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a b s t r a c t

In this paper, by the integration of design methodology theories with evolutionary computation, a new
design system is developed to evolve preferred designs on complex marbling patterns using interactive
‘perceptual selection’. The system is formulated in a way to assist the productive–deductive–inductive
design reasoning process of the users. Therefore, complex mathematical functions do not cognitively
overload the designers, who are released for more critical tasks of aesthetic assessment and new design
rules induction. With the implementation on a graphics-processing unit (GPU), real-time complex
marbling patterns can be created by the system. The system encourages creativity in the design process
and accelerates new design generation. In addition, the resulting patterns fulfil the textile industry
requirements of repeat and can be output as vector images.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Originating from Darwin's theory of natural selection, evolu-
tionary computational techniques are capable of solving long-
standing complex optimisation problems (Kicinger et al., 2005;
Corne and Bentley, 2001). There are also reported applications in
the literature for evolutionary creative designs (Gero, 2002; Lewis,
2008). This paper aims to integrate design research theories with
evolutionary computation to propose an effective computer
system for creative marbling textile designs.

Design research theories cover a large variety of topics (Kroes,
2002; Darke, 1979; Akin and Lin, 1995; Lawson, 2005; Thomas and
Carroll, 1979; Cross, 1984). Among all of them, a strong process
orientation is observed in the design methodology literature (Kroes,
2002). Design process is started from the perception of design
needs and terminated in a final description of a particular design
configuration (Cross, 1984; Finkelstein and Finkelstein, 1983), as
illustrated in Fig. 1. Each stage of the design process is itself an
iterative sequence of the steps, sub-processes or operations (Zeng
and Cheng, 1991). Furthermore, the design process involves both
the concepts of population and evolution: multiple designs are
assessed and evaluated in the process; successful designs are
evolved from previous formulated design criteria or rules. From
a philosophical perspective, rational design is a cyclic, iterative

process of productive, deductive and inductive (PDI) reasoning
(March, 1976). Design generation, the core step in the design
process, is to seek certain characteristics in the form of a design
proposal to achieve the desired service, based on previous knowl-
edge and some general presuppositions. As depicted in Fig. 1, design
generation is accomplished by productive reasoning. After design
generation, the performance of the design proposal is deductively
predicted by the application of relevant theories to the particular
design proposal. Deductive reasoning is used in the design evalua-
tion and analysis stage. Next, the design and its expected character-
istics are inductively evaluated to generalise new and modified
suppositions for improved proposals in a new round of the design
cycle, which is accomplished by inductive reasoning.

As discussed, design process has a number of similar concepts
with evolutionary design. This paper aims to integrate productive–
deductive–inductive design reasoning with evolutionary computa-
tional techniques. Therefore, new designs may emerge and old ones
may receive new potential by simulating the iterative design
process as artificial evolution. A computer-aided marbling textile
design system built with mathematical marbling functions is used
to illustrate how the design process can be modelled as artificial
evolution, based on the PDI philosophical model of design reason-
ing. The mathematical functions are used to simulate the productive
reasoning in the design process for visualising results of various
marbling operations. Thus, designers would not be cognitively
overloaded in comprehending the mathematics but be released
for more critical tasks – those of the subjective assessment on the
aesthetic value of the work by deductive reasoning and of making
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the creative leap in inductive reasoning for generalising new
and successful rules. The main contributions of this paper are
summarised as follows:

1. This paper integrates design research theories with evolution-
ary computation to develop an effective computer system for
creative marbling textile designs. The system simulates itera-
tive PDI stages of the design process as artificial evolution, in
which designers and the system are responsible for different
reasoning processes in the loop (with reference to Fig. 1).

2. Mathematical marbling models are combined with evolution-
ary computation to create marbling textile patterns. To the best
of our knowledge, this method is the first and only evolutionary
marbling textile environment currently available. The evolu-
tionary computation is based on vector images, which is a
little-explored topic.

3. The method improves the mathematical marbling model
(Lu et al., 2012) in two respects. Firstly, two new pattern
functions are added to the mathematical marbling model.
Secondly, the resulting patterns fulfil the textile industry
requirements of repeat and can be output as vector images.

