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In this paper a new model is described for calculating the electric potential field in a long, thin
nanochannel with overlapped electric double layers. Electrolyte concentration in the nanochannel
is predicted self-consistently via equilibrium between ionic solution in the wells and within the
nanochannel. Differently than published models that require detailed iterative numerical solutions of
coupled differential equations, the framework presented here is self-consistent and predictions are
obtained solving a simple one-dimensional integral. The derivation clearly shows that the electric
potential field depends on three new parameters: the ratio of ion density in the channel to ion density
in the wells; the ratio of free-charge density to bulk ion density within the channel; and a modified
Debye–Hückel thickness, which is the relevant scale for shielding of surface net charge. For completeness,
three wall–surface boundary conditions are analyzed: specified zeta-potential; specified surface net
charge density; and charge regulation. Predictions of experimentally observable quantities based on the
model proposed here, such as depth-averaged electroosmotic flow and net ionic current, are significantly
different than results from previous overlapped electric double layer models. In this first paper of a series
of two, predictions are presented where channel depth is varied at constant well concentration. Results
show that under conditions of electric double layer overlap, electroosmosis contributes only a small
fraction of the net ionic current, and that most of the measurable current is due to ionic conduction in
conditions of increased counterion density in the nanochannel. In the second of this two-paper series,
predictions are presented where well-concentration is varied and the channel depth is held constant, and
the model described here is employed to study the dependence of ion mobility on ionic strength, and
compare predictions to measurements of ionic current as a function of channel depth and ion density.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in nanofabrication have allowed for detailed
experimental investigations of electrokinetic fluid flow in long,
thin channels with characteristic dimensions in the range of tens
of nanometers (nanochannels) [1–5]. At this length scale, electric
double layers (EDLs) at the wall/electrolyte interface strongly in-
fluence axial ion transport rates, total ionic current (both advective
and electromigration current), and bulk flow. EDLs are character-
ized by the presence of high concentrations of excess counter
charges required to shield surface net charge. For infinitely long
channels with depths on the order of or smaller than the EDL
length scale, wall EDLs can interact strongly and there is net
free charge throughout the channel cross section. For finite length
channels, connected to wells, the charge distribution is ultimately
determined by at least a quasi-equilibrium balance between wall
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surface charge (and associated surface chemistry) and the ion den-
sities in end-channel wells.

Various models have been proposed to treat the ionic equilibria
and electrokinetic transport characteristics of nanochannels with
finite and overlapped EDLs. Table 1 summarizes published contin-
uum models describing liquid flow and ionic concentration equilib-
rium dynamics in the presence of EDL overlap. The ten models re-
flect different assumptions regarding the governing physical mech-
anisms, which are imposed (nearly always) through the choice in
boundary conditions for the ionic concentrations and electric po-
tential field, and the choice of using constraints of electroneutrality
(local balance between positive and negative charge) and of net
neutrality (cross-section-area-averaged balance of charge including
wall charge).

All of the models are based on descriptions of an electrolyte
in thermodynamic equilibrium near a charged surface, and rely on
the Poisson equation for the electrostatic potential, the Boltzmann
distribution for diffuse electrolyte ions, and the Stokes equations
for unidirectional liquid flow in the presence of an electrical body
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Table 1
List of published theoretical models for predicting electrostatic potential field and ion density distribution, in long, thin channels, in conditions where the EDLs overlap (weak
to strong overlap are included). A number of these works also include a treatment of electrokinetic flows. Models are classified based on their defining assumptions. Models
are listed in the chronological order they were published

Models for sym-
metric (top/bottom
surfaces) channels
(in chronological
order)

Open/
closed
system

Debye–
Hückel
approx.

Boundary condition on
ionic concentrations

Wall boundary condition
on electric potential

Net neutrality and
electroneutrality conditions

Ionic
strength
depen-
dence of
ionic
mobility

Specified
centerline
value

Specified
wall
value

Water
dissocia-
tion EQL

EQL between
wells and
channel

Specified
zeta-
potential

Specified
surface
charge
density

Chemi-
cal
EQL

Channel
cross-
section is
net neutral

ENT in
the
wells

Global
net
neu-
trality

Burgreen and
Nakache [6–8,27]

Open X X

Qu and Li [14,15] Open X X X
Conlisk et al. [19] Open X X X
Zheng et al. [20,21] Closed X X X X
Stein et al. [1,9] Open X X
Van der Heyden
et al. [10]

Open X X X X

Kwak and Has-
selbrink [17,18]

Open X X Xa X

Schoch et al. [4,5] Open X X
Tessier and
Slater [22]

Closed,
no wells

X X

Baldessari
(current work)

Closed X X X X X X

Note. ENT = electroneutrality; conc. = concentration; EQL = equilibrium.
a Time dependent calculations where surface charge is turned “ON” at t = 0.
force. Differences among model predictions stem from assumptions
of the ion density and/or potential at the channel surface and the
channel centerline.

For slit channels (infinitely long, thin channels with rectangular
cross-section), Burgreen and Nakache [6] were the first to model
the presence of thick EDL and its effect on advection and con-
duction of electrolyte ions. Their model includes treatment of the
(equilibrium) transverse electric potential distribution, its impli-
cations on electroosmotic flow, and on ionic current and stream-
ing potential measurements. Burgreen and Nakache assume the
following: ion concentration in the bulk can be specified inde-
pendently of the electric potential (assumed small at the center
of the channel); and potential at the shear plane (zeta potential)
is a known, fixed value. Their predictions are accurate provided
the degree of overlap is small (so called weakly interacting EDLs).
Other investigators proposed similar models with minor varia-
tions [7,8].

In the last few years, some studies have extended the theoreti-
cal framework of Burgreen and Nakache and compared predictions
to electrokinetic transport measurements. Stein et al. [1] modified
the boundary conditions of the Burgreen and Nakache model to
make predictions for specified (and fixed) surface net charge den-
sity at the channel walls, instead of specified zeta potential. This
choice of boundary condition can affect significantly the electric
potential distribution in the channel (and therefore electroosmotic
flow and ionic current). Stein et al. used the value of surface net
charge density as fitting parameter when comparing to measured
ionic current in 70–1015 nm deep silica channels with aqueous
potassium chloride (KCl) solutions and 10 mM TRIS salt. They fit
observed trends in electric conductance at high and low salt con-
centrations and constant channel height, using surface net charge
density values between −45 and −68 mC/m2 [9]. Van der Heyden
et al. [10] measured streaming currents in 70–1147 nm deep silica
channels as a function of applied pressure with aqueous solutions
of KCl and TRIS. They observed that streaming current increases
as KCl concentration is reduced from 1 M to 1 mM, but below
1 mM conductance saturates to (approximately) a constant value.
To model these experiments, they assume that the ionic concentra-
tion in the bulk of the nanochannel can be specified independently
of other parameters (similarly to Burgreen and Nakache), but they
proposed a different (third) choice for the wall boundary condi-
tion on the electric potential distribution: a chemical equilibrium
deprotonation reaction of the silanol groups on the silica surface
(specifically a boundary condition known as “charge regulation”
(CR)) [11–13]. A common deduction made by all these investigators
is that, in conditions of thick and overlapped EDLs advective cur-
rent (bulk ionic motion due to electroosmotic flow) is a significant
fraction of total ionic current in the channel. In the calculations
presented here it is found in fact that this contribution is never
dominant.

Other investigations focused on studying the effects of surface
equilibrium reactions to describe local free charge accumulation,
and its effects on measurements of conductance. Recently, Qu and
Li [14], and Ren et al. [15], proposed a 1D model for overlapped
EDLs in infinitely long, thin channels valid for low values of zeta
potential (the Debye–Hückle approximation). As a wall boundary
condition, they use the site-dissociation model of Healy and White
[16] which predicts wall charge based on the pH-dependent sur-
face condensation reaction of hydroxyl or hydronium ions. In this
approach, a net free-charge develops because loss of hydroxyl (or
hydronium) ions to the surface is only in part countered by dissoci-
ation of water molecules. The differences between their predictions
and classical predictions assuming Boltzmann equilibrium are large
when EDLs are highly overlapped. They argue that applying Boltz-
mann equilibrium directly is incorrect because it assumes that dif-
fuse ion composition is independent of surface ions. The Qu and Li
model neglects the dynamics due to end-effects and the presence
of wells; it is valid only for infinitely long thin channels. In reality
transport of ions to and from relatively large channel wells eventu-
ally establishes Boltzmann distribution type equilibrium between
the channel wall and wells. Thus, the behavior found by Qu and
Li is descriptive of an intermediate state toward final equilibrium,
as verified by detailed time dependent calculations of Kwak and
Hasselbrink [17], and Kang and Suh [18], who solve the transient
problem starting at the instant when a specified surface net charge
density is instantaneously imposed on the nanochannel wall. These
calculations show that the final equilibrium state is well described
by Boltzmann distributions.

