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This paper extends the classical cost efficiency (CE) models to include data uncertainty. We believe that
many research situations are best described by the intermediate case, where some uncertain input and
output data are available. In such cases, the classical cost efficiency models cannot be used, because input
and output data appear in the form of ranges. When the data are imprecise in the form of ranges, the cost
efficiency measure calculated from the data should be uncertain as well. So, in the current paper, we
develop a method for the estimation of upper and lower bounds for the cost efficiency measure in situ-
ations of uncertain input and output data. Also, we develop the theory of efficiency measurement so as to
accommodate incomplete price information by deriving upper and lower bounds for the cost efficiency
measure. The practical application of these bounds is illustrated by a numerical example.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Data envelopment analysis (DEA) is a non-parametric technique
for evaluating decision making units (DMUs) based on the produc-
tion possibility set. Also, traditional DEA is used for measuring the
efficiency of a set of DMUs where the input and output data of the
DMUs are known exactly [3]. Zhu [16,17], Wang et al. [15], Kao
[10], Entani et al. [5], and Despotis and Smirlis [4] developed the
theory of efficiency measurement where the data are imprecise.
In these references there is no discussion concerning cost efficiency
with imprecise data. In fact these references focused on the techni-
cal–physical aspects of production for use in situations where unit
price and unit cost information are not available, or where their
uses are limited because of variability in the prices and costs that
might need to be considered. It is worthwhile to note that in many
real application of DEA, the cost efficiency analysis is required,
when some information on prices and costs are available. Technol-
ogy and cost are the wheels that drive modern enterprises; some
enterprises have advantages in terms of technology and others in
cost. Hence, the management is eager to know how and to what
extent their resources are being effectively and efficiently utilized,
compared to other similar enterprises in the same or a similar field.
There are some DEA models that deal with cost efficiency (CE)
analysis when the data are known exactly. In fact, cost efficiency
evaluates the ability to produce current outputs at minimal cost.
ll rights reserved.

tafaee).
See, e.g., [6,8,9,14] for more details concerning cost efficiency anal-
ysis with deterministic data. In these references, there is no discus-
sion concerning imprecise data, whereas in most cases in industry
it is usually known from experience that inputs and outputs vary
over certain ranges in a short period of time. It should be men-
tioned that the uncertainty concerns the researchers only, who
conduct efficiency analysis. Moreover, nothing is known of the dis-
tribution of the data owing to insufficient information. The only
thing available to the decision maker is the two extreme points
of the range. The same is true about input prices: there exist many
factors in the market beyond the control of the management,
which affect input prices. Factors such as interest rate, inflation,
and currently exchange rate impose uncertainty of prices on the
decision makers. Also, exact knowledge of prices is difficult and
prices may be subject to variations in the short term. Estimation
of cost efficiency is one of the vital topics in DEA. Although there
are many papers for estimating cost efficiency in DEA models
(see, for example, [6,8,9,14]), there are only few papers which con-
cern the estimation of cost efficiency in the presence of imprecise
data: Jahanshahloo et al. [7], Kuosmanen and Post [11–13], and
Camanho and Dyson [2]. For instance Jahanshahloo et al. [7] pro-
vide some models for the treatment of ordinal data in cost effi-
ciency analysis. In [7] the models have multiplier forms with
additional weight restrictions. The main idea in constructing these
models is based on the weighted enumeration of the number of in-
puts/outputs of each unit which are categorized on the same scale
rate. Kuosmanen and Post [11,12] derived upper and lower bounds
for overall cost efficiency assuming incomplete price data in the

http://dx.doi.org/10.1016/j.ejor.2009.06.007
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form of a convex polyhedral cone. Although they presented and
proved a model for determining the lower bound of CE, they did
not utilize the model in empirical application of their CE concepts
and resorted to the Free Disposable Hull technology. For comput-
ing the lower bound, they defined set WV . It is observed that set
WV may be non-convex, which will make it more complicated to
operationalize the model they presented for computing the lower
bound of CE. So, in the current paper we modify the models for
obtaining the upper and lower bounds of CE, which is interesting
from theory and practical point of view. In [13], Kuosmanen and
Post assume that the firm analysis does not know the prices until
after the production plan is fixed. Specifically, they assume that
the price are random variables with domain D # Rq

þ and joint distri-
bution function F : D! ½0;1�. They presented an approach based
on first order stochastic dominance that dealt with uncertainty re-
lated to input–output prices. Anyway, we can combine the method
proposed in the current paper and the method provided in [13], to
obtain the economic efficiency measures. Camanho and Dyson [2]
discussed the assessment of CE in complex scenarios of price
uncertainty. They assumed that input prices appear in the form
of ranges. The upper bound of the CE estimate is obtained with
the incorporation of weight restrictions in a standard DEA model,
the model which they provided (see Model (7) in [2]) is computa-
tionally expensive, because the number of constraints (7a) are
2� Cm

2 . Let n be the number of observations. In order to obtain
the lower bound of CE for n DMUs, as they mentioned, it is required
to solve n2 linear programming models. Note that the proposed
model may be infeasible, and also computationally expensive.

In this paper, we propose a pair of two-level mathematical pro-
gramming problems to obtain the upper and lower bounds of cost
efficiency when some of the input and output data appear in the
form of ranges. In turn, the resulting two-level mathematical pro-
gramming problems are transformed into equivalent linear pro-
grams. Also, we consider situations in which the input and
output data as well as input prices appear in the form of ranges,
and we obtain the lower and upper bound for cost efficiency in
these situations. We prove that when the input prices can be rep-
resent by a convex set, the upper and lower bounds of CE are ob-
tained in extreme points of the convex set.