2. Related literature

2.1. Computer-aided textile design

Computer techniques are widely used in the textile modelling and
visualisation (Grishanov et al., 2011). Computer aided textile designs
can be classified into two categories. The first type is simple design
such as floral motifs, where designers develop the patterns directly
on machines or computer systems. The second type is complex
design, such as Shibori, Batik and marbling. The creation of such
complex design is obtained by experiment in laboratory. For example
of marbling, designers create astonishing vibrant patterns by drop-
ping colour paints onto a liquid surface and stirring the surface with
marbling tools. The generated marble pattern is then transferred to
the fabric by gently placing a cloth on top of the paints. Such
laboratory work on pattern design is time consuming and tedious
and places great demands on the designers' experience, skill and
effort. The created patterns are difficult to predict as they vary
depending on the chemical and physical properties of the materials
and the design process must restart from scratch should any mistake
be made. Traditional CAD systems scan the artwork obtained from
laboratory experiments, and reproduce the designs on CAD systems
with copy-and-paste editing and then introduce various repeat
structures and colourways by colour separation and recolouring
functions (Wilson, 2001). In short, the creation of complex textile
patterns still relies on manual experimental work. Traditional CAD
systems cannot aid such complex design generation. It is interesting
to note a few attempts recently on computer-simulated complex
dying and printing processes (Moimoto and Ono, 2010; Wyvill et al.,

2004; Shamey et al., 2005; Lu et al., 2012). For example, Akgun
(2004) developed a physical-based marbling system by numerically
solving complicated fluid flow equations. Real-time design of mar-
bling patterns by such physical simulation method is not possible
because the system must resolve the fluid equations for both the
velocity field and density field with a new set of parameters at each
time step; users have to wait for a long time to see the results.

2.2. Evolutionary design of textures and images

Evolutionary art uses evolutionary computation techniques to
evolve creative images or aesthetically pleasing structures (Lutton,
2006; Secretan et al., 2008; PBS, 2008). The evolutionary art
creation systems include genetic programming-like art systems
(Sims, 1991; Wiens and Ross, 2002; Machado and Cardoso, 2003;
Muni et al., 2006), agent-based art systems (McClintock and Yen,
2008; Unemi, 2002) and generative art systems and so on. The
genetic programming-like evolutionary method is widely used for
the design of raster images. It works as follows: the colour for each
pixel of the image is evaluated by its texture-space coordinate
under the mathematical formulae or symbolic expression (e.g. lisp
function, noise functions). The genotype consists of mathematical
functions and terminals. Terminals are usually the variables (x, y)
that correspond to the coordinates in the image grid. The pheno-
type is a raster image of size w� h (w and h are the width and
height of the image). To calculate the phenotype from the
genotype, the colour for each pixel is calculated as the function
value of the expression for each (x, y) coordinate. Although the
genetic programming art system is capable of generating images at
any resolution, it costs more space and computational time as the
size or resolution of the image increases.

Compared with raster images that operate on pixels, vector images
that operate on primitives like points, lines, curves and polygons have
a number of advantages, including small file size, scalability and ease
of editing. However, evolutionary design of vector images is a little-
explored topic. Only a couple of examples of genetic design using
vector images are known. den Heijer and Eiben (2012) proposed the
use of scalable vector graphics (SVG) to evolve representational
images from existing images. Bergen and Ross (2012) developed a
system called ‘JNetic’ to evolve sets of discrete geometric primitives
(points, lines, curves and polygons) to compose vector images.
However, these methods use evolutionary computation merely for
matching the visual aspects of a target image, rather than generating
new patterns. By contrast, the method proposed in this paper evolves
new textile patterns in the form of vector images.

3. System formulation

3.1. Mathematical marbling pattern functions

Mathematical models such as topological methods are used to
represent the textile structures (Grishanov et al., 2009). In this
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Fig. 1. Design process model and production–deduction–induction design reasoning.
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paper, mathematical marbling functions which are based on
topological computer graphics are used to simulate designers'
productive reasoning in the design of marble textiles. In conven-
tional marbling art (Maurer-Mathison, 1999), designers (marblers)
first place the background liquid in a tray and then drop or
sprinkle colour paints onto the liquid surface to create an initial
design. Next, marblers stir the surface using marbling tools, such
as a stylus, brushes and combs. Complex marbling designs emerge
as the marblers run the tools back and forth on the liquid surface.
Once the marblers are satisfied with the pattern created, they then
apply a sheet of paper or fabric on top of the paints to capture the
pattern.