Schoch et al. [4,5] also observed trends of measured conduc-
tance for varying electrolyte concentration similar to Stein et al.
and van der Heyden et al. Their model is based on linear superpo-
sition of the expected bulk conductivity (proportional to the sum
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of the product of concentration and mobility for all ions), and a
scaling estimate of the contribution to conductance due to the ex-
cess counterions in solution inside the nanochannel. To estimate
the density of counterions, they impose net neutrality (which is
here defined as a net zero sum of the area average charge den-
sity including wall charge) for a specified surface charge density.
Schoch et al. use this ad hoc description, and use the surface net
charge density as a fitting parameter to explain trends in measured
conductance. They find that a surface charge density of −53 mC/

m2 fits experimental data.
In a series of three publications, Conlisk et al. [19–21] devel-

oped models where ionic concentrations at the wall (instead of at
the midpoint) are either specified, or determined from channel-
to-well equilibrium considerations. When the system is open (in-
finitely long, slit channel) Conlisk et al. [19] assume that the ion
concentrations at the wall are known and that the zeta potential
is specified. When the channel is connected to large wells at each
end (closed system), Conlisk et al. [20,21] model ionic concentra-
tions inside the nanochannel coupled to concentrations in wells via
the Nernst equations. The channel-to-well fluxes are approximated
using a one-dimensional flux balance between the depth-averaged
concentrations in the nanochannel and the (large) well. They ap-
ply net neutrality at each cross section within the nanochannel,
and independently apply electroneutrality to the walls and content
of wells. Further detailed comments on this issue will be made
in Section 2.1 where an equation is derived for the self-consistent
coupling of ionic concentrations in the wells and the nanochannel.
For now, note that the Conlisk et al. approach requires intensive,
iterative, numerical solutions of the constrained boundary value
problem for the coupled Poisson (differential) equation for the
electrostatic potential, and the Nernst (differential) equations for
ionic concentration fields. As mentioned above, in their model the
constraints are net neutrality at each cross-section and (separately)
electroneutrality in the wells.

Finally, Tessier and Slater [22] present a model to describe the
distribution of ions confined between charged surfaces for closed
long, thin channels. They specify surface net charge density, and
adopt net neutrality at each cross-section of the channel. They
show that a closed system is equivalent to the traditional treat-
ment of an open system provided that an effective length scale is
introduced in place of the Debye length: the Debye length divided
by the geometric mean of the normalized densities of counter and
co-ions at the center of the channel.

In this paper, a new theoretical framework is proposed to ac-
curately describe liquid flow and ion transport in nanochannels
in conditions of EDL overlap. Two specific modifications are intro-
duced to the existing theories relevant to EDL overlap: (1) how to
determine self-consistently the transverse electric potential distri-
bution and the ionic concentrations in a nanochannel in equilib-
rium with end-channel wells; and (2) how to include the effect of
local ionic strength on ion mobility. The first modification above
assumes that Boltzmann equilibrium is established between the
channel and the wells. This idea is employed to develop a model
that allows univocal determination of the two coupled variables in
the system: electric potential distribution and ionic concentrations
(ion densities).

In the sections that follow, first a derivation is given of the
theoretical model, including the results of assuming each of three
commonly used boundary conditions for electric potential (spec-
ified zeta potential, specified surface charge density, or charge
regulation), and of including ionic mobility dependence on ionic
strength and pH. Formulations of the electroosmotic flow and net
ionic current equations are also presented which are consistent
with the electric potential model derived here. Finally, the re-
sults presented here describe how one might predict nanochannel
behavior given microchannel measurements of electroosmotic mo-
bility.

2. Theoretical formulation

2.1. Distribution of ions (ni(r)) and free-charge (ρE(r))

Consider a nanochannel with dielectric, impermeable walls and
a native surface charge as shown schematically in Fig. 1. The chan-
nel is bounded by two relatively large electrolyte wells at either
end. At equilibrium gradients in the electrochemical potential (μ̄i)
of each species i are zero:

∇μ̄i(r) = ∇[
kBT ln ni(r) + zieψ(r)

] = 0, (1)

where ψ(r) is the electric potential in the diffuse charge regions,
e is the electron charge, zi ion valence, kBT is the thermal en-
ergy, and r is the position vector. Denote the ion number density
and the electric potential in the middle of a symmetric channel
as ni(d) = nc

i and ψ(d) = ψc, where the position vector d indi-
cates the midplane. The ionic concentration profile (ni(r)) valid
for the three dimensional space which includes the inside of the
nanochannel and its connecting wells is then the Boltzmann dis-
tribution given by [23]

ni(r) = nc
i exp

(
− ezi

kBT

(
ψ(r) − ψc

))
. (2)

The centerline ion concentration (nc
i ) in the nanochannel is un-

known at this stage. Solving for nc
i requires treatment of the equi-

librium between ions in the channel and the ions in the end-
channel electrolyte wells.

In the absence of applied electric fields, the equilibrium concen-
tration in the nanochannel may differ from that of the wells since
electric potentials in the channel may be different than that of the
well (i.e., when we have significant double layer overlap). Satisfy-
ing ∇μ̄i = 0 along the axial channel direction allows to write an
equilibrium condition between the ion concentration in the wells
(nwell

i ) and the ion concentration at the centerline of the nanochan-
nel

nc
i = nwell

i exp

(
− ezi

kBT
ψc

)
, (3)

where it is assumed ψwell = 0 as reference electric potential with
respect to which all other (wall charge related) electric potentials
are measured. Substitution of Eq. (3) into (2) yields an expression
for ion distribution in long thin channels

ni(r) = nwell
i exp

(
− ezi

kBT
ψc

)
exp

(
− ezi

kBT

(
ψ(r) − ψc

))
. (4)

Choosing to write the ion distribution function as shown in (4)
instead of the more compact form

ni(r) = nwell
i exp

(−eziψ(r)/kBT
)

serves as reminder that a self-consistent solution of ψ(r) requires
knowledge of ψc which is non-zero and determined by the bound-
ary conditions at the walls, as will be seen in detail in the next
section. Given Eq. (4), the distribution of free charge in the elec-
trolyte is given by

ρE(r) =
∑

i

zieni(r) =
∑

i

zienc
i exp

(
− ezi

kBT

(
ψ(r) − ψc

))

=
∑

i

zienwell
i exp

(
− ezi

kBT
ψc

)
exp

(
− ezi

kBT

(
ψ(r) − ψc

))
. (5)

To the best of the author’s knowledge, this is the first time that
explicit functions of the centerline electric potential have been
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Fig. 1. Schematic of a long, thin nanochannel connected to wells at the ends. Also shown (bottom left) is a schematic of the idealized electric field lines at the transition
region between the well and the nanochannel. At the bottom right a schematic is shown of idealized electric double-layers (free-charge) in contact with a charged flat wall
(away from the ends of the nanochannel).
used to model self-consistently the ionic concentration inside the
nanochannel via a condition of equilibrium between the solutions
in the wells and inside a long, thin nanochannel. For example,
models based on the work by Burgreen and Nakache [6] assume
that the exponential factor in Eq. (3) is unity: i.e., ion densities
are specified independently of ψc. Conlisk et al. [20,21] also pro-
posed to adopt equilibrium between the wells and the channel.
They postulate that the cross-sectional area-averaged electrochem-
ical potential is uniform along the channel length, and equal to
the electrochemical potential in the well, and they derive an area-
averaged ion density form of Eq. (4). However, they then impose
a net neutrality constraint at the channel cross section (including
channel wall net charge), and a separate, independent electroneu-
trality constraint for the electrolyte in the wells. These are part of
a single net neutrality constraint for the entire system, and, strictly
speaking, should not be imposed separately (see Appendix A). Fur-
ther, Conlisk et al. eliminate the explicit dependence of ion density
on ψc, by expressing electroneutrality and net neutrality in terms
of concentration ratios, obtained dividing Eq. (4) by the ion density
of the most populous species present in solution. The formulation
that results from the construct of Conlisk et al. requires iterative
solution of non-linear, coupled differential equations with integral
constraints. Equations (4) and (5) are in fact new and express the
fact that ionic concentrations inside the nanochannel cannot in
general be specified independently of ψc or independently of the
conditions at the sample well. More importantly, these equations
embody the explicit dependence on just one variable, ψc. This is
one of two main modifications, improvements present in the for-
mulation in this paper relative to past work.
2.2. The potential distribution in a wide, shallow channel (ψ(y))