The rest of the paper unfolds as follows: in Section 2, some DEA
CE models are reviewed and a CE model in the multiplier form is
provided, which is necessary in the next sections. In Section 3,
for obtaining the lower and upper bounds of CE, a pair of two-level
mathematical programming problems are provided. In Section 4,
the provided two-level mathematical programming problems are
transformed into equivalent linear ones. Section 5, includes the
main results. In fact, in this section the theory of CE is generalized
to the situations in which the input prices are also imprecise in the
form of ranges. In Section 6 we compare our work with other exist-
ing works. Section 7 contains an illustrative numerical example,
and Section 8 gives some conclusions.
2. Preliminaries

Assume that we deal with a set of DMUs consisting of
DMUj; j ¼ 1; . . . ;n, with input–output vectors ðxj; yjÞ; j ¼ 1; . . . ;n,
in which xj ¼ ðx1j; . . . ; xmjÞT and yj ¼ ðy1j; . . . ; ysjÞ

T . Define
X ¼ ½x1; x2; . . . ; xn� and Y ¼ ½y1; y2; . . . ; yn� as m� n and s� n matri-
ces of inputs and outputs, respectively. Without the loss of gener-
ality, we assume that the input and output data xij and
yrjði ¼ 1; . . . ;m; r ¼ 1; . . . ; s; j ¼ 1; . . . ;nÞ cannot be exactly obtained
due to the existence of uncertainty. They are only known to lie
within the upper and lower bounds represented by the ranges

xL
ij; x

U
ij

h i
and yL

rj; y
U
rj

h i
, where xL

ij > 0 and yL
rj > 0.
In order to obtain a measure of cost efficiency, when the input
and output data are known exactly, Färe et al. [6] provide the fol-
lowing LP model:

ho ¼min
wox
woxo

: Xk ¼ x; Yk P yo; k P 0
� �

: ð1Þ

In the above model wo 2 Rm
þ is a user-specified row vector of the

prices of the inputs of DMUo, the unit under assessment. The vari-
ables of Model (1) are x and k. ðko ¼ 1; kj ¼ 0; j–o; x ¼ xoÞ is a feasi-
ble solution to (1) which implies that this model is feasible and
bounded, and ho 2 ð0;1�. Note that Model (1) has mþ s constraints
where the RHS values of m constraints are zero, and this can lead
to strong degeneracy and hence to great complexity. Regarding part
(iii) of the main theorem in [8] one can use the following model in-
stead of model (1), to determine the cost efficiency

#o ¼min
woXk
woxo

: Yk P yo; k P 0
� �

: ð2Þ

Denoting the dual variables associated with the constraint sets as u,
the measure of cost efficiency can be obtained by solving the dual of
Model (2) as follows (see [9]):

max uT yo : uT Y 6
woX
woxo

;u P 0
� �

: ð3Þ

In Model (3) the variable is u vector. Regarding the constraints, the
optimal objective value of this model is not greater than one.

3. Uncertain cost efficiency models based on uncertain data

When the input and output data are in the form of ranges, the
cost efficiency measure calculated from the data should be uncer-
tain as well. In order to deal with such uncertain situations, the fol-
lowing two-level mathematical program is proposed to generate
the upper bound of cost efficiency range, for each DMUo:

CEU
o ¼ max

xL
j 6 xj 6 xU

j ;

yL
j 6 yj 6 yU

j ;

j ¼ 1; . . . ;n

8><>:
9>=>;

min
woXk
woxo

: Yk P yo; k P 0
� �

:

ð4Þ

The inner program, i.e., the second-level program, calculates the
cost efficiency measure for each set of ðxj; yjÞ defined by the outer
program, i.e., the first-level program, while the outer program
determines the set of ðxj; yjÞ that produces the highest cost effi-
ciency measure. The objective value of Model (4) is the upper bound
of the cost efficiency measure for DMUo. The inner program in (4) is
a linear program and the dual associated with it is (3). Substituting
(3) in (4) gives

CEU
o ¼ max

xL
j 6 xj 6 xU

j ;

yL
j 6 yj 6 yU

j ;

j ¼ 1; . . . ;n

8><>:
9>=>;

max uT yo : uT Y 6
woX
woxo

;u P 0
� �

:

ð5Þ

In the above model, the inner program and the outer program have
the same objective function of maximization. So, they can be com-
bined into a one-level program by considering all constraints of the
two programs at the same time, as follows:

CEU
o ¼max uT yo; ð6Þ

uT yj 6
woxj

woxo
; j ¼ 1; . . . ; n;

xL
j 6 xj 6 xU

j ; j ¼ 1; . . . ;n;

yL
j 6 yj 6 yU

j ; j ¼ 1; . . . ;n;

u P 0:
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Notice that Model (6) is nonlinear due to nonlinear terms woxj

and woxo, and also fractional woxj

woxo
. In the same way, to find the set

of ðxj; yjÞ that produces the lowest cost efficiency measure, a two-
level mathematical program is obtained by simply replacing the
outer program of Model (3) from ‘‘max” to ‘‘min”:

CEL
o ¼ min

xL
j 6 xj 6 xU

j ;

yL
j 6 yj 6 yU

j ;

j ¼ 1; . . . ;n

8><>:
9>=>;

min
woXk
woxo

: Yk P yo; k P 0
� �

:

ð7Þ

In Model (7), the inner program calculates the cost efficiency
measure for each given set of ðxj; yjÞ, while the outer program
determines the set of ðxj; yjÞ that generates the lowest cost effi-
ciency measure. The optimal objective value of Model (7) is the
lower bound of the cost efficiency measure for DMUo.

Both the inner program and the outer program in Model (7)
have the same objective of minimization. They can be combined
into a one-level program by considering all constraints of the
two programs at the same time. The resulting one-level program,
however, is nonlinear due to uncertainty of inputs and outputs.
The one-level model equivalent to (7) is as follows:

CEL
o ¼min

Xn

j¼1

kj
woxj

woxo

� �
; ð8Þ

Xn

j¼1

kjyj P yo;

xL
j 6 xj 6 xU

j ; j ¼ 1; . . . ;n;

yL
j 6 yj 6 yU

j ; j ¼ 1; . . . ;n;

kj P 0; j ¼ 1; . . . ; n:

In the next section, Models (6) and (8) are transformed into a pair of
equivalent linear programs. So, the upper and lower bounds of CE
for each DMU, with uncertain input and output data, can be ob-
tained using the LP softwares.

4. Cost efficiency ranges and linear programming

Models (6) and (8), which obtain the lower and upper bounds of
CE, are nonlinear due to uncertain input and output data. The fol-
lowing theorem establishes the point that the upper bound of cost
efficiency for DMUo is attained by setting its outputs ranges at the
upper bound and the inputs ranges at the lower bounds; mean-
while, the outputs ranges of the remaining DMUs at their respec-
tive lowest levels and the inputs ranges at their respective
highest levels (i.e., the DMU under evaluation in the most favorable
condition and the other DMUs in the least favorable condition).

Theorem 1. CEU
o is equal to the optimal objective value of the

following linear model:

h�o ¼max uT yU
o ð9Þ

s:t: uT yL
j 6

woxU
j

woxL
o
; j–o;

uT yU
o 6 1;

u P 0:

Proof. To establish the theorem it is sufficient to show that
CEU

o ¼ h�o. If u� is an optimal solution to (9), then u ¼ u�; xj ¼ xU
j ;

�
j–o; yj ¼ yL

j ; j–o; xo ¼ xL
o; yo ¼ yU

o Þ is a feasible solution to (6). The
objective function of Model (6), corresponding to this feasible solu-
tion is u�T yU

o ¼ h�o. Since the objective function of (6) is of maximi-
zation version, so CEU

o P h�o. On the other hand, if ðbu; bxj; byjÞ is an
optimal solution to (6), then we have buT yU

o 6 1 or butyU
o > 1. IfbuT yU

o 6 1, then
butyL
j 6

buTbyj 6
wobxj

wobxo
6

woxU
j

woxL
o
:

These imply that bu is a feasible solution to (9). The value of objec-
tive function of Model (9), corresponding to this feasible solution
is buT yU

o P CEU
o . When a ¼ butyU

o > 1, we have ðbut=aÞyU
o ¼ 1 and

ðbuT=aÞyL
j 6 ðbuT=aÞbyj 6

wobxj

awobxo
6

woxU
j

awoxL
o
6

woxU
j

woxL
o
:

These imply that ðbuT=aÞ is a feasible solution to (9). The objective
value of Model (9), corresponding to this feasible solution is
1 P CEU

o . Therefore, in each case we have h�o P CEU
o :CEU

o P h�o and
h�o P CEU

o imply CEU
o ¼ h�o, and complete the proof. h

The following theorem establishes, the lower bound of cost effi-
ciency for DMUo is attained by setting its outputs ranges at the
lower bounds and the inputs ranges at the upper bounds; mean-
while, the outputs ranges of other DMUs at their corresponding
highest levels and the inputs ranges at their corresponding lowest
levels (i.e., the DMU under evaluation in the worst condition and
the others in the best condition).

Theorem 2. CEL for DMUo is equal to optimal objective value of the
following linear programming problem:

u�o ¼max uT yL
o ð10Þ

s:t: uT yU
j �

woxL
j

woxU
o
; j–o;

uT yL
o 6 1;

u P 0:

Proof. To establish the theorem, it is sufficient to show that the
lower bound of cost efficiency for DMUo is equal to optimal objec-
tive value of the following program, in which Model (10) is the
dual of it

min
Xn

j–o;j¼1

kj

woxL
j

woxU
o

 !
þ ko

woxU
o

woxU
o

� �
ð11Þ

s:t:
Xn

j–o;j¼1
kjP0;

kjyU
j þ koyL

o P yL
o j ¼ 1; . . . ; n:

If k� is an optimal solution to (11), then k ¼ k�; yj ¼ yU
j ; j–o;

�
xj ¼ xL

j ; j–o; yo ¼ yL
o; xo ¼ xU

o Þ is a feasible solution to (8). The value
of objective function of Model (8) corresponding to this feasible
solution is u�o. Since the objective function of (8) is of minimization
version, hence CEL

o 6 u�o.
On the other hand, if (k̂j; ŷj; x̂j, for all j) is an optimal solution to

(8). We haveXn

j–o;j¼1

k̂jyU
j P

Xn

j–o;j¼1

k̂jŷj P ð1� k̂oÞŷo P ð1� k̂oÞyL
o:

Note that k̂o 6 1, and so ð1� k̂oÞP 0. This implies that
Pn

j–o;j¼1k̂jyU
j þ

k̂oyL
o P yL

o, and k ¼ k̂ is a feasible solution to (11). The value of objec-
tive function of (11) corresponding to this solution is

Xn

j–o;j¼1

k̂j

woxL
j

woxU
o

 !
þ k̂o

woxU
o

woxU
o

� �
6

Xn

j–o;j¼1

k̂j
wox̂j

wox̂o

� �
þ k̂o

¼
Xn

j¼1

k̂j
wobxj

wox̂o

� �
¼ CEL

o:

Since the objective function of (11) is of minimization version,
hence u�o 6 CEL

o. Thus we get u�o ¼ CEL
o and the proof is

completed. h
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In the next section, which includes the main results the theory
of the CE is generalized to the situations in which input prices are
also imprecise. Since in this situations the objective function is in
the form of fractional and nonlinear, so computing the bounds
for CE is more difficult.

5. Extension to uncertain input prices

5.1. The upper bound

We obtained the upper and lower bounds of cost efficiency
when the input and output data are in the form of ranges. In the
current section, we generalize the theory of cost efficiency to situ-
ations in which input and output data as well as input prices ap-
pear in the form of ranges, due to incomplete price information,
represented by ranges wL

o;w
U
o

� �
, in which wL

o ¼ ðwL
1o; . . . ;wL

moÞ and
wU

o ¼ ðwU
1o; . . . ;wU

moÞ. In this case, we propose the following model
to obtain the upper bound of cost efficiency

CEU
o ¼ max

wL
o 6 wo 6 wU

o ;

xL
j 6 xj 6 xU

j ;

yL
j 6 yj 6 yU

j ;

j ¼ 1; . . . ;n

8>>>><>>>>:

9>>>>=>>>>;

max uT yo : uT yj 6
woxj

woxo
; for all j;u P 0

� �
:

ð12Þ
Theorem 3. CEU obtained from (12) is equal to the optimal objective
value of the following model:

max
wL

o6wo6wU
o ;

max uT yU
o : uT yL

j 6
woxU

j

woxL
o

; j–o;uT yU
o 6 1;u P 0

( )
: ð13Þ

Proof. The proof is similar to that of Theorem 1 and hence
omitted. h

Since the inner program and outer program have the same
objective of maximization, the above program is equivalent to
the following one-level program:

max uT yU
o : wL

o 6 wo 6 wU
o ;u

T yL
j 6

woxU
j

woxL
o

; j–o; uT yU
o 6 1;u P 0

( )
:

ð14Þ
The following theorem provides a linear programming problem for
obtaining the upper bound of cost efficiency in the presence of
uncertainty. In fact we solve the following linear programming
problem to obtain the upper bound of cost efficiency.

Theorem 4. When the input and output data as well as input prices
are in the form of ranges, the upper bound of cost efficiency is equal to
the optimal objective value of the following linear program:

w�o ¼max
Xs

r¼1

uryU
ro ð15Þ

s:t:
Xm

i¼1

ŵioxL
io ¼ 1;

Xs

r¼1

uryU
ro 6 1;

Xs

r¼1

uryL
rj �

Xm

i¼1

ŵioxU
ij 6 0; j–o; j ¼ 1;2; . . . ; n;

gwL
io 6 ŵio 6 gwU

io; i ¼ 1;2; . . . ;m;

ur P 0; r ¼ 1;2; . . . ; s;

g P 0:
Proof. First we set

g ¼ 1
woxL

o
: ð16Þ

We have

gwoxL
o ¼ 1 and g > 0:

Equivalently, this can be expressed as follows:Xm

i¼1

gwioxL
io ¼ 1: ð17Þ

Now, we set ŵio ¼ gwio; i ¼ 1;2; . . . ;m. Considering this variable
alteration and (14), the constraints of Model (14) are transformed
to the following constraints:

wL
io 6 wio 6 wU

io () gwL
io 6 gwio 6 gwU

io () gwL
io 6 ŵio

6 gwU
io; ð18Þ

and

uT yL
j 6

woxU
j

woxL
o
() uT yL

j � gwoxU
j 6 0() uT yL

j � ŵoxU
j

6 0; j–o; ð19Þ

andXm

i¼1

gwioxL
io ¼ 1()

Xm

i¼1

ŵioxL
io ¼ 1: ð20Þ

Constraint uT yU
o 6 1 and the objective function remain unchanged.

It is clear that if ð _u; _woÞ is an optimal solution to (14), then

g ¼ 1Pm
i¼1 _wioxL

io

; bwio ¼ g _wio; u ¼ _u

 !
is a feasible solution to (15) and the objective value corresponding
to this solution is _uT yU

o ¼ CEU
o . So w�o P CEU

o . On the other hand if
ð€u; €bwo; €gÞ is an optimal solution to (15), then w ¼

€bwo
€g ;u ¼ €u

� �
is a

feasible solution to (14) and the objective value corresponding to
this feasible solution is €uT yU

o ¼ w�o. So w�o 6 CEU
o . Now, regarding

the above mentioned point and constraints (18)–(20), Models (14)
and (15) are equivalent, and the proof is complete. h

Model (15) has 2mþ 1 constraints more than Model (9), and
this is the penalty that we should pay to linearize the upper bound
of the cost efficiency model when the input prices are imprecise.

If an optimal solution to Model (15) is û�; ŵ�o; ĝ�
	 


, then we have
an optimal solution to Model (12) as: u� ¼ û�;w�o ¼ ŵ�o=ĝ�;

	
x�j ¼ xU

j ; j–o; y�j ¼ yL
j ; j–o; x�o ¼ xL

o; y
�
o ¼ yU

o Þ. Note that g > 0 in all of
the feasible solutions of Model (15), because for all i; ŵio 6 gwU

io,
and

Pm
i¼1ŵioxL

io ¼ 1. So, in (15) we just put g P 0.
5.2. The lower bound

In this subsection we use the following notations. For vectors
aþ; a� defined by aþ ¼maxfa;0g; a� ¼ maxf�a;0g, we have
a ¼ aþ � a�; jaj ¼ aþ þ a�; aþ > 0; a� > 0: e ¼ ð1;1; . . . ;1ÞT is a vec-
tor of all ones. In our description to follow, an important role is
played by the set Vm of all �1-vectors in Rm; i.e.,
Vm ¼ fv 2 Rm : jvj ¼ eg. Obviously, the cardinality of Vm is 2m. For
a given vector v 2 Rm we denote

Pv ¼ diagðv1;v2; . . . ;vmÞ ¼

v1 0 . . . 0
0 v2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . vm

0BBBB@
1CCCCA:
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An algorithm for generating Vm

It will be helpful at a later stage to generate all the �1-vectors
forming set Vm systematically one-by-one in such a way that any
two successive vectors differ in exactly one entry.