Lu et al. (2012) presented mathematical marbling functions to
represent initial designs and five marbling operations including tine-
line, comb, wavy, circular tine-line and vortex. In order to increase
the diversity, two new functions of stylus and ripple are introduced
in this paper. A design system is developed using the seven defined
mathematical marbling functions as the generative representation.
Designers are allowed to visualise the marbling operation effects in
real time on computers. For easy reference, these functions are
recorded below and details can be found in Lu et al. (2012).

First of all, an initial design is created with a few paint drops. In
this paper, vector-based elements including points and lines are
used to represent the designs. Paint drops, represented as a series
of circles, are the basic shape in the initial design. Given an initial
paint drop at centre C0(x0, y0) with radius r0, the circle can be
approximated by an inscribed regular n-gon. The value of n is
chosen according to the radius of the paint drop. The points P(x, y)
on the circle are calculated by the following equations:

x¼ x0þr0 cos θ
y¼ y0þr0 sin θ

(
ð1Þ

where θ¼2πi/n (i¼0, 1,…, n�1) and n¼5r0.
Subsequently, additional paint drops are placed on the liquid

surface. The points on the original circle are deformed by the new
paint drops with radius r1 and are displaced radially from its
centre C1. The points P(x, y) are deformed to new position Q as
follows:

Q ¼ C1þðP�C1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr12=jP�C1jj2

q
ð2Þ

Once an initial design composed of a number of paint drops is
created, marblers use different tools to stir the liquid surfaces to
create patterns. These tools are the corresponding mathematical
functions of tine-line, comb, wavy, circular tine-line, vortex, stylus
and ripple. The inputs for each of these functions are the coordinates
of points P and corresponding parameters of the marbling functions
and the outputs are the points with new coordinates Q.

Tine-line pattern function is responsible for manipulating a
pattern by running tine-lines through it in any direction. It is
governed by

Q ¼ Pþ αλ
ðdþλÞM ð3aÞ

where the scalars α and λ control the maximum shift and
sharpness of the shift gradient. M is the unit vector in the direction
of the tine-line, which has a start point U(x, y) and an end point V
(x, y); N is a unit vector perpendicular to the line. M and N are
calculated from U and V of the tine-line. The distance from P to the
line is calculated by

d¼ jðP�UÞUNj: ð3bÞ

Comb pattern function is responsible for designing a pattern
by running evenly spaced multiple parallel tine-lines, which move

as a rigid assembly. As each tine-line has a mapping function (3a),
the number of mapping functions for the comb is the sum of all
the tine-lines. The computation time is substantially increased as
the number of tine-lines increases. Alternatively, a single function
is used to represent the displacement from the set of parallel tine-
lines as

d0 ¼ s=2�jf modðd; sÞ�s=2j: ð4Þ

U and V are the start point and end point of the first tine-line, d
is the distance from P to the line, and s is the spacing between the
tine-lines. In this way, the mapping function is computed only
once by replacing d in (3b) with d0 in (4), regardless of the number
of parallel tine-lines.

Wavy pattern function is responsible for generating wavy
patterns in any direction t. The mapping is represented as

Q ¼ Pþ f ðP U ð sin t; � cos tÞÞð cos t; sin tÞ; ð5Þ
where f is the sinusoidal function and its formula is f (x)¼A sin
(ωxþψ). A, ω and ψ represent the amplitude, wavelength and
phase, respectively.

Circular tine-line pattern function is responsible for designing
a circular tine-line pattern. Under this operation, points P are
mapped to Q by

Q ¼ CþðP�CÞ
cos ðβθÞ sin ðβθÞ

� sin ðβθÞ cos ðβθÞ

 !
; ð6aÞ

C(x, y) is the centre of the circular tine line, the angle subtended
at C is θ¼ l/(|P�C|), where the length of the displacement arc is
l¼αλ/(dþλ) and d¼ ||P�C|�r|. The parameter β controls the
direction of the circular tine-line pattern as follows:

β¼ �1 clockwise;
1 counter clockwise:

�
ð6bÞ

Vortex pattern function is responsible for designing vortices
patterns. It can be obtained using the same mapping function as
the circular tine-line (6a and 6b) except for the displacement term

d¼ jP�Cj: ð7Þ

Stylus pattern function is a tool to create freehand patterns,
such as delicate floral designs. Let U and V be the start and end
points of the stylus stroke and L be the line on which U and V lie.
In contrast to the tine-line operation where d is calculated as the
minimum distance from P to L, d is computed as the minimum
distance from P to the line segment UV. Let T be the perpendicular
projection of P onto L, then

d¼
jP�UjUN if T lies between U and V ;

minðPU ;PVÞ Otherwise:

(
ð8Þ

The mapping function is the same as the tine-line pattern
function (3a).

Ripple pattern function is a patterning tool used to create a
punctuated and undulating design, which looks like rippling
waves swaying back and forth on an ocean surface. With f
representing the sinusoidal function, the mapping function is
defined as:

Q ¼ Pþ f ðPy�PxÞ ð9Þ
Table 1 summarises the seven mathematical pattern functions

and the encoding parameters. Fig. 2 illustrates the seven pattern
functions; each function is applied once on the same initial state in
Fig. 2(a). Although tine-line has the same mapping function and
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parameters as stylus, similarly for the case of circular tine-line and
vortex, different results are generated. These seven functions can
be used together multiple times to create complex marbling textile
patterns.

3.2. System overview

The system is constructed based on the design process theory.
Design theory reveals that design is some kind of evolution instead
of a single instance of inspiration. Preferred designs evolve from
repeated trial-and-error practices approved by a designer's judge-
ment and collected through his experience. The PDI philosophical
model of rational design involves 3 iterative stages: productive
reasoning creates a novel composition; deductive reasoning pre-
dicts and evaluates design performance; and inductive reasoning
accumulates habitual notions and evolves and generalises rules for
improved designs. The mathematical functions presented in
Section 3.1 accomplish the production stage because they can
create and visualise pattern designs instantly on computers. The
next essential step of the design process is the evaluation of
designs by deductive reasoning. It is preferable that human artists
or designers, instead of computers, carry out the design evaluation
because artistic evaluation is often subjective and typically based
on aesthetic appeal (Bentley, 1999). By comparing different
designs, designers accumulate rules and modify compositions by
inductive reasoning, for improved designs in the next cycle of the
process. In this stage, a population of diverse designs is necessary
for designers to induce rules for the preferred pattern creation.

The population concept and the iterative design improvement
favour modelling design activity as an evolution process. In this
paper, an evolutionary design system is developed to create
marble textile patterns, enabling the ‘evolution’ of pattern designs
using interactive ‘perceptual selection’. The following subsection
describe in detail the design representation, design generation
with 5 genetic operations (random alteration, function recombi-
nation, swapping, changing initial state, and lock and undo) and
design evolution. The design generation and design evolution are
formulated according to the design practices and design process
theory, thus to encourage creativity in design and accelerate the
generation of new designs. Fig. 3 shows the workflow of the
marbling textile design generation.

Step 1: Generate an initial population of individual designs
with a population size 9.
Step 2: User evaluates the aesthetic performance and selects
preferred designs.
Step 3: Generate new designs using operations: random altera-
tion, function recombination, swapping, or changing initial state,
sometimes apply with lock function.
Step 4: Repeat the process from Step 2 until the user is satisfied
with the generated designs.

3.3. Design representation

The mathematical functions described in Section 3.1 are power-
ful and flexible tools for marble pattern design. As shown in Fig. 2,
the final shape of a pattern is determined by both the initial state
and the sequence of marbling operations executed onto the initial
design. The representation of individual marble patterns consists
of (a) terminals and (b) a set of pattern functions, as shown in
Fig. 4. Terminals are the initial design, which include points and
lines. The second part of the design representation is a sequence of
pattern functions with their parameter values. The value range and
data type of each parameter for the seven pattern functions
(Table 1) are shown in Table 2.

Users can decide the number of pattern functions to apply on
the initial design. A newmarbling pattern, in vector images, can be

Fig. 2. (a) An initial state, (b) tine-line result on the initial state, (c) comb result on the initial state, (d) wavy result on the initial state, (e) circular tine-line result on the initial
state, (f) vortex result on the initial state, (g) stylus result on the initial state, and (h) ripple result on the initial state.

Table 1
Functions and their corresponding parameters.

Operation Corresponding parameters

Tine-line α, λ, U, V
Comb α, λ, U, V, s
Wavy A, ω, ψ, t
Circular tine-line α, λ, r, C, β
Vortex α, λ, r, C, β
Stylus α, λ, U, V
Ripple A, ω, ψ
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created by applying the set of pattern functions to the initial state.
Each point in the initial state is transformed from its current
position to a new position defined by the function value of the
relevant mathematical function. Fig. 5 shows an example of (a) an
initial state, (c) a set of 10 pattern functions and (b) the resulting
pattern.

3.4. Population size and initial population

In a design process, particularly in the early stages, alternative
ideas of design should be presented. Designers should consider
different proposals and iteratively modify the designs in order to
decide on the best solution to the design problem. In the proposed
system, users work collaboratively with the system. A reasonable
response time is necessary for any interactive design system. More
computation time is required with an increasing number of indivi-
duals or increasing complexity of individual designs, thus user may
need to wait for a long time to see the designs. Moreover, interactive
design systems would not prefer a large population size because of
the size constraint of human–computer interface. It is also because
user may be cognitively overloaded for assessing a large number of
designs. Alternatively, a small population size has the drawback of
limited coverage of the search space. As suggested by Bentley (1999),
users can quickly judge all the individuals in every generation by
using population size less than 10. To achieve a good balance
between the quality of the solution and user requirements in terms
of response time, user interface and user fatigue, a 3-by-3 grid layout
with population size of nine is chosen (see Fig. 12).

Random initial population is used in most evolutionary design
systems reported in the literature. In this paper, two methods are
adopted to generate the initial population. One is by random
generation and the other is by loading existing successful designs,
which can be developed by the interactive mathematical marbling
systems (Lu et al., 2012). Such formulations of the initial popula-
tion agree with the design practice that designers are often asked
to adapt and develop, based on ideas or existing designs from their
customers.

3.5. Design generation

In evolutionary computation, genetic operators such as cross-
over and mutation are used to introduce variations to the popula-
tion and reproduce a new generation of individuals, which imitate
biological evolution. The method of design is analogous to evolu-
tion in nature that new designs are created by introducing some-
thing ‘new’ to what already exists. With reference to the design
presentation (Section 3.3), new designs can be created by altering
either the terminals part or the pattern function part. We propose
four operations, including random alteration, function recombina-
tion, swapping and changing initial state to simulate design rules
for generating new designs. The random alterations as well as the
function recombination operations create new designs by intro-
ducing variations to the pattern function part of the individuals.
Comparatively, the swapping and the changing initial state opera-
tions introduce variations to the terminals part (i.e. initial state)
instead of the pattern function part. Two function tools ‘lock’ and
‘undo’ are developed to support the design operations.

3.5.1. Random alteration
In evolutionary computation, mutation operator is used to

guarantee that the new generation is not simply a mixture of
inherited characters. Similarly, a ‘random alteration’ is developed
in our system to introduce variations to any selected designs.

Initial Generation
( 9 individuals)

User Evaluation

New Designs

Finish

No

Yes

Function
Recombination

Swapping

Changing initial state

‘Lock’ and ‘Undo’

Random Alteration

+

Design Operations

Fig. 3. The workflow of marbling textile pattern design generation.

Terminals
recording the initial state

Functions
A set of pattern functions+

Fig. 4. Representation of a design by concatenating the terminals part and the
functions part.

Table 2
The parameter value range and data type.

Parameter Value range Type

Α [80, 200] Integer
λ [8, 30] Integer
U(x,y) [(0, 0),(800, 800)] (integer, integer)
V(x,y) [(0, 0),(800, 800)] (integer, integer)
S [40, 160] Integer
A [3, 50] Integer
ω [0.03, 0.3] Float
ψ [0.0, 2π] Float
T [0.0, 2π] Float
R [10, 200] Integer
C(x,y) [(0, 0),(800, 800)] (integer, integer)
Β �1/1 Integer
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The operation is similar to uniform mutation operator of tradi-
tional evolutionary algorithms, the pattern function of selected
design is altered by replacing its parameters with another set of
parameters. The new set of parameters is randomly generated
with respect to its valid ranges, as shown in Table 2. Otherwise, the
pattern function is copied without any change. Fig. 6 shows an
example of random alteration; the pattern in Fig. 6(a) is changed
to the pattern in Fig. 6(b) and the parameter values of the pattern
functions for the two patterns are listed in Table 3.

3.5.2. Function recombination
In evolutionary computation, crossover is used to mix the

genes of two selected parents to create two offspring. Following
the similar concept of genetic crossover, a ‘function recombination’
operator is developed to exchange some pattern functions of two
selected parents at a randomly selected position. A recombination

result is shown in Fig. 7 where the exchange of function parameter
values is shown in Fig. 8.

If more than two designs are selected, a scheme is needed to
match two individuals for the creation of new designs. In evolu-
tionary computation, the matching is accomplished by mating
operator, which randomly matches any two individuals based on
the fitness values of the individuals. Therefore, some individuals
may be selected more than once whereas some may not be
selected at all. To give users more control over the design process,
we reduce the level of randomness. Moreover, to ensure diversity
of the designs, we consider as many different possible combina-
tions of the selected individuals as possible. To do so, assuming n
individuals (designs) are selected, the total number of possible
combinations is C2

n reproducing 2C2
n new designs. In our method,

all possible combinations are included in the recombination
operation. If 2C2

n is a value larger than the population size, the
first nine results are displayed. Users usually select the most

Pattern Functions

1. Tine-line 2. Tine-line 3. Vortex 4. Circular
tine-line

5. Circular
tine-line 6. Vortex 7. Vortex 8. Circular

tine-line
9. Circular
tine-line 10. Vortex

Fig. 5. (a) Is the initial state of the pattern, (b) is the resulting pattern, which is obtained by applying the set of pattern functions in (c) to the initial state.

Fig. 6. Random alteration: pattern in (a) is altered to pattern in (b).
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preferred ones first, then the less preferred ones. Thus, the
recombination results of the most preferred ones can often be
retained as a new population of designs.

3.5.3. Swapping head and tail
Swapping operation has similar concept as the function recom-

bination operation; the selected designs will swap their initial
states (head) and pattern function part (tail), as illustrated in Fig. 9.

Swapping is applied in a similar manner as recombination to
ensure wide coverage of different possible combinations between
selected designs. The operation is analogue to the fixed position
crossover operator in traditional evolutionary computation.

3.5.4. Changing initial state
As mentioned earlier, pattern shape is determined by both its

initial state and the pattern functions used. Apart from introducing

Table 3
The parameter values of the pattern functions for the two mutation patterns in Fig. 5.

Pattern (a) Pattern (b)

1. Tine-line (100, 20, [473, 669], [273, 242]) (100, 20, [473, 669], [273, 242])
2. Stylus (106, 20, [598, 25], [122, 784]) (106, 20, [598, 25], [122, 784])
3. Circular tine-line (104, 15, 130, [369, 204], 1) (104, 15, 130, [369, 204], 1)
4. Circular tine-line (105, 13, 10, [297, 738], �1) (132, 8, 80, [455, 551], 1)
5. Circular tine-line (106, 13, 20, [538, 376], �1) (146, 9, 88, [163, 575], 1)

Fig. 7. Function recombination: (a) design 1 pattern; (b) design 2 pattern; (c) the resulting new design 1 pattern; and (d) the resulting new design 2 pattern.

Design 1 Design 2

New Design 1 New Design 2

Comb
(180, 15, (0,0), (0,600), 160)

Comb
(180, 8, (800,0), (0,0), 160)

Wavy
(19, 0.03, 0, 0, 45)

Comb
(185, 15, (0,160), (800,160), 160)

Comb
(180, 8, (800,0), (0,0), 160)

Comb
(185, 15, (0,160), (800,160), 160)

Comb
(180, 15, (0,0), (0,600), 160)

Wavy
(19, 0.03, 0, 0, 45)

Crossover point Crossover point

Fig. 8. Schematic illustration of function recombination operation.
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changes to the pattern functions, new designs can be derived by
introducing variations to the initial design. Users can use the
‘changing initial state’ tool to replace the initial state of selected
designs with a new one. Designers can adapt existing designs or
ideas, from which to derive new designs. This is a common
practice in design discipline. Fig. 10 shows the resulting patterns
from two initial designs using the same set of pattern functions, in
which both ripple and wavy functions are applied.

3.5.5. Lock and undo functions
In supporting the design, two functions named ‘Lock’ and

‘Undo’ are introduced. In recombination and swapping operations,
all the individuals in the current population are allowed to join in
the selection process and thus, all individuals would be possibly
changed. The ‘lock’ function is provided for users to lock individual
designs in the current population. The ‘lock’ mimics the elitist
strategy (Back and Hoffmeister, 1991) in evolutionary computa-
tion. In avoiding the loss of good individuals in the evolution
process, the elitist strategy preserves good genes for later genera-
tions. In our system, the locked design will not be changed in the
design generation. ‘Undo’ function is also provided for users to
testing out different rules of design generations.

3.6. Design evolution: user-in-the-loop evaluation and rule
induction

The major difference between the proposed design theory
inspired evolutionary design system and traditional evolutionary
design system lies in the way that the evolution process is
formulated. In traditional evolutionary design, genetic operators,
sequential manner in order to produce a new generation of
offspring. The application of these genetic operators is a stochastic
process governed by numerical probabilities. In this paper, instead
of simulating biological evolution, design operations, analogue to
genetic operators, are developed to model different ways of
creating new designs. As such, users create complex marbling
textile patterns without understanding the underlying mathema-
tical functions. These design operations simulate production stage
of the design process. The trial-and-error design production helps
users to accumulate and generalise design rules for identifying
which operations can generate their preferred designs. If users are
allowed to assess design after a sequence of operations, it is
difficult to comprehend which operations create their preferred
shapes. Therefore, users would prefer to assess the effectiveness of
every single design operation so as to induce design rules by
iterative selection.

Terminals A Pattern Functions A Terminals B Pattern Functions B

Terminals B Pattern Functions A Terminals A Pattern Functions B

Swapping position Swapping position

Fig. 9. Schematic illustration of swapping operation.

Fig. 10. Different patterns (bottom row) are generated based on different initial states (top row).
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3.6.1. User evaluation and selection
Designers have varied preferences and thus aesthetic assess-

ment is often subjective. Due to the lack of objective aesthetic
criteria, design evaluation is hard to be automated by computer.
Subjective user assessment is used in our method. In some
interactive applications, ranking is often employed by users to
define fitness for every individual in the population, which
facilitates fitness-dependent selection. If users are required to
rank every single design in each cycle of the design process, it
may increase the risk of user fatigue. Bush and Sayama (2011)
suggested that human user can play a more central role in the
control flow of evolutionary process beyond that of fitness
evaluator. In our method, instead of ranking, user selects an
arbitrary number of individual designs from the population based
on his/her own preference.

3.6.2. Design evolution
After selection, users interactively apply operations of random

alteration, function recombination, swapping or changing initial
state to create new designs. The involvement of these design
operations is not a sequential process of random operations. To
conclude effective design rules, users are given more control over
the design process: users are allowed to define the operations to
use and alter parameters (e.g. probability of random alteration
operation) throughout the design process. The workflow of the
marbling textile design generation is shown in Fig. 3.

By the PDI framework, designers can induce rules for the
preferred pattern creation. This is done in the trial-and-error
design process. As the final marbling patterns are determined by
the initial state and the sequence of operations. If designers want
to reproduce similar patterns, they can apply changing initial state
operators based on previously stored good designs. In the design
operation, by experimenting different operations and testing out
with ‘undo’ function, e.g. tuning the probability of mutation, or

crossover, new patterns are generated; designers learn how the
operations alter the patterns and gradually cumulative design
rules to generate their preferred designs.

4. Textile properties

4.1. Vector graphics

Scalability is an important feature in textile design. Usually, it is
necessary to scale the already defined small size pattern to a
bigger size for printing onto fabrics. Pattern designs can be
represented as raster images or vector images. A raster image is
represented by a matrix of pixels and each pixel is a tiny coloured
square. Therefore, a large number of colours are required to render
a raster image for accurate reproduction of the original source
artwork. In contrast to raster images, vector images are composed
of geometrical primitives, such as points, lines, curves and poly-
gons. Unlike raster images, vector images possess several advan-
tages including: scalability, ease of editing, small file size, text
searching of graphics and compatibility. Therefore, vector graphics
are preferred and widely used in the textile and printing industry.
The patterns produced by our design system are output to the SVG
format, which is the W3C standard (SVG, 2006).

4.2. Repeat

Repeat is another basic principle of textile pattern design
(Wilson, 2001). Textile designers need to have a good idea of
how the designs can repeat and are going to look as a finished
fabric. Therefore, the computer-generated patterns should support
various repeat structures. The system formulation described in
Section 3 generates single patterns. Because the pattern is created
by the deformation of points in the initial state, some parts of the

Fig. 11. The original design (a) and the resulting designs after repeating processes with (b) straight repeat structure, (c) half-drop repeat structure, (d) tile repeat structure
and (e) mirrored repeat structure.
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pattern would run out of the predefined cell (pattern size) in the
deformation process, as shown in Fig. 11(a). To generate a periodic
pattern, nine single patterns are placed on the canvas with
locations defined by the repeat structures and the simulation is
run again. The centre cell in the canvas is the periodic pattern.
A few repeat structures that commonly used in the textile industry
are incorporated in our system, thus repeatable patterns can be
obtained automatically. Fig. 11(b–e) shows a few patterns gener-
ated after the repeat simulation.

5. System implementation and discussion

In our method, the initial state consists of vector-based
elements including points and lines. A marbling pattern is formed
by deforming points in the initial state with a set of pattern functions.
This process is known as a front tracking method, which offers a
precise representation of the pattern free from grid resolution. By
applying a design operation to a set of selected designs, each
individual design is recalculated separately according to its initial

Fig. 12. Interface of the system.

Fig. 13. Two marbling textile patterns generated by the system.
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state and the set of pattern functions. This is a time-consuming
process depending on the number of points in the initial state and
the number of pattern functions involved. Fortunately, this process is
highly parallel as all the points are deformed by the same pattern
functions in each individual. GPUs are good at performing parallel
mathematical operations. The Compute Unified Device Architecture
(CUDA) framework (NVIDIA, 2011) is the dominating platform for
general-purpose computation on graphics processing units (GPGPU).
The calculation of pattern functions is a GPGPU problem, so CUDA is
employed in our method. All the points of each individual are
generated and deformed in parallel. For displaying and rendering
the pattern, Direct3D 10 API (Blythe, 2006) is used, which supports
the interoperability with CUDA. In this way, no extra data transfer is
required between CUDA and Direct3D. The interface of the system is
shown in Fig. 12.

Fig. 13 shows two marbling textile patterns generated by our
design system. Fig. 13(a) is a simple marble pattern and Fig. 13
(b) is a complex one. The operations adopted and the required
computation times are listed in Table 4. The number of points in

the pattern is defined by the initial state. As described in Section 3,
two design operations (changing initial state and swapping) are
used to derive new designs by introducing variations to the initial
state. Therefore, the number of points in the pattern will be
changed once any of the two operations is applied. Two examples
are Steps 2 and 3 in Table 4. The operations are calculated on the
CPU to generate design representation for each new design. The
generation and deformation of points is performed on the GPU.
Most of the computation time is from the calculation of design
operations on the CPU. The computation on the GPU costs very
little time even with a large number of points, for example Step
3 for pattern of Fig. 13(b) in Table 4. The computation time in the
table represents the time necessary for the current pattern. The
total processing time is the time needed for the creation of all nine
patterns in the population.

Traditionally, the manual process of creating a marbling textile
pattern may take several hours. It is not a trivial task and the
design process must be restarted from scratch when any mistake is
made. In comparison, speed is an obvious advantage of the
proposed system. Design alterations, which could take hours to
do manually, can now be performed on computers with a few
clicks. It is demonstrated that the system can generate creative
marbling designs. Fig. 14 shows some results of marbling textile
patterns used in home decoration and fashion design.

Commercial software Corel Painter supplies users with the
function of generating marbling patterns interactively bases on
image editing (Grossman, 2009). Corel painter supports two
modes including low quality and high quality to create marbling
textiles. However, it requires several seconds to render a complex
and high-quality patterns because it is implemented on the CPU,
hence it is not real time. As a result, our systemwhich runs on GPU
outperforms Corel painter in terms of speed. Moreover, the
patterns produced by Corel Painter do not meet the textile
industry requirements such as repeat and vector output. Fig. 15
are the results of tiling four single bouquet patterns in straight
repeat structure. The pattern produced by Corel Painter has
obvious artifacts in the upper region. On the contrary, the similar

Table 4
The design operations and computation time of the pattern in Fig. 13.

Pattern in Fig. 13(a) 1 2 3

Design operations Recombination Swapping
Random
alteration

Number of points/
functions

4865/6 3900/6 3900/6

Computation time (s) 0.0055 0.0041 0.0030
Pattern in Fig. 13(b) 1 2 3

Design operations
Random
alