1

πj ×
√
2π

 bj,t

bj−1,t

exp

−

1
2
(u − ωt)

2
+ 2mt + 2ω2

t


du

=
exp(2ω2

t + 2mt)

πj

 bj,t−ωt

bj−1,t−ωt

1
√
2π

exp

−

1
2
v2

dv

=
Φ(bj,t − ωt) − Φ(bj−1,t − ωt)

πj
exp(2ω2

t + 2mt).

The variance is deduced from this last expression

(E(Yj))
2

=


Φ(bj,t) − Φ(bj−1,t)

πj

2

exp(2mt + ω2
t ).

Var(Yj) = E(Y 2
j ) − (E(Yj))

2

=
Φ(bj,t − ωt) − Φ(bj−1,t − ωt)

πj
exp(2ω2

t + 2mt)

−


Φ(bj,t) − Φ(bj−1,t)

πj

2

exp(2mt + ω2
t )

= exp(2mt + ω2
t )


Φ(bj,t − ωt) − Φ(bj−1,t − ωt)

πj

× exp(ω2
t ) −


Φ(bj,t) − Φ(bj−1,t)

πj

2


.

3.3. Valuation of a European option

Weare interested in the error due to the valuation of a European
option when we replace the initial process S(t) by discretized
process ξj(t) = E(S(t)|S(t) ∈ [st,j−1, st,j[). We remind that these
options are for example used in unit-linked life insurance contracts
with minimum death guarantee. We thus have to compare cξ =

E([K − ξ(T )]+) and cS = E([K − S(T )]+).
Using the Black and Scholes formula we remind that:

cS(S0, T , K , r) = KΦ(−d2(T )) − S0Φ(−d1(T )) exp(rT ) (0.9)

with d2(T ) =
ln(S0/K)+(r−σ 2/2)T

σ
√
T

= −
ln( K

S0
)−mT

ωT
, d1(T ) = d2(T ) +

σ
√
T = d2(T ) + ωT .
We have

cξ (S0, T , K , r) = E([K − ξ(T )]+) =

p
j=1

πj × [K − ξj(T )]+. (0.10)

We note that ξj(T ) increases with j because ξj(T ) ≥ sT ,j−1 ≥

ξj−1(T ). If ξj(T ) > K ∀j then cξ = 0; this case is not interesting.
We suppose that ∃j0 so that ξj0(T ) < K ≤ ξj0+1(T ) thus

cξ (S0, T , K , r) =

j0
j=1

πj ×

K − ξj(T )


. (0.11)

Using (0.10) and the results of Section 3.1 we have

cξ (S0, T , K , r) =

p
j=1

πj ×


K −

π ′

j,T

πj
S0 exp(rT )

+

. (0.12)

When we combine (0.11) and (0.12), we have:

cξ (S0, T , K , r) =

j0
j=1

πj ×


K −

π ′

j,T

πj
S0 exp(rT )



=

j0
j=1


πj × K − π ′

j,T × S0 exp(rT )


= (Φ(bj0,T + ω) − Φ(b1,T + ω))

× K − (Φ(bj0,T ) − Φ(b1,T )) × S0 exp(rT ).
but b1,T = −∞ (because sT ,1 = 0) thus

cξ (S0, T , K , r) = Φ(bj0,T + ω) × K − Φ(bj0,T ) × S0 exp(rT ) (0.13)

with bj0,T =
ln(

sj0
S0

)−mT

ωT
− ωT . If we choose a partition so that

∃j∗sT ,j∗ = K then we would have j∗ = j0 and sT ,j0 = K and then

bj0,T =

ln( K
S0

) − mT

ωT
− ωT = −

−

ln( K
S0

) − mT

ωT
+ ωT


= −d1(T )

and bj0 + ωT = −d1(T ) + ωT = −d2(T ). Finally

cξ (S0, T , K , r) = K × Φ(−d2(T )) − S0 × Φ(−d1(T )) × exp(rT )

= K × Φ(−d2(T )) − S0 × Φ(−d1(T )) × exp(rT )

= cS(S0, T , K , r).