In this section, the discussion is focused on the potential field
in a wide, shallow nano-scale channel of the type typically cre-
ated using planar microfabrication methods [1–3,24–29]. Define y
as the transverse coordinate, as in Fig. 1. Assume for now that end-
effects due to axial gradients in the potential are confined to small
regions near the entrances to the channel, and can be neglected
when studying the potential distribution across the channel depth.
(This assumption is justified in detail in Appendix B.) The trans-
verse potential distribution (between the top and bottom walls) is
obtained solving the Poisson equation subject to the condition of
symmetry at the center (here assume that the channel walls are
identical), and a second boundary condition at one of the walls.
From the one-dimensional (1D) Poisson equation for the electric
potential within the double-layer [23]

d2ψ

dy2
= − 1

ε

∑
i

zienc
i exp

(
− ezi

kBT
(ψ − ψc)

)
, (6)

where ε is the dielectric constant of the electrolyte, assumed to be
uniform throughout). Integrate and apply symmetry at the chan-
nel’s center (dψ/dy|y=d = 0) to obtain

dψ

dy
= +

(
2

kBT

ε

)1/2(∑
i

nc
i

[
exp

(
− ezi

kBT
(ψ − ψc)

)
− 1

])1/2

. (7)

From this point onward in the derivation, the assumption is made
that the background electrolyte is symmetric and binary (z+ =
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−z− = z) to simplify the mathematical treatment, but the cur-
rent model can be extended to include arbitrary electrolyte solu-
tions.

For a symmetric, binary electrolyte Eq. (7) can be written as

dψ

dy
=

(
kBT (2nwell+ )

ε

)1/2(
p1/2){2 sinh2

(
ez

2kBT
(ψ − ψc)

)

− Ω · sinh

(
ez

kBT
(ψ − ψc)

)}1/2

, (8)

where

rwell ≡ nwell− /nwell+ ,

p ≡ exp

(
− ez

kBT
ψc

)
+ rwell exp

(
ez

kBT
ψc

)
= nc+ + nc−

nwell+
,

Ω ≡ exp(− ez
kB T ψc) − rwell exp( ez

kB T ψc)

exp(− ez
kB T ψc) + rwell exp( ez

kB T ψc)
= nc+ − nc−

nc+ + nc−
. (9)

The second term within curly brackets in Eq. (8) ensures that equi-
librium between the solution in the well and within the nanochan-
nel is satisfied self-consistently. The parameter rwell is the ratio
of volume-averaged negative to positive ion densities in the wells,
it is typically very close to unity for nanochannels and relatively
large wells, but it is kept here for consistency. A more detailed
discussion of rwell is presented in Appendix A. The coefficient Ω

measures free charge density at the centerline: Ω = 0 for non-
interacting EDLs, and Ω → 1 for strong overlap. p is the ratio of
ionic strength of the channel centerline to that of the well. A more
detailed discussion of p and Ω is given in Section 4. Here it is suf-
ficient to note that for rwell = 1, p = 2 and Ω = 0, one recovers the
formulation of published models for thick, weakly-overlapped EDLs
where the bulk ionic concentration in the middle of the channel is
not significantly changed by the electric potential field [6,23]. Here
this model is referred to as the “existing thick EDL model” [1,6–8,
10,30,31].

Up to this point in the derivation we have assumed that the
potential distribution can be described using a planar, 1D geom-
etry and symmetry with respect to the center plane, otherwise
Eq. (8) is general and describes the potential distribution far from
the ends of the channel. A second boundary condition is required
to specify a unique solution for ψ(y). Three boundary conditions
reflect commonly accepted approximations of the behavior of elec-
trolytes in contact with charged surfaces: specified wall-potential,
specified surface charge density, or charge regulation [8,11,12,23,
32]. Consequences of each boundary condition are investigated. Of
specific interest are conditions where the EDLs may be significantly
overlapped.

2.2.1. Boundary condition I (BC I): specified wall-potential (ψ(0) = ζ )
[23]

Choosing ψ̃ ≡ ze(ψ − ψc)/kBT , ψ̃c ≡ zeψc/kBT , λD ≡ (εkBT /

z2e2(2nwell+ ))1/2, and ξ ≡ y/λD, Eqs. (8) and (9) are recast in di-
mensionless form

dψ̃

dξ
= (p̃)1/2

{
2 sinh2

(
ψ̃

2

)
− Ω̃ · sinh(ψ̃)

}1/2

, (10)

p̃ ≡ exp(−ψ̃c) + rwell exp(ψ̃c),

Ω̃ ≡ exp(−ψ̃c) − rwell exp(ψ̃c)

exp(−ψ̃c) + rwell exp(ψ̃c)
. (11)

Here λD is a form of the Debye–Hückel thickness. The specified
wall (shear plane) potential is the zeta potential, ψ(0) = ζ , and
the solution of Eq. (10) must satisfy ψ̃0 = ψ̃(0) = ze(ζ − ψc)/kBT .
Define zeta potential, ζ , as the potential at the shear plane mea-
sured relative to the well potential. The formal solution to Eq. (10)
is given by integrating from the wall to a position within the chan-
nel

y

λD
= − 1

p̃1/2

ψ̃0∫
ψ̃

{
2 sinh2

(
s

2

)
− Ω̃ · sinh(s)

}−1/2

ds. (12)

ψc is determined iteratively by numerically evaluating Eq. (12) at
centerline where y/λD = d/λD and ψ̃ = 0 (see Appendix C for de-
tails about the numerical approximation of the integral in Eq. (13)):

d

λD
= − 1

p̃1/2

ψ̃0∫
0

{
2 sinh2

(
ψ̃

2

)
− Ω̃ · sinh(ψ̃)

}−1/2

dψ̃. (13)

Note that λD/
√

p̃ is now the effective Debye–Hückel thickness (rel-
evant EDL thickness) in the presence of increased ion density in
the channel. p̃ can be order 50 or larger (e.g., assuming a wall zeta
potential of ∼150 mV).

2.2.2. Boundary condition II (BC II): specified wall-charge density [23]
Again consider Eq. (8) (or the dimensionless form Eq. (10)) for

a binary, symmetric electrolyte, but this time choose to specify the
value of charge density at the wall

σE = −ε
dψ

dy

∣∣∣∣
y=0

. (14)

From (10), the wall (y = 0)

σ 2
E

(
ez

εkBT

)2
λ2

D

p̃
= 2 sinh2

(
ψ̃0

2

)
− Ω̃ · sinh(ψ̃0). (15)

The parameter on the left-hand side of Eq. (15) measures σE/

((εkB T /ez)(λD/
√

p̃)), the capacitance of the EDL across a thickness
of order λD/

√
p̃, again the correction to the Debye–Hückel thick-

ness in the presence of increased ion density in the channel. Note
that both ψ̃0 and ψ̃c are unknown at this stage of the formulation.
To obtain a specific solution the coupled system Eqs. (12) and (13)
is solved subject the constraint of Eq. (15).

2.2.3. Boundary condition III (BC III): charge regulation
Again consider Eq. (8) for a binary, symmetric electrolyte, and

assume that there is an equilibrium reaction for the association
and dissociation of silanol groups at the channel surface which de-
pends on pH and ion concentration [11]. The assumptions implicit
here are [11]:

(1) the deprotonation reaction at the fused silica surface is
SiOH � H3O+ + SiO−;

(2) counterions due to the charging of the surface (i.e., H3O+) pro-
vide a negligible contribution to the overall ionic strength of
the solution;

(3) the surface potential is reduced linearly according to a basic
Stern layer capacitance model [33].