Algorithm
Set z :¼ 0 2 Rm; select v 2 Vm; Vm :¼ fvg
while z–e
k ¼minfi : zi ¼ 0g,
for i:= 1 to k � 1, zi ¼ 0; end
zk :¼ 1; vk :¼ �vk;

Vm :¼ Vm [ fvg;
end,
V ¼ Vm.

Consider Wo ¼ wo : wL
o 6 wo 6 wU

o

� �
, where wL

o;w
U
o 2 Rm. As

shown later, in many cases it is more advantageous to express the
data of the input prices in terms of the center vector

wc
o ¼

1
2

wL
o þwU

o

	 

and the nonnegative radius vector

v ¼ 1
2

wU
o �wL

o

	 

and we employ both forms Wo ¼ wL

o;w
U
o

� �
¼ wc

o � v;wc
o þ v

� �
. For an

m-dimensional range vector Wo ¼ wc
o � v;wc

o þ v
� �

we define vec-
tors wv

o ¼ wc
o þ Pvv for each v 2 Vm. Then for any such v we have

wv
o

	 

i ¼ wc

o

	 

i þ v ivi ¼

wL
io if v i ¼ �1;

wU
io if v i ¼ 1:

(
When the input and output data as well as the input prices are

imprecise in the form of ranges, we propose the following model to
obtain the lower bound of cost efficiency:

CEL
o ¼ min

wL
o 6 wo 6 wU

o ;

xL
j 6 xj 6 xU

j ;

yL
j 6 yj 6 yL

j ;

j ¼ 1; . . . ;n

8>>>>><>>>>>:

9>>>>>=>>>>>;

min
wox
woxo

: Xk ¼ x;Yk P yo; k P 0
� �

:

ð21Þ
Theorem 5. CEL
o obtained by (21) is equal to the optimal objective

value of the following model:

u�o ¼ min
wL

o6wo6wU
o

8>><>>:min
wox

woxU
o

ð22Þ

s:t:
Xn

j–o;j¼1

kjxL
j þ koxU

o ¼ x;

Xn

j–o;j¼1
kjP0;

kjyU
j þ koyL

o P yL
o; j ¼ 1; . . . ; n

9>>=>>;:
Proof. The proof is similar to that of Theorem 2 and hence
omitted. h

The following theorem gives an explicit formula for computing
the lower bound of the cost efficiency measure. In fact the follow-
ing model gives the lower bound of cost efficiency.
Theorem 6. We have:

CEL
o ¼min

v2Vm

8>><>>:min
wv

o x
wv

o xU
o

ð23Þ

s:t:
Xn

j–o;j¼1

kjxL
j þ koxU

o ¼ x;

Xn

j–o;j¼1
kjP0;

kjyU
j þ koyL

o P yL
o; j ¼ 1; . . . ;n

9>>=>>;:
Comment 1. By using (15), solving only one linear programming

problem is needed to evaluate CEU , whereas up to 2m LPs are to
be solved to compute CEL by (23).

Proof. It is clear that the set fwv
o : v 2 Vmg is the set of all extreme

points of the bounded set Wo ¼ wo : wL
o 6 wo 6 wU

o

� �
. To prove the

theorem, it is sufficient to prove the following assertion: at least
one optimal solution of Model (22) occurs at an extreme point of
Wo. Assume that Model (22) has an optimal solution, say
ðw�o; k

�; x�Þ, and hence, considering the representation theorem
(see Theorem 2.1 on p. 69 of [1]) we have

w�o ¼
X
v2Vm

lvwv
o ;

X
v2Vm

lv ¼ 1:

If there exists a v 2 Vm such that
wv

o x�

wv
o xU

o
¼ w�ox�

w�oxU
o
;

then the proof is at hand. Now, by contradiction let wv
o x�

wv
o xU

o
>

w�ox�

w�oxU
o
, for

each v 2 Vm, then we have wv
o x�

	 

w�oxU

o

	 

> wv

o xU
o

	 

w�ox�o
	 


. By multi-
plying both sides of the above inequality by lv ; v 2 Vm and summa-
tion on v 2 Vm we have

P
v2Vm

lv wv
o x�

	 

w�ox�o
	 


>
P

v2Vm

lv wv
o xU

o

	 

w�oxU

o

	 

. This in turn implies

w�ox�

w�oxU
o
<

P
v2Vm

lv wv
o x�

	 
P
v2Vm

lv wv
o xU

o

	 
 ¼ Pv2Vm
lvwv

o x�P
v2Vm

lvwv
o xU

o
¼ w�ox�

w�oxU
o
:

This is obviously a contradiction, and completes the proof. h

Note. Although we have obtained the upper bound of CE by solv-
ing a linear programming problem, we will also prove that the
upper bound of CE can be obtained in a similar way to that for
the lower bound. The only difference is that the outer program
has the objective function in the form of maximization.

Theorem 7. We have:

w�o ¼max
v2Vm

8>><>>:min
wv

o x
wv

o xL
o

ð24Þ

s:t:
Xn

j–o;j¼1

kjxU
j þ koxL

o ¼ x;

Xn

j–o;j¼1
kjP0;

kjyL
j þ koyU

o P yU
o ; j ¼ 1; . . . ; n

9>>=>>;:
Comment 2. When only input prices are uncertain, to obtain the
bounds of CE measures only solving one of the Models (23) or
(24) is required and the other is automatically obtained, since in
the proof of Theorems 6 and 7, we only made use of convexity of
input prices. The method proposed in this paper is applicable not
only when the input prices are in the form of ranges but also when
they are in the form of a convex set.
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Proof. The proof is similar to that of Theorem 6 and hence
omitted. h
Fig. 1. Input prices.
6. Comparison with other works

6.1. Camanho and Dyson’s [2] method

Camanho and Dyson [2] started with a numerical example,
assuming that each DMU has two inputs and one normalized out-
put. They further assumed that the input prices varied over the
range [3,4]. So, the input prices can be expressed as follows:

W ¼ fðw1;w2Þj3 6 w1 6 4;3 6 w2 6 4g:

The data of their example are given in Table 1.
As can be observed in Fig. 1, there are four extreme points for

the input prices: P1 ¼
3
3

� �
, P2 ¼

3
4

� �
, P3 ¼

4
3

� �
, P4 ¼

4
4

� �
.

Camanho and Dyson [2] calculated CE from the optimistic and pes-
simistic points of view. Although they did not explicitly mention, it
can be inferred from their results that cost efficiency from either of
the optimistic and pessimistic points of view occurs at one of the
extreme points of the set of input prices. As we proved previously,
this is not by chance, and we can determine CE from the optimistic
and pessimistic viewpoints by putting only the extreme points of
set W in the Farrel CE model. The extreme points of input prices
corresponding to optimistic and pessimistic CE are given in the
third and fifth columns of Table 2, respectively. It should be men-
tioned that the convex combination of the extreme points in the
third and fifth columns of Table 2 gives the set of all optimal input
prices from the optimistic and pessimistic points of view,
respectively.

The model they provided (Model (7) in [2]) to obtain the opti-
mistic CE measure has 2� Cm

2 þ n inequality constraints, one
equality constraint and mþ s variables, while the model provided
in this paper (Model (15)) has 2mþ n inequality constraints, one
equality constraint and mþ sþ 1 variables. In summary, Model
(15) has 2� Cm

2 � 2m constraints fewer than the corresponding
model in [2] and considering this, our model is computationally
economical. In order to obtain the lower bound of CE for n DMUs,
as they mentioned, it is required to solve n2 linear programming
models. Note that their model may be infeasible, and also compu-
tationally expensive.

6.2. Kuosmanen and Post’s method

In [11,12], Kuosmanen and Post measured CE when the price
information is incomplete. The solution they propose in Kuosma-
nen and Post [11,12] is based on enumerating the vertices of the
FDH technology, and does not easily extend to the case of the con-
vex technology and FDH technology with constant returns to scale.
They assumed the following structure for the price domain:

W ¼ fw 2 Rq
þjAw P 0g:

W represents the price domain in terms of l linear inequalities. To
remove the problem in [11] for computing the lower bound of CE,
in [12] they defined the set of hypothetical input vectors with a neg-
ative cost at all prices in W as:
Table 1
Input and output data.

DMUs DMU A DMU B DMU C DMU D

x1 2 3 5 7
x2 7 5 3 2
y 1 1 1 1
C ¼ fx 2 Rqj9b 2 Rl
þ : x < �bAg:

They also defined

Wv ¼ Rq � C

It is observed that set Wv may be non-convex, as in the example
they provided in [12], which will make it more complicated to
operationalize the model they presented for computing the lower
bound of CE. Their proposed model is as follows:

min
h
fhjhx 2 coðLðyÞÞ þ Rq � Cg:

Although they presented and proved the above model for determin-
ing the lower bound of CE, they did not utilize the model in the
empirical application of their CE concepts and made use of the Free
Disposable Hull technology. In this paper, we will present an expli-
cit enumerative procedure for computing the upper and lower
bounds of CE. To this end, we define set cW as:

ŵ ¼ fw 2 Rq
þjAw P 0;1w ¼ 1g;

where 1 is a vector with all component equal to one. The set con-
taining all extreme points of cW is denoted by Wep. Now we modify
the model for obtaining the upper and lower bounds of CE, as
follows:

CEU
o ¼ max

w2Wep
min

x2LðyoÞ

wx
wxo

� �
;

CEL
o ¼ min

w2Wep
min

x2LðyoÞ

wx
wxo

� �
;

where LðyoÞ ¼ fxjx can produce yog.
They provided a graphical example (Fig. 2) of a price domain, as

represented by the convex cone W. By specifying matrix

A ¼
2 �1
�1 2

� �
;

they obtained the price domain. By the above specification for ma-
trix A, set cW defined above will be obtained as follows:
DMU E DMU F DMU G DMU H

3 5 9 10
7 5 2 2.5
1 1 1 1



Table 2
CE bounds and corresponding extreme points of input prices.

DMU Optimistic CE Extreme points Pessimistic CE Extreme points

A 0.931 P2 0.794 P3

B 1 P1; P3; P4 0.931 P2

C 1 P1; P2; P4 0.931 P3

D 0.931 P2 0.794 P3

E 0.818 P3 0.73 P2

F 0.8 P1; P4 0.771 P2; P3

G 0.771 P2 0.643 P3

H 0.675 P2 0.568 P3
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cW ¼ fðw1;w2Þj2w1 �w2 P 0;�w1 � 2w2 P 0;w1 þw2 ¼ 1g:

Fig. 2 shows set cW graphically. As can be seen the extreme points of

ŵ are
1
3
2
3

� �
and

2
3
1
3

� �
, one of which gives the upper bound and the

other one gives the lower bound of CE.
They also proposed an enumerative LP procedure to compute

the empirical estimator CELFDH ðxo; yo; WÞ relative to Free Disposable

Hull (FDH) input set bLFDH ¼ fx 2 Rq
þjyo P yj; xj 6 xo; j ¼ 1; . . . ;ng.

They also defined set vðyoÞ ¼ fxj 2 Xjyj P yog and proposed the fol-

lowing model to obtain the lower bound estimator CELFDH ðxo; yo; WÞ:

CELFDH ðxo; yo; WÞ ¼ min
xj2vðyoÞ

ðmin
w2W
fwxjjwxo ¼ 1gÞ:

Now, we propose the following model for computing the lower
bound of CE, based on the evaluation of certain input ratios and ex-
treme points of the normalized price domain and without solving
any LP
Fig. 2. Normalized input prices and their extreme points.

Table 3
The range data for the inputs of units.

xL
1j xU

1j xL
2j

1 8254.56 8263.56 30.26
2 3600.53 38910.53 17.69
3 5682.21 5697.21 17.47
4 512.76 600.76 17.8
5 12495.58 12531.58 15.39
6 11189.68 13193.68 19.02
7 771.61 809.64 16.34
8 4341.02 8347.33 27.75
9 1457.18 1958.18 19.73
10 9092.21 9306.25 11.89
11 3155.11 4195.11 20.27
12 8625.98 12356.03 22.5
13 16278.93 16679.45 24.23
14 5010.87 5113.68 21.62
15 4011.24 4242.24 37.36
16 8702.27 8831.33 23.7
17 6927.43 8990.65 24.72
18 850.67 1221.67 13.43
19 6181.84 10875.84 28.12
20 1261.57 2270.57 20.81
CELFDH ðxo; yo; WÞ ¼ min
xj2vðyoÞ

min
w2Wep

wxj

wxo

� �� �
¼ min

w2Wep
min

xj2vðyoÞ

wxj

wxo

� �� �
:

In the same way, we propose the following model to obtain the
upper bound of CE:

CELFDH ðxo; yo; WÞ ¼ max
w2Wep

min
xj2vðyoÞ

wxj

wxo

� �� �
:

The models provided in the current paper can be easily ex-
tended to FDH model under constant returns to scale assumption
of technology.

7. Illustrative example

In this section, we show the ability of the provided approach
using a numerical example. To this end, twenty DMUs with three in-
puts and five outputs are considered. Without the loss of generality,
in the current example we assume that all inputs and outputs are
imprecise in the form of ranges. Also, the input prices are imprecise
in the form of ranges. The data of the inputs ranges for these units
have been listed in Table 3. The data of the input prices for these units
have been listed in Table 4. The data of the outputs ranges have been
listed in Table 5 and in the second, third, forth, and fifth columns of
Table 6. Models (15) and (23) have been solved using GAMS software
to obtain the upper and lower bounds of cost efficiency. The sixth and
seventh columns of Table 6 exhibit the resulting lower bound and
upper bound of cost efficiency measures.

In Table 3, for instance, the ranges for the inputs of
DMU14; x1;14; x2;14; x3;14, are [5010.87,5113.68], [21.62,22.62],
and [5814,5837], respectively. And in Table 4, the ranges for the in-
put prices of DMU14; w1;14; w2;14; w3;14, are [13,18], [4,6], [10,18]
xU
2j xL

3j xU
3j

45.09 4847 5007
20.78 9005 10,032
19.39 15,823 17,101
25.18 18,319 21,305
21.35 1886 1875
34.30 14,527 14,533
20.12 13,977 14,056
40.34 9224 9618
20.01 9786 9961
25.89 8085 8268
22.08 1326 1345
32.45 4764 5543
30.23 9326 11,329
22.62 5814 5837
30.65 35,310 35,563
30.17 226,017 226,345
30.17 9852 10,063
20.43 12,691 12,736
32.32 17,507 18,205
22.11 30,253 30,916



Table 4
The range of input prices of units.

Units wL
1j wU

1j wL
2j wU

2j wL
3j wU

3j

1 12 15 2 5 11 15
2 11 16 1 8 12 16
3 10 16 4 8 14 16
4 14 17 3 6 12 17
5 14 15 1 5 14 19
6 14 16 1 5 13 18
7 12 18 2 8 13 17
8 14 19 0.5 8 12 17
9 12 16 4 9 11 19
10 10 20 2 7 10 15
11 11 19 3 8 14 16
12 12 17 1 9 14 18
13 12 16 2 5 12 17
14 13 18 4 6 10 18
15 14 16 3 8 13 19
16 12 18 1 5 10 15
17 13 17 2 5 10 16
18 14 19 1 8 12 16
19 11 19 2 7 14 20
20 11 15 4 6 12 20

Table 5
The range output data of units (to be continued).

DMUs yL
1j yU

1j yL
2j yU

2j yL
3j yU

3j

1 1,262,798 1,291,506 325,071 327,038 1,092,933 1,154,312
2 302,316 332,725 38,509 41,267 66,399 66,450
3 652,583 661,236 123,230 123,580 1,517,439 1,517,687
4 737,317 737,547 261,702 26,232 301,968 302,573
5 365,134 367,007 15,612 15,786 80,153 80,893
6 537,502 567,669 51,363 51,702 229,105 435,438
7 205,122 206,143 54,177 54,196 757,565 759,043
8 243,663 247,809 264,451 264,685 728,856 734,568
9 279,091 280,974 179,083 185,632 945,771 949,551
10 383,585 386,578 13,135 13,164 1,464,666 1,465,112
11 261,142 261,829 144,716 147,218 604,120 610,986
12 401,836 402,379 61,311 61,717 151,190 151,345
13 569,375 578,903 456,902 498,437 275,812 276,361
14 261,658 262,090 220,581 221,381 735,733 737,256
15 347,687 348,762 285,715 265,945 462,277 463,478
16 433,362 455,660 80,860 82,360 304,659 332,673
17 528,743 570,965 301,168 301,464 4,146,106 4,156,223
18 396,342 425,679 177,633 177,955 32,968 33,345
19 537,025 537,327 328,473 357,623 1,662,874 1,663,364
20 876,301 877,402 104,341 109,004 1,207,702 1,218,342

Table 6
The range output data and cost efficiency bounds of units (continued).

DMUs yL
4j yU

4j yL
5j yU

5j CE bounds

CEL CEU

1 93128.57 93246.34 7575.97 7670.33 1.0000 1.0000
2 20179.39 20559.37 328.52 346.22 0.0178 0.3062
3 78297.51 88395.69 2409.54 2412.77 0.3947 0.5740
4 28734.36 34286.21 304.52 317.21 0.3716 0.5130
5 365,134 11995.92 279 305 0.2526 0.2909
6 21798.65 23112.45 489.53 571.73 0.1891 0.2413
7 47568.64 47989.70 431.85 448.45 0.2654 0.3977
8 55581.36 56882.25 1727.73 1745.78 0.5242 1.0000
9 40436.67 41200.90 445.82 449.06 0.4509 0.8760
10 524689.84 526284.44 90.05 92.37 1.0000 1.0000
11 12480.8 12595.35 1161.27 1201.35 1.0000 1.0000
12 16264.01 20345.15 262.08 265.18 0.2252 0.3190
13 47051.4 47906.2 848.44 849.34 0.4869 1.0000
14 19613.36 22890.38 1224.77 1235.79 0.5693 1.0000
15 131041.62 131732.56 1925.56 1937.06 0.2464 0.3595
16 186072.29 187890.37 1286.52 1311.73 0.0323 0.0602
17 11096.29 11245.62 4291.84 4330.22 1.0000 1.0000
18 9463.04 10371.8 109.15 130.79 0.3818 0.7021
19 62951.63 63045.46 1585.29 1711.12 0.3401 0.7118
20 25554.16 28095.24 1094.32 1294.32 0.2325 0.3933
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respectively. And also, the output ranges data of DMU14; y1;14;

y2;14; y3;14; y4;14; y5;14, in Tables 5 and 6 are [261658,262090],
[220581,221381], [735733,737256], [19613.36,22890.38], and
[1224.77,1235.79], respectively. We solved Model (23) to obtain
the lower bound of cost efficiency in the presence of uncertainty,
and presented the results in the sixth column of Table 6. Finally,
we solved Model (15) to obtain the upper bounds of cost efficiency
in the presence of uncertainty. The resulting measures are shown
in the last column of Table 6. As the sixth column of Table 6 shows,
the cost efficiency measure of DMU14 is 0.5693, in the least favor-
able condition, and 1.0000 in the most favorable condition. As a re-
sult, the cost efficiency measure for DMU14 lies in the range of
[0.5693,1.0000]. In turn, this shows that this DMU is cost efficient
in the most favorable condition, but it is cost inefficient in the least
favorable condition.

As can be seen in the sixth and seventh columns of Table 6, four
DMUs, 1, 10, 11, 17 are cost efficient in both the most favorable and
in the least favorable conditions, but DMUs 8, 13 and 14 are cost
efficient only in the most favorable condition. Consider DMU9, for
instance. The extreme points of input prices domain are

12
4

11

0@ 1A; 12
4

19

0@ 1A; 12
9

11

0@ 1A; 12
9

19

0@ 1A; 16
4

11

0@ 1A; 16
4

19

0@ 1A; 16
9

11

0@ 1A; 16
9

19

0@ 1A.

When we put DMU9, the DMU under analysis, in the most favor-
able conditions, and the other DMUs in the least favorable condi-
tions, the CE measure corresponding to the above mentioned
vertices are 0.7859, 0.5675, 0.7592, 0.5679, 0.8757, 0.6631,
0.8760, 0.6635, respectively. This shows that the upper bound of

CE is 0.8760 and attained in extreme point
16
9

11

0@ 1A. Also, when set-

ting DMU9 in the least favorable conditions, and other DMUs in the
most favorable conditions, the CE measure corresponding to the
above mentioned extreme points are 0.5802, 0.7203, 0.5806,
0.4509, 0.6697, 0.5124, 0.6701, 0.5127, respectively. This shows
that the lower bound of CE is 0.4509 and attained in extreme point

12
9

19

0@ 1A. The rank correlation between the upper and lower bounds

of CE is 86.1%. Since the data are strongly uncertain, the differences
between the lower bound and upper bound of CE measures, as for
DMU13, may be large.

8. Conclusions

This study develops a new idea for cost efficiency analysis deal-
ing with uncertain data. In fact, when the data are imprecise in the
form of ranges, the cost efficiency measure calculated from the
data should be uncertain, as well. So, a pair of two-level mathemat-
ical programming problems were provided to obtain the lower
bound and upper bound of CE in cases of bounded data. The pro-
vided models are very easy to understand and convenient to use.
The resulting two-level mathematical programs are nonlinear
and solving them is difficult. In turn, these programs are trans-
formed into equivalent linear ones. In some cases, the input prices
of all DMUs are known exactly but the prices differ from one DMU
to another. In such cases, for comparing the performance of all
DMUs based on their CE measure, it seems in order if we consider
the minimum value of each input price, among all DMUs, as the
lower bound of that respective input price; and the maximum va-
lue of each input price, among all DMUs, as the upper bound of that
respective input price. Now, we can use Models (15) and (23) with
exact inputs and outputs to obtain the range of CE, with the same
ranges for the input prices. The method proposed in this paper is
applicable not only when the input prices are in the form of a range
or cone, but also when they are in the form of a convex set, pro-
vided that the extreme points of the normalized convex set can
be obtained. Even when the data are exact but we have sampling
error or errors-in-variables, we can utilize the model proposed in
this paper for obtaining CE. Computation of economic efficiency
when the data are expressed in fuzzy or qualitative terms can be
considered for future research.
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