In the Black and Scholes model, the price of the option in the
discretized process is equal to the price of the option in the initial
process if the partition of [0, +∞[, {[sT ,j−1, sT ,j[, 1 ≤ j ≤ p} is
selected like ∃j∗sj∗ = K .

To summarize, {[sT ,j−1, sT ,j[, 1 ≤ j ≤ p} is a partition of
[0, +∞[, we can find a unique j0 so that sT ,j0 ≤ K < sT ,j0+1 and the
price of the European option obtained with the discretized process
of process S(t) is given by

cξ (S0, T , K , r)

=


cS(S0, T , sT ,j0 , r), when sT ,j0 ≤ K < ξj0+1(T )
cS(S0, T , sT ,j0+1, r), when ξj0+1(T ) ≤ K ≤ sT ,j0+1.

(0.14)

In the case of a sequence of options with different maturities (as
for example in the valuation of unit-linked life insurance contracts
with death minimum guarantee), the choices of the partition at
time t used to construct the discretized process allows the control
of the price of every option.

3.4. Illustration

We suppose that the value of asset is a Black and Scholes model
with parameters S0 = 1, µ = 8, 5% and σ = 25% and interest
free rate is r = 5%. We make 100000 simulations. The discretized
process is selected by choosing st,j like πt,j =

1
p . The quantiles

used for the borders of the intervals of discretization are estimated
empirically by using trajectories of the initial process.

The simulations are made for maturity 1 year (T = 1). The
graphs in Fig. 1 below compare the trajectories of the initial process
to those of the discretized process.

We note that the increase in the number of trajectories of
the discretized process gives a better estimation. However, a
discretization of 100,000 trajectories of the initial process in 100
discretization trajectories already allows to obtain a good estimate
of the density distribution of the initial process (Fig. 2).

With a discretization of 100 trajectories, that is to say 1000
times less trajectories than those of the initial process, the density
of the discretized process is very close to that of the initial process.
This good approximation of the density of the initial process leads
us to reduce the distance between the initial process and the
discretized process:

We can note that themarginal profit in precision decreases very
quickly as the number of trajectories of the discretized process
raises, and we quickly obtain a satisfactory compromise between
precision and cost in terms of computing time (Fig. 3).

4. Application in valuation portfolio of life insurance contracts

The technique of discretization of the trajectories of an asset is
used to reduce the computing timewhile optimizing the results. In
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Fig. 1. Initial process vs. discretized process.
Fig. 2. Densities of probability (1 year) of the initial process and the discretized process.
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Fig. 3. L2-norm between the initial process and the discretized process.

this section, we are interested in the evaluation of a guarantee of
minimum rate of return on a contract in Euros, which is classical in
French life insurance contracts.

4.1. Description of the contract

We consider a life insurance contract in which the premium
was revalued at a 3.50% rate (minimum rate guaranteed over one
year of 60% of the TME, and profit-sharing under deduction of the
guaranteed minimum rate and at least equal to 85% of the profits
of the financial management and to 90% of the technical profits).

In practice, the rate of revalorization of the savings is the
maximum between the guaranteed minimum rate (here 3.5%) and
85% of the profits of the financial management for which it is
advisable to add 90% of the technical profits

Rg
t = max(TMG; 85%Rf

t + 90%Rτ
t ) (0.15)

with:

– TMG: the annual minimum rate guaranteed,
– Rf

t : the financial rate of return of the portfolio of assets at year t,
– Rτ

t : a technical rate of return.

If we set Rn
t = 85%Rf

t + 90%Rτ
t , then we can write

Rg
t = max(TMG; Rn

t ) = Rn
t + [TMG − Rn

t ]
+ (0.16)

[TMG − Rn
t ]

+ can be similar to the payoff of an option of the
interest rate floor type. However, the distribution of the process
net return Rn

t is not explicitly known. Indeed, Rn
t depends on

the evolution of the financial assets but is also impacted by the
technical risks such as themortality and the ratchet, but also by the
decisions of management. The explicit form of this distribution is
thus difficult to determine. The evaluation of this contract requires
having recourse to some techniques of simulations.