The reaction kinetics yield the following relations between the
potential and charge density near the wall and the potential in the
bulk:

ζ(σE) = kBT

e
ln

−σE

eΓ + σE
− (pH − pKa) ln 10

kB T

e
− σE

C

⇒ ψ̃0

= −ψ̃c + z ln
−σE

eΓ + σE
− z(pH − pKa) ln 10 − ez

kBT

σE

C
, (16)

where Γ is the fraction of chargeable sites that are dissoci-
ated, C is the Stern layer’s phenomenological capacity [11], pH =
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− log10{γH3O+[H3O+]} and pKa = − log10 Ka where Ka is the equi-
librium constant of the surface deprotonation reaction. Here γH3O+
is the activity of the hydronium ion in solution [34]. As before,
charge and surface potential are related according to

σ 2
E

(
ez

εkBT

)2
λ2

D

p̃
= 2 sinh2

(
ψ̃0

2

)
− Ω̃ · sinh(ψ̃0). (17)

In this formulation, σE, ψ̃0 and ψ̃c are unknown, and must be de-
termined self-consistently. The formal solution of the differential
equation (Eq. (8)) is still valid, and the solution requires satisfying
the set of simultaneous equations Eqs. (12) and (13) subject to the
constraints in (16)–(17).

2.3. Ionic mobility dependence on ionic strength and pH

At this stage the model for electric potential distribution across
the channel depth has been defined, and three boundary condi-
tions commonly used to find solutions for ψ(y) have been de-
scribed. In order to make predictions for measurable quantities, for
example ionic current density, it is necessary to provide a frame-
work for understanding the effect of an external field on liquid
flow and ion transport. One important physical mechanism that is
often overlooked in the micro- and nanofluidics community is the
dependence of ionic mobility on local pH and ionic strength. This
section presents a brief account to include such dependences. This
issue is addressed in more detail in Part II of this two-paper se-
ries [35] where predictions of bulk solution conductivity and ionic
current in nanochannels (with and without EDL overlap) are com-
pared with experimental data.

The ionic mobility of any species varies with pH and ionic
strength, (IZ), of the electrolyte due to two known effects [34,
36,37]. First, ionizable species exist in solution as an ensemble of
ionic forms involved in fast (dynamic) association and dissociation
reactions that determine the equilibrium (ensemble) form. Varia-
tions of local pH influence the effective ionic mobility by shifting
the equilibrium condition for these reactions. For example, for a
monovalent weak acid the equilibrium dissociation reaction and
equilibrium constant are given by

HA � H3O+ + A−, (18)

Ka = γA−γH3O+[H3O+][A−]
[HA] , (19)

where γ j is the activity coefficient of species j (note that γHA = 1),
and [H3O+], [A−], [HA] are the equilibrium concentrations of the
hydronium ion, the conjugate base, and the undissociated weak
acid, respectively. Continuing with this weak acid example and
adopting the usual definitions of pH = − log10{γH3O+[H3O+]} and
pKa = − log10 Ka, the equilibrium constant can be expressed as

pKa = pH − log10(γA− ) − log10
[A−]
[HA] . (20)

A weak base will have a reaction of the form BOH � B+ + OH− ,
where pKb = − log10 Kb. Electrolytes with more complex ionic
equilibria are common [34,38]. For now, simply note that, as ex-
plained below, ion mobility of any weak electrolyte is intimately
coupled to the physics of the double layers (which partly deter-
mine ion density) and all reactions in the buffer. Equation (20) is
one such coupling which is used here as an illustrative example.

Second, increase in ionic strength of a solution increases the
effective electrostatic shielding of ions in solution and decreases
their activity coefficients [37,39]. Ionic mobility decreases with in-
creasing ionic strength. This effect can be described by a modified
Debye–Hückel theory [34] result where finite ion size effects are
included
Fig. 2. Predicted values of bulk pH of sodium borate aqueous solution obtained
dissolving borax salt in deionized water. Also shown are predicted electrophoretic
mobilities of sodium ion (Na+) and borate ion (B(OH)−4 ) as a function of electrolyte
concentration. These predictions are based on the modified Debye–Hückel theory,
Eqs. (22) and (23).

− log10(γA− ) = c1z
√

IZ

1 + c2a
√

IZ
, (21)

where c1 ≈ 1.825(εT )−3/2 and c2 ≈ 50.3(εT )−1/2 depend on the
absolute temperature and the dielectric constant of the solvent
(c1 ≈ 0.508 M−1/2 and c2 ≈ 0.329 Å−1 M−1/2 for water at 25 ◦C),
IZ = 1/2

∑
j z2

j c j is the ionic strength, and a is an adjustable pa-

rameter related to the ion size (expressed in units of Å) [39].
The effective ionic mobility for a weak acid can be written as

the product of the fraction of monovalent acid present in solution
and its mobility at infinite dilution:

ν− = Ka

[H3O+] + Ka
ν−,∞ = 10−pKa

10−pKa + 10−pH
ν−,∞ (22)

and, similarly, for a weak base

ν+ = [H+]
[H3O+] + Ka

ν+,∞ = 10−pH

10−pKa + 10−pH
ν+,∞, (23)

where ν±,∞ are the mobilities at infinite-dilution, pKa is given by
Eqs. (20) and (21) (e.g., for the weak acid case). In experiments,
background electrolyte concentrations of interest vary over several
orders of magnitude (e.g., from tens of μM to hundreds of mM),
resulting in large changes in pH and mobility.

As mentioned above, in Part II of this series a detailed model
is developed for a realistic buffer of interest and the accuracy of
these predictions is also discussed [35]. The model effectively gives
a functional relationship between local pH and ion density for a
borate buffer in contact with the atmosphere. The results of this
model are summarized in Fig. 2 which shows sodium ion mobility
and solution pH for a sodium borate solution in equilibrium with
typical atmospheric CO2 levels. Predictions are used here to make
the point that even buffered solutions (e.g., borate buffer) cannot
maintain a constant pH and mobility over ∼4 orders of magnitude
changes in concentration. The mobility of Na+ is predicted to fall
to ≈0.4 of its value at infinite-dilution (5.19×10−8 m2 S/mol), and
the mobility of B(OH)−4 is predicted to rise to 64% of its value at
infinite dilution (3.29 × 10−8 m2 S/mol). In the results presented
in the next sections, realistic buffer mobility and pH values are
incorporated in predicting ionic current in nanochannels (cf. Figs. 8
and 9).
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Surprisingly, the effects of ion density and pH on mobility have
not been widely incorporated into models of electrophoresis and
current transport in either micro- or nanochannels. Nanochannels
electrokinetic transport in particular is by definition strongly in-
fluenced by high ion density EDLs, and yet the author knows of
no incorporation of ion density-dependent mobilities. Nanochannel
studies which have assumed mobilities independent of ion density
include those of Burgreen and Nakache [6], Hildreth [7], Pennathur
and Santiago [3], Garcia et al. [2], Griffiths and Nilson [30], and
others [8,19–22,32,40].

2.4. Electroosmotic flow

In this section, ion and bulk motion due to the application of an
external field are discussed. The usual approximation is made that
the electric potentials and ionic species distributions of the EDL
remain unchanged as an external field is applied. This allows to
treat the externally applied electric field (i.e., from well to well in
Fig. 1) as a linearly superposable electric potential [6–8,30,41–45].
This is an assumption made here for simplification of the analysis,
but that this is an issue that should be treated more carefully in
future work. As discussed by Stone et al. [46,47] and Saville [48],
for example, this “frozen EDL” assumption assumes we are inter-
ested in a regime characterized by Pe = uCd/νCkBT � 1, where Pe
is the electrophoretic Peclet number of ions, uC is a characteristic
speed of fluid motion, and νC is a characteristic ionic mobility. That
is, it is assumed here that the transverse distribution of ions in the
EDL is not affected by bulk motion. (Here advective current is ac-
counted for through the contribution of bulk flow to axial ionic
motion.) It is also assumed that the end-channel liquid wells are
relatively large with negligible changes in ion density over time.
Clearly, a fully coupled model where changes in the applied field
can perturb charge distribution in and out of the nanochannel, and
which takes into account end-effects, is complex and will perhaps
be addressed in future work.