4.1.1. Valuation of the rate guarantee
The evaluation is made contract by contract. The individual

mathematical reserves are calculated according to a retrospective
approach which aims at capitalizing the premiums invested by the
insurants reduced of ratchets. The individual reserve is obtained by
applying the following formula:

EAt = [EAt−1 + Ct(1 − τC ) − Rt ] × (1 + Rg
t × (1 − p)) (0.17)

EAt = savings acquired at time t;
Ct = premium at time t;
Rt = ratchet at time t;
τc = rate of loading on the premium (τc = 3.5%);
Rg
t = interest rate of capitalization at time t;

p = rate of tax and social security deduction (11.8%).

We can write the payoff related of the guaranteed TMG:

Ft = [EAt−1 + Ct(1 − τC ) − Rt ] × [TMG − Rn
t ]

+. (0.18)

4.1.2. Finance strategy and modeling of the portfolio of assets
We suppose that the portfolio of assets is constituted by a risk-

free asset and a risky asset. The risk-free asset produces an annual
return equal to 5%. We suppose that the risky asset is a Black and
Scholes process, which produces an annual return on 8.5% with
a 25% volatility. The target allocation of the portfolio of assets is
composed of 80% of risk-free asset and 20% of risky asset. The
objective is to recompose the portfolio of assets at the end of every
year with respect to the target allocation.

4.2. Evaluation of a contract using simulations

4.2.1. Initial process
By using the initial process S(t), the price of the guaranteed

TMG can be obtained with the following formula

FloorLet t = [EAt−1 + Ct(1 − τC ) − Rt ]

×
1
Ns

p
i=1

[TMG − 85%Rf
t,i − 90%Rτ

t ]
+e−rt (0.19)

where

– Rf
t,i = β × r + α × Ri(t);

– R(t) = ln(S(t))− ln(S(t −1)) is a return of risky asset between
t and t -1;

– β allocation of the risk-free asset;
– α allocation of the risky asset.

4.2.2. Discretized process
In our example, we considered that the portfolio of asset was

affected by a single source of risk. The TMG is a guarantee of return,
the technique of discretization will apply to the process of return.
Thus, the application consists of five steps:

– Step 1: simulation of trajectories for the risky asset S(t),
– Step 2: calculation of the return process of the risky asset R(t) =

ln(S(t)) − ln(S(t − 1)),
– Step 3: determination of the partition of possible values of the

process of return on the risky asset {[rt,j−1, rt,j[, 1 ≤ j ≤ p}. In
our case, the sets of this partition are intervals, the borders of
which are the quantiles of the process of the returns,

– Step 4: discretization of the process R(t): Rξj(t) = E(R(t)|R(t) ∈

[rt,j−1, rt,j[),
– Step 5: determination of πt,j = Pr(R(t) ∈ [rt,j−1, rt,j[), the

probability of occurrence of each trajectory.

We can estimate the value of the TMG at time t

FloorLet t = [EAt−1 + Ct(1 − τC ) − Rt ]

×

p
j=1

πt,j[TMG − 85%Rf
t,j − 90%Rτ

t ]
+e−rt (0.20)

where

– Rf
t,j = β × r + α × Rξj(t);

– β allocation of risk-free asset;
– α allocation of risky asset.

4.2.3. Hypothesis of simulation
We have a 1,000 policy-holders aged 45 years which have

subscribed to a contract on 8 years. The TMG is fixed to 3.5%. We
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Table 1

Hypothesis

Parameters

Insurance portfolio 1000 insured aged 45
Maturity of insurance portfolio 8 years
Ratchet (% of contracts) 1%
Mortality TH 00-02
Initial premium 100 e

Periodic premium 0 e

TMG 3.50%
Expenses rate of management 0.50%
Rate of tax and social security deduction 11.80%
Number of simulations 100,000

Fig. 4. Price of the TMG in the initial model and in the discretized processes.

Fig. 5. Evolution of the ratio between the value of TMG guarantee in the discretized
model and in the initial process.

suppose that the mortality of the portfolio is modeled by TH00-02.
The annual ratchets are fixed to 1% of the number of contract. All
the parameters are resumed in Table 1.

4.2.4. Results
The evaluation of the rates guarantee on the contract in Euros

in both models (initial model and discretized model) shows that
when the number of trajectories of the discretized process is higher
than 1, the difference between the two evaluations is lower than
12%. The graph in Fig. 4 allows the visualization of the value of
rates guarantee on the contract in Euros according to the number
of trajectories of the discretized process.

The graph in Fig. 5 shows the evolution of the ratio between the
value of rates guarantee in the discretized model and the value of
rates guarantee in the initial process.

We note a very high volatility of the ratio when the number of
trajectories of the discretized process is lower than 25. The ratio
starts to be stabilized around 95% when the number of trajectories
is higher than 100. Then, the ratio converges very slightly towards
100%, in the sense that an increase in a trajectory (p with p + 1)
results in amarginal profit on the precision of the results obtained.

A discretized process with 100 trajectories gives a value
estimated at nearly 95% of the real price of TMG guarantee. Thus, it
Fig. 6. Evolution of prices in both models (discretized process and initial process).

Fig. 7. Ratio of prices in both models (discretized process and initial process).

is not necessary to indefinitely increase the number of trajectories
of the discretized process; a discretization in 100 trajectories is
enough to provide a correct approximation of the value of the TMG.
However, it is advisable to correctly estimate the probabilities of
occurrence of each of the 100 trajectories. This last point requires
to know the distribution of the initial process.

The price of TMG guarantee is determined from the values
lower than the TMG; thus the convergence towards the real price
is faster than the convergence of the discretized process towards
the initial process.

In the following, we will work with a discretization of 100
trajectories.

4.2.4.1. Impact of thematurity of contract. The graphs in Figs. 6 and
7 show the impact of maturity on discretization.

When thematurity of the contract is equal to 1 year, the error of
valorization of TMG guarantee using the discretized process is null,
the ratio between the price obtained from the discretized model
and the price in the initial model is 100%. Then, this ratio decreases
continuously to be fixed at nearly 87.5% for a contract of maturity
of 20 years.

4.2.4.2. Impact of the age of the policy-holders. The graphs in
Figs. 8 and 9 show the impact of the age of the policy-holder on
discretization.

The increase in the age of the policy-holder slightly impacts the
error of valorization of TMG guarantee, related to the replacement
of the 100,000 trajectories of the initial process by the 100
synthetic trajectories of the discretized process. For policy-holders
of age ranging from 21 to 67 years, the variation of this error is
in the absolute strictly lower than 0.30%. This variation is of the
same scale and same width as the error related to the technique
of simulation of the 100,000 trajectories. We can thus conclude
that the age of the policy-holders does not have impact on the
error related to the discretization of the trajectories of the initial
process.



O. Nteukam T., F. Planchet / Insurance: Mathematics and Economics 51 (2012) 624–631 631
Fig. 8. Evolution of the price of the TMG in both models (discretized process and
initial process).

Fig. 9. Ratio of prices in the two models related to the age of policy-holders.

5. Conclusion

In this paper we are interested in a simple technique
of reduction of the computing time when using Monte-Carlo
simulations for the pricing of the embedded options in life
insurance contracts. This technique is very easy to implement, it
consists in grouping together the trajectories of the initial process
according to the quantiles of the distribution all the time.

The discretized process is then used in the valuation of the
life insurance contracts. We note that a wise choice of the
partition of [0, +∞[ allows the correct estimation of the price
of a European option. These options are met in unit-linked life
insurance contracts with death minimum guarantee.

We also show that the error due to the valuation of a contract in
Euro using the discretized process can be reduced to less than 5%
whenwe replace 100,000 of the trajectories of the initial process by
100 trajectories of the discretizedprocess. This error increaseswith
the maturity of contract but is independent of age of the policy-
holder.

To use this technique, it is necessary to know the distribution
of the initial process. Indeed, in addition to the constitution of the
trajectories discretized, it is essential to be able to estimate the
probability of occurrence of those.

The comparison of the sample of trajectories of the initial
process to that of the discretized process shows clearly that the
latter underestimates strongly the extreme values of the initial
process. Thus, if the technique of discretization can give good
results of TMG guarantee or MCEV, its use within the framework
of estimating the extreme values (SCR, VAR. . . ) can lead to biased
results. However, the choice of a partition whose extreme values
are strongly refined could possibly lead to reduce errors. This
aspect was not treated in this article and could be the object of
future developments.
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