Electroosmotic flow is driven by the presence of net charge of
the EDL. The unidirectional flow framework developed by Burgreen
and Nakache [6] is applicable to electrokinetic flow in nanochan-
nels with a high aspect ratio (width to depth), and when the flow
is laminar (Re � 1). Under these conditions viscous flow is gov-
erned by

μ
d2u

dy2
− dp

dx
− ρE Ex = 0, (24)

where μ is the viscosity of the fluid, u is the fluid velocity in the
axial direction, p is pressure, and Ex is the applied axial electric
field. Expanding in terms of electroosmotic and pressure-driven
flow components as u = uEOF + up and exploiting the linearity of
the momentum balance we write

d2uEOF

dy2
= − ε

μ
Ex

d2ψ

dy2
; duEOF

dy
= dψ

dy
= 0 at y = d,

uEOF = 0, ψ = ζ at y = 0, (25)

d2up

dy2
= 1

μ

dp

dx
; dup

dy
= 0 at y = d,

up = 0 at y = 0. (26)

Further note that Eqs. (24) through (26) apply to regions of long-
thin nanochannels away from interfaces. In such channels, EDL
potential gradients that drive flow are solely in the y-direction as
discussed in Appendix C.

Solving Eqs. (26) is straight forward when the pressure gradient
is uniform along the channel. Integrating Eq. (26) once from y = d
to y, integrating the resultant differential equation from y = 0 (the
wall) to y, and applying the no-slip boundary condition yields

up(y) = 1

2μ
y(y − 2d)

dp

dx
. (27)

The implications of pressure-driven fractionation methods were in-
vestigated recently by Griffiths and Nilson [30] and will not be
discussed here. Instead here the focus is on electroosmotic flow.
When the applied electric field is uniform along the channel, in-
tegrating Eq. (25) from the center-line toward the wall, applying
the symmetry conditions at the channel center-line, and integrat-
ing once more from the wall toward the center of the channel
yields

uEOF(y) = − ε

μ
Exζ

(
1 − ψ(y)

ζ

)
; (28)

it follows that the depth averaged electroosmotic velocity is given
by

〈uEOF〉 = − ε

μ
Exζ

(
1 − 1

d

d∫
0

ψ

ζ
dy

)
. (29)

The velocity profile in (28) depends on the choice of boundary con-
dition at the wall (through ζ ), the channel depth (through d, ψc),
and the conditions in the well (as ψc depends on ψwell).

2.5. Net ionic current

Current is carried by the motion of ions relative to the bulk
neutral fluid (conduction) and by the ions advected by bulk fluid
flow. (Away from end effects, net ionic current due to diffusion is
negligible.) The net current density in a binary electrolyte is given
by

i(y) = i+(y) − i−(y)

= (n+ezu − n+ezν+Ex) − (n−ezu − n−ezν−Ex)

= ρE(y)u(y) − K0 Ex

[
cosh

(
ez

kBT
(ψ − ψc)

)

− γ sinh

(
ez

kBT
(ψ − ψc)

)]
, (30)

where

K0 ≡ nwell+ ez

(
ν+ exp

(
− ez

kBT
ψc

)
+ rwellν− exp

(
ez

kBT
ψc

))
,

γ ≡ ν+ exp(− ez
kB T ψc) − rwellν− exp( ez

kB T ψc)

ν+ exp(− ez
kB T ψc) + rwellν− exp( ez

kB T ψc)
= ν+nc+ − ν−nc−

ν+nc+ + ν−nc−
. (31)

Here K0 is the effective bulk conductivity of the electrolyte, and ν±
are the mobilities of the background electrolyte ions. To be exact
ν± are functions of the local ionic strength and pH of the solution.
The depth-averaged net current density is

〈i〉 = 1

d

d∫
0

i(y)dy

= 1

d

d∫
0

ρE(y)u(y)dy − Ex

[
1

d

d∫
0

K0 cosh

(
ez

kBT
(ψ − ψc)

)
dy

− 1

d

d∫
K0γ sinh

(
ez

kBT
(ψ − ψc)

)
dy

]
. (32)
0



F. Baldessari / Journal of Colloid and Interface Science 325 (2008) 526–538 533
In Eq. (32) K0(y) and γ (y) are each functions of the local ionic
strength since, as discussed earlier, ionic mobilities (ν±) vary with
ionic strength. This makes evaluation of Eq. (32) complex as it re-
quires to express ν± as local functions of ψ(y). All predictions
shown in Parts I and II of this two-paper series were obtained
using this full Eq. (32), including ν± which vary with local pH
and ion density (e.g., vary within the EDL). An obvious approxi-
mation for Eq. (32) is to assume that the mobility ν± do not vary
in the transverse direction (not a function of y), but are exclu-
sively a function the area-averaged ionic strength; Eq. (32) would
then simplify to

i(y) ≈ 1

d

d∫
0

ρE(y)u(y)dy

− 〈K0〉Ex

[
1

d

d∫
0

cosh

(
ez

kBT
(ψ − ψc)

)
dy

− 〈γ 〉1

d

d∫
0

sinh

(
ez

kBT
(ψ − ψc)

)
dy

]
, (33)

where 〈K0〉 and 〈γ 〉 are area-averaged quantities. Note that this
approximation is fairly accurate for low ionic strength solutions.
For example, for cBGE = 1 mM (the conditions for Fig. 8 below),
accounting for non-uniform ion mobilities reduces predicted cur-
rent density by about 16% relative to the area-averaged mobility
assumption shown in Eq. (33). In Part II it is shown that for high
values of the well concentration the approximation given in Eq.
(33) is not satisfactory.

The first term on the right-hand side of Eq. (32) reflects the
advective component of the electric current density. The pressure-
driven flow and electroosmotic flow components of the velocity
field each contribute to this. The contribution due to pressure gra-
dient is

d∫
0

ρE(y)up(y)dy = ε

μ
ζ

dp

dx

[
d −

d∫
0

ψ

ζ
dy

]
, (34)

where the value of ζ depends on the boundary condition chosen.
The contribution due to electroosmotic flow is expressed conve-
niently in terms of integrals on the electric potential. From Eq. (8)

1

d

d∫
0

ρE(y)uEOF(y)dy

= nwell+ e
εExζ

μ

λD

d

1

p̃1/2

ψ̃0∫
0

e−ψ̃c e−s − rwelleψ̃c es

{2 sinh2( s
2 ) − Ω̃ · sinh(s)}1/2

ds. (35)

In Section 4 predictions are shown of current density based these
equations. Advective current is clearly a critical issue in overlapped
EDL electroosmotic flow.

3. Parameter estimates in thin EDL regime: zeta potential,
surface charge density, and fraction of chargeable sites

The aim of this section is to generate a unique, self-consistent
set of values for zeta potential, surface charge density, and frac-
tion of chargeable sites all of which give rise to the same observed
flow and current at one condition: the thin EDL case. The thin-EDL
regime is then the control from which to extrapolate overlapped
EDL behavior using the various assumptions regarding the surface
conditions. In this section, a summary is given of parameter values
Fig. 3. Values of zeta potential (open circles) determined from current monitoring
experiments in 20 μm deep channels, in conditions of thin EDLs [3]. Also shown are
values of predicted surface charge density (open squares), and fraction of charge-
able sites (Γ ) (open diamonds), consistent with values of zeta potential determined
experimentally.

that will be used in Section 4 to make predictions of observable
quantities.

The starting point is to specify values of zeta potential deter-
mined experimentally via current monitoring [3] of electroosmotic
flow in a 20 μm fused silica microchannel filled with a solution of
sodium borate buffer in concentration that was varied between 1
and 100 mM. A convenient power law fit of the experimentally de-
termined zeta potential as a function of the BGE concentration is
shown in Fig. 3 with open circles, and was given by [3]

ζ = −a · cb
BGE, (36)

where a = 0.0288, b = −0.245, cBGE is the concentration (in molar
units) of the BGE, and ζ is calculated in volts [3]. The assumption
is made that Eq. (36) holds when making predictions at specified
ζ potential (BC I). Strictly speaking Eq. (36) is valid only in the
range of experimental concentrations studied (1–100 mM). Pre-
dictions are shown for concentrations outside the experimentally
validated range, but these are mere extrapolations from Eq. (36).

Next, the value of surface charge density is determined, that is
consistent with the value of ζ at a specific concentration of sodium
borate. To do so σE = −ε dψ/dy|y=0 is calculated using Eq. (8) and
the value of ζ given by Eq. (36). Finally, the fraction of charge-
able sites, Γ , is determined which is consistent with ζ , the value
of σE at the same conditions, and which satisfies Eq. (16), where
the remaining parameters take the following values: pKa = 6.57
and C = 3.0 F/m2 [10,11]. The value of pH measured in the bulk
(pH 8.25) is used in the calculation for Γ . In the thin EDL regime,
bulk pH is an accurate estimate of the local pH in proximity of the
surface [11].

In Fig. 3 computed values of σE and Γ are plotted, that are con-
sistent with the given relation for ζ . The values of zeta potential,
surface charge density and fraction of chargeable sites in Fig. 3 are
used in the calculations in Section 4.

4. Theoretical results for constant BGE well concentration, and
varying channel depth

In this section, model predictions are presented for fixed well
ion concentration but variable channel depth. In the follow-up pa-
per (Part II), predictions are presented for fixed depth and variable
ion density. These two cases are presented separately because ion
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Fig. 4. Values of p and Ω , defined in Eq. (9), for varying degrees of EDL overlap.
Shown are results for specified ζ (BC I). Choosing one of the other two bound-
ary conditions discussed in this paper yields similar profiles of p and Ω (data not
shown).

density in the wells directly affects zeta potential, ion mobility,
pH, etc. Thus, results in this paper (Part I) are consistent with
conditions (experiments) where the surface characteristics remain
constant (specified well concentration). Results in Part II are rep-
resentative of measurements where surface characteristics (zeta
potential, surface charge, etc.) change due to changes in the con-
centration in the wells, at constant channel depth. Exploring both
is useful as these are perhaps the two most important variables
that can be controlled in experiments.

Channel depth is varied from the non-overlapped EDL regime
to strong EDL overlap. Well concentration is fixed to 1 mM sodium
borate (the background electrolyte, BGE). (See Section 4 in the sec-
ond of Part II for a detailed description of the buffer.) This weak
electrolyte is commonly used for buffering, has a relatively high
pH 8.25, and a Debye length λD ≈ 9.6 nm. The three boundary con-
ditions presented in Section 2B reflect three assumptions regarding
surface conditions. It is shown here that the model presented in
this paper provides very consistent predictions independently of
choice of boundary condition; on the other hand, different choices
in boundary conditions lead to qualitatively different predictions
when existing thick-EDL models are used.

In this section the aims are: (1) use the model of Section 2
to make predictions for nanochannels based on measured param-
eters in thin EDL regimes; (2) compare predictions obtained using
the three boundary conditions discussed; and (3) compare model
predictions to results obtained by the existing theory for thick
EDLs [1,4–8,10,30,31]. To these aims values of the parameters (zeta
potential, surface charge density, fraction of chargeable sites) are
adopted that give consistent measurable quantities for all models
in the thin EDL regime (as discussed in Section 3).

For strong degree of overlap, the EDL is predominantly made
up of counter-ions, while co-ions are depleted from the channel.
The functions p and Ω in Eq. (9) are summarized in Fig. 4 ver-
sus nondimensional channel depth for a specified ζ and rwell = 1.
As EDLs overlap, n+ becomes larger than n− , and Ω saturates to
its limiting value, Ω → 1. Similarly, p (describing centerline ion
density relative to the well) increases with stronger overlap. Both
parameters are strong functions of ψc and thus of the degree of
overlap. In the thin-EDL regime, d/λD � 1, ψc ≈ 0 so Ω → 0 and
p → 2, which agrees well with existing models. For stronger over-
lap, d/λD < 7, both p and Ω depart strongly from the thin-EDL
limit and current models. Choosing an alternative boundary condi-
tion has negligible affect on p and Ω (plots not shown).
Fig. 5. Values of predicted electric potential at the shear plane (ζ ) as a function of
the ratio of the channel depth to the Debye thickness (d/λD). Results for the model
described in Section 2 are shown with open symbols: specified ζ (E); specified
σE (1); and charge regulation (P). Results for the thick EDL model are shown with
solid symbols: specified ζ (F); specified σE (2); and charge regulation (Q). Inset:
predicted values of zeta potential in conditions of strong EDL overlap.

Next, predictions are presented based on the current model and
are compared to existing thick EDL models. Values of zeta poten-
tial as a function of d/λD are plotted in Fig. 5. There are six theory
curves. Focus first on predictions obtained using the model pro-
posed here (open symbols). Results for specified ζ (BC I) obviously
fall onto the horizontal line where ζ = −156 mV (open diamonds).
In BC II (fixed charge density and therefore fixed electric field at
the wall) EDL overlap due to smaller channel depths implies larger
values of ζ , ion density, and capacitive energy (open squares). EDL
potential gradients are here “stronger,” but in fact, for this range of
channel depths, the increase in ζ is small. Predictions of ζ for BC II
coincide with BC I (ζ = −156 mV) for d/λD > 1 as expected (re-
call the choice of σE = −39 mC/m2 corresponds to ζ = −156 mV
for the thin EDL limit). For d/λD < 1, the predicted zeta poten-
tial magnitude increases smoothly to a maximum of ∼1.07 times
its thin EDL value at d/λD = 0.13. Predictions of zeta potential us-
ing the charge regulation boundary condition (BC III) are shown
with open triangles. The predicted zeta potential at d/λD = 0.13
is ∼1.04 times its thin-EDL value. In BC III, the strength of the
electric field at the shear plane is a function of the local pH and
surface charge. Here, as channel depth decreases, local pH at the
shear plane slightly decreases (to pH 8.1) but not enough to change
Γ for this buffered, relatively high pH regime. This implies a de-
crease of σE (see Fig. 6) by only 10% and so the behavior is similar
to BC II.

Now compare predictions using the proposed model to results
from simulations using the existing thick EDL models described by
Burgreen and Nakache [6] (see discussion in Section 1 and below
Eqs. (8) and (9)). The results are shown in Fig. 5 with solid sym-
bols. Predictions are shown that are based on this assumption and
the three wall boundary conditions. For the “existing EDL” model,
the centerline ion densities in the nanochannel are constrained to
the specified value of 1 mM. This constraint directly affects the
amount of surface net charge that can be shielded by counteri-
ons. At d/λD = 0.46 the predicted zeta potential for the existing
model is approximately −259 mV (i.e., 1.7 times the thin EDL
value). Furthermore, departure from thin EDL limit occurs at much
larger channel depths (d/λD ≈ 7) than for the proposed model.
These results further highlight and exemplify the difference be-
tween predictions based on the proposed model and the classical
thick EDL model. In the proposed model, counter-ions are recruited
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Fig. 6. Values of predicted surface charge density (σE) as a function of the ratio of
the channel depth to the Debye thickness (d/λD). Results for the model described
in Section 2 are shown with open symbols: specified ζ (E); specified σE (1); and
charge regulation (P). Results for the thick EDL model are shown with solid sym-
bols: specified ζ (E); specified σE (1); and charge regulation (Q). Inset: predicted
values of σE in conditions of strong EDL overlap.

from the wells to satisfy axial equilibrium. This well-to-channel
equilibrium requires an increase of free counter ion density in the
nanochannel. The proposed model also calculates electric potential
self-consistently to determine ψc and nc± . Similar trends are seen
for the charge regulation boundary condition.

Predicted values of the surface charge density as a function
of channel depth are shown in Fig. 6. Once again, focus first on
the proposed model (open symbols). As expected, for d/λD > 1,
σE is approximately −39 mC/m2 for all three choices of bound-
ary conditions (BCs I–III). For d/λD < 1, the electric field at the
wall decreases, resulting in reduced surface charge density (except
of course when σE is held constant). For comparison, also plot-
ted in Fig. 6 are predictions based on existing thick EDL model
(solid symbols). Again, it can be seen that specification of charge
density at the centerline results in unphysically large deviations
in predicted surface charge. Clearly the thick EDL model strongly
overpredicts the differences between BCs I–III.

In Fig. 7 predictions are shown of area-averaged electroosmotic
flow velocity (Eq. (29)) scaled by the Helmholtz–Smoluchowski ve-
locity scale, 〈uEOF〉/εExζ/μ. For d/λD > 1, 〈uEOF〉 approaches uHS
as expected for all models. The proposed model predictions are
shown with open symbols. Predictions of 〈uEOF〉 are nearly indis-
tinguishable at all channel depths studied, and for the three bound-
ary conditions (BCs I–III). In strong EDL overlap conditions, elec-
tric potentials and observable quantities like area-averaged EOF
are strongly influenced by the influx of counter-ions, as dictated
by well-to-channel axial equilibrium. Predictions based on exist-
ing thick EDL theory (shown with solid symbols) are qualitatively
different due to the (unphysical) constraint of fixed centerline ion
densities relative to the well ion density.

The proposed model suggests that measurements made in thin
EDL regime can be used to make unambiguous predictions of area-
averaged EOF in nanochannels. This is important as it implies that
there is nearly a one-to-one correlation between this observable
quantity and the ion distributions in the channel (for fixed ion
density in the wells).

Fig. 8 shows predicted values of area-averaged ionic current
density (ratio of total current per area per electric field) as a func-
tion of d/λD. Again, predictions from the existing thick EDL model
are shown as a comparison. The model proposed here shows con-
sistent values, largely insensitive to the wall boundary conditions
assumed. This is not the case for the existing thick EDL model
Fig. 7. Predictions of area-averaged electroosmotic flow as a function of the ratio
of the channel depth to the Debye thickness (d/λD), at constant BGE ion density
(cBGE = 1 mM). Results for the model described in Section 2 are shown with open
symbols: specified ζ (E); specified σE (1); and charge regulation (P). Results for
the thick EDL model are shown with solid symbols: specified ζ (F); specified σE

(2); and charge regulation (Q). Inset: predicted values of electroosmotic velocity in
conditions of strong EDL overlap.

Fig. 8. Predictions of area-averaged ionic current density as a function of the ratio
of the channel depth to the Debye thickness (d/λD), at constant BGE ion density
(cBGE = 1 mM). Results for the model described in Section 2 are shown with open
symbols: specified ζ (E); specified σE (1); and charge regulation (P). Results for
the thick EDL model are shown with solid symbols: specified ζ (F); specified σE

(2); and charge regulation (Q). Inset: predicted values of ionic current in conditions
of strong EDL overlap. The dashed line is a plot of the estimated conductivity by
Schoch et al., given in Eq. (37).

where, in conditions of overlap, predicted current density is a
strong function of the surface condition. For the parameter range
studied, current density for specified surface charge density can
be almost two orders of magnitude larger than for specified zeta
potential. This again has important consequences in reconciling ex-
perimental measurements and inferences on the physics in the
nanochannel.

Predictions based on the model proposed here are in good
agreement with the ad hoc expression for ionic current density
proposed by Schoch et al. [4,5]. As mentioned in the introduction
to this paper, Schoch et al. estimate conductivity as the sum of
two terms: the expected bulk conductivity, and the conductivity of
excess counterions due to the presence net surface charges. Their
expression is written below expressed in units of conductivity:
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Fig. 9. Predicted values of the ratio of advective current to ionic conduction current
as a function of the ratio of the channel depth to the Debye thickness (d/λD). Re-
sults for the model described in Section 2 are shown with open symbols: specified
ζ (E); specified σE (1); and charge regulation (P). Dashed-curve is the predicted
ratio of advective current to ionic conduction current when variations in mobility
are included (see Eq. (32)).

i

Ex
= 103(ν+ + ν−)cBGENAe + (2ν+)

σE

2d
. (37)

In Fig. 8, Eq. (37) is plotted with a dashed-curve, where σE is set
to the value −53 mC/m2 and d is varied. Equation (37) closely
reproduces the simulated trends, and yields current density val-
ues which are consistent with simulations. An important reason
for which this simple expression is successful is that advection
current is only a small fraction of conduction even in strongly
overlapped EDLs (Fig. 9). A second reason for this is that, at full
well-to-channel equilibrium (and zeta potentials higher than the
thermal voltage [23]), the shielding of wall charge (e.g., at high
zeta potential) is mostly due the recruitment of counter ions from
the well, while expulsion of co-ions is less important.

In Part II it is shown that Fig. 9 (left axis) is the relative contri-
bution to current from advection and electromigration (again, for
long thin channels where diffusive current is negligible). For large
d/λD, current is dominated by electromigration of ions outside of
the EDL (at well bulk conductivity). For d/λD ≈ 2.3 and lower, two
effects contribute to a rise in current density: increased ion den-
sity due to EDL and advection of charge due to electroosmosis.
Again it is possible to see that the (slight) effects of the three
model assumptions are confined to extreme conditions of over-
lap, d/λD ∼ 0.1. Note there is an optimum at d/λD ≈ 2.3. Advective
currents are determined by the competition between the electroos-
motic flow (which reduces in strength as the channel depth is
decreased since (ζ − ψc) → 0), and free-charge density which in-
creases due to overlap. Ion advection does not dominate Ohmic
current for any of the cases studied here. For d/λD < 2.3, EOF con-
tribution to total current become less important than the effect of
increased conductivity (and associated Ohmic current) due to re-
cruitment of counterions from the well. Finally, Fig. 9 is a plot of
current density calculated using Eq. (32) divided by current den-
sity calculated using the less accurate Eq. (33). The effect of ionic
strength on ionic current density measurements is described in de-
tail in Part II. For now, note that the effect of the variation and
non-uniformity of local ionic strength on mobility cannot be ne-
glected in nanochannels. Predicted current density using values of
mobilities at the channel centerline ion density (no y dependence)
are consistently larger than those calculated using the correct val-
ues of local ionic strength (y dependence). Differences for the
specific case studied here are between 12% and 16%. When the
electrolyte concentration in the well is 1 mM (as in these calcula-
tions), we would expect ion mobilities to be approximately equal
to their value for thin EDL conditions and infinite-dilution (Fig. 2).
This is not the case for significant EDL overlap because the local
ionic strength within the nanochannel is larger than in the wells.
Ion mobility in nanochannels is reduced due to the increases in
local ion density. That is, well-to-channel equilibrium dictates that
ions in nanochannels should be relatively “slow.”

Overall, the results of this section show that a self-consistent
treatment of well-to-nanochannel electrochemical equilibrium
yields result that are largely independent of the boundary con-
ditions studied, over the range of interest here. For example, BCs
II and III predict respective increases in zeta by 7% and 4%, rela-
tive to thin EDL value; while BC I predicts surface charge decrease
by 10%. There is therefore an approximately one-to-one correlation
between two important observable quantities (flow and current)
and the ion distributions in the channel and wall. This consistency
is important as it suggests that BCs I, II, and III are all useful in pre-
dicting nanochannel transport. The results also show that existing
thick EDL models based on Burgreen and Nakache type formula-
tions (which do not self consistently account for channel-to-well
equilibrium) incorrectly predict strong differences in EOF and in
ionic currents depending on choice of boundary condition.

5. Conclusions and recommendations

In this paper a physicochemical model is presented which
self-consistently treats the electrochemical equilibrium between
a channel and its connecting wells. The set of equations which
is derived is new and it is used to form predictions for elec-
tric potential, electroosmotic flow, and ionic current in long, thin
nanochannels. This model can be used to make predictions on
nanochannel transport (including strongly overlapped EDLs) based
on electrokinetic parameters measured in microchannels (i.e., thin
EDL conditions). Predictions using this model are largely insen-
sitive to the choice among the following three boundary condi-
tions: specified zeta potential, specified surface charge density, and
charge regulation. Model predictions have five important features.
First, the theoretical description hinges on the fact that ion densi-
ties within nanochannels are not necessarily equal to those of the
wells used to introduce the solution to the channels themselves.
In fact nanochannel “bulk” concentrations (centerline concentra-
tions) must be calculated self-consistently imposing equilibrium
between solutions in the wells and within the nanochannel. The
electrostatic potential field depends on three parameters: the ra-
tio of ion density in the channel to ion density in the wells; the
ratio of free-charge density to bulk ion density within the chan-
nel; and, a modified Debye–Hückel thickness (λD/

√
p̃), which is

the relevant scale for shielding of surface net charge. Second, the
model shows ionic mobilities should be a strong function of con-
centration when the background electrolyte ionic strength is suf-
ficiently large (�1 mM). Ionic mobilities must then be corrected
to account for these differences (using for example an extended
Debye–Hückel theory). Third, in conditions of strong EDL overlap,
electroosmosis (bulk flow) contributes only a small fraction of the
net ionic current; most of the observable current is due to con-
duction in conditions of increased counterion density. Fourth, the
model yields guidelines for evaluating the strength and spatial ex-
tent of end effects including gradients of net charge, potential, and
pressure. Fifth, the model shows that cross-section-area-averaged
nanochannel charge (including wall charge) is not electrically neu-
tral as axial fields are required for channel-to-well electrochemical
equilibrium. Overall, the model shows that influx of counter ion
concentration in the nanochannel (and, to a lesser degree, efflux
of co-ions), contributes to improved screening of the wall charge
and a lowering of ion mobility. This results in more moderate pre-
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dictions of center line potential, electroosmotic flow, and current
density relative to most models in the literature.

In the second of this two-paper series (Part II), the effect of
local ionic strength and pH on ion mobility is explored in detail,
and an experimental validation of the model is provided.

Appendix A

Overall, global net neutrality for the system implies that free
net charge in the channel and wells balances all wall charges:

z f SchσE = e
∑

i

zi
(
Nwell

i + Ni
)

= zenwell+
(
2V well){1 + 1

d

V ch

V well
exp

(
− ez

kBT
ψc

)

×
d∫

0

exp

(
− ez

kB T
(ψ − ψc)

)
dy

− 1 − 1

d

V ch

V well
rwell exp

(
ez

kBT
ψc

)

×
d∫

0

exp

(
ez

kBT
(ψ − ψc)

)
dy

}
, (A.1)

here, for simplicity, it is assumed that well walls are neutral,
but this assumption does not qualitatively change the formulation,
where Sch and V ch are the surface area and volume of the channel,
respectively, V well is the volume of one of two identical wells, Ni

is the number of free charges in solution within the channel, and
Nwell

i is the number of free charges in the wells. Equation (A.1) can
be rewritten as

rwell = 1 + 1
d

V ch

V well exp(− ez
kB T ψc)

∫ d
0 exp(− ez

kB T (ψ − ψc))dy

1 + 1
d

V ch

V well exp( ez
kB T ψc)

∫ d
0 exp( ez

kB T (ψ − ψc))dy

−
Sch

2V well
z f σE

zenwell+

1 + 1
d

V ch

V well exp( ez
kB T ψc)

∫ d
0 exp( ez

kB T (ψ − ψc))dy
. (A.2)

where rwell is a function of the electric potential at the center-
line, the bulk ion concentration in the wells, the surface charge
density at the channel walls, and of the relative sizes of the chan-
nel and the wells. In fact, when the number of electrolyte ions is
large compared to the number of net wall charges (z f SwellσE �
zenwell+ V well), and EDLs are not overlapped (ψc ≈ 0): rwell ≈ 1,
p = 2 and Ω = 0. Otherwise, when EDLs overlap

rwell ≈ 1 + 1
d

V ch

V well exp(− ez
kB T ψc)

∫ d
0 exp(− ez

kB T (ψ −ψc))dy

1 + 1
d

V ch

V well exp( ez
kB T ψc)

∫ d
0 exp( ez

kB T (ψ −ψc))dy
> 1. (A.3)

Equation (A.2) is a more accurate and general constraint than the
two separate conditions applied by Conlisk et al. [20,21]. In ex-
periments rwell is nearly identical to unity (as adopted by Conlisk
et al.). However, rwell is different than unity because of the re-
quired electro-chemical equilibrium between the nanochannel and
the well. Physically there must be a net deficit of counter charge in
the well to (and near the nanochannel inlet or outlet) to maintain
the potential difference ψwell − ψ(x). For large wells and shallow
channels, rwell ∼ 1 is a very good approximation for estimating
observable quantities, which we will adopt. However, Eq. (A.2) is
useful as a strict constraint and reminder that channel-well equi-
librium requires that rwell not be identically equal to unity.
Appendix B

Sections 2.1–2.5 established that chemical equilibrium between
a nanochannel and end-channel wells implies nonzero, axial ion
and potential gradients. For simplicity, the assumption was made
of long, thin channel regions away from inlets/outlets in estimating
net bulk and ion flow integrals. A fair question is: How far inside
the channel do such gradients persist? In fact, end effects are im-
portant inside the channel only for axial distances on the order of
the Debye length. An exact expression for this distance xd is given
below:

xd

λD
= 2eψ̃c/2

(e−ψ̃c + rwelleψ̃c)1/2

(−1 + e−ψ̃c

1 − eψ̃c

)1/2

× ln
[
e−ψ̃c/2 + (−1 + e−ψ̃c

)1/2]
. (B.1)

This expression is derived by first integrating the axial com-
ponent of the Poisson equation along the centerline from xd (a
location far into the channel where ∂ψ/∂x|xd = 0) to a position
x in the direction of the well (0 � x � xd, see Fig. 1). Then in-
tegrate a second time along the centerline from x = 0 where
ψ(x = 0) = ψwell ≡ 0 to xd. Fig. 10 is a plot of the (dimensionless)
axial distance over which the electric potential reaches its value
at the centerline as a function of d/λD, at a fixed ion concentra-
tions in the wells, for the three boundary conditions described. The
curve shows that at most the axial distance xd is slightly larger
than the Debye length, λD. A maximum occurs near d/λD ≈ 1,
where xd/λD ≈ 1.3. For d/λD > 1, xd decreases because the poten-
tial at the centerline, ψc, decays to zero as channel depth increases.
The strong overlap (d/λD < 1) regime is characterized by weak
shielding of surface charges, and by large (negative) values of the
transverse electric potential at the center-line. Large ψc therefore
strongly affect the axial electric field and can also impose a short
axial length scale over which transverse equilibrium is attained.
Note assumptions regarding the wall boundary conditions do not
significantly affect xd.

At equilibrium, liquid velocity is zero everywhere, u = 0. There-
fore, there exists an axial osmotic pressure gradient that balances
the axial variation of electric potential from ψwell to ψc along
the centerline. As already discussed, variation occurs over a length

Fig. 10. Dimensionless axial distance (xd/λD) over which the electric potential
reaches its value at the centerline of the nanochannel (ψc) as a function of the ra-
tio of the channel depth to the Debye thickness (d/λD) at a fixed BGE concentration
(1 mM).
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scale on the order of the Debye length. For a binary, symmetric
electrolyte, the equilibrium pressure distribution is given by

∂ p

∂x
= ρE

∂ψ

∂x
=

[
e
∑

i

zin
well
i exp

(
− ezi

kBT
ψ(x)

)]
∂ψ

∂x
(B.2)

so that
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(
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+ rwell exp

(
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kBT
ψc

)]}
. (B.3)

The pressure distribution (B.1) does not cause liquid flow. As we
have seen, flow is achievable in the presence of an externally ap-
plied axial electric field (electroosmotic flow) or in the presence of
a net pressure difference between channel wells. For a channel of
uniform cross section and wells with equal ion density, p(x, y) is
symmetric along x and so exerts no net axial force on the liquid in
the nanochannel.

Lastly, an expression is presented for area-averaged “net” charge
near the end of the nanochannel, where (fixed) wall charge is
added to charge in the bulk of the channel:

2σE(2d + w) + ρE(2dw)

= 2σE(2d + w) + (2dw)
(
eznwell+

)
×

[
exp

(
− ez

kBT
ψ(x)

)
− exp

(
ez

kBT
ψ(x)

)]
. (B.4)

The expression shows that the sum of charge along the channel
cross section (including the wall), 2σE(2d + w) + ρE(2dw), is not
necessarily zero as been assumed by previous models [17,19–22,
49]. Area-averaged charge (including wall) is zero only for regions
far from the inlet.

Appendix C

Note the integrand in Eq. (13) has an integrable singularity
when ψ̃ = 0. To evaluate the integral numerically we divide the in-
tegration range into [0, ψ̃w ] = [0, εψ̃ ] + [εψ̃ , ψ̃w ], where |εψ̃ | � 1,
and expand the integrand about εψ̃ to obtain an approximate ex-

pression for the integral close to the point ψ̃ = 0:

ε
ψ̃∫

0

{
2 sinh2

(
ψ̃

2

)
− Ω̃ · sinh(ψ̃)

}−1/2

dψ̃

≈ 2

(
−εψ̃

Ω̃

)1/2

+ 1

6

(
−εψ̃

Ω̃

)3/2

+ O

[(
−εψ̃
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)5/2]
. (C.1)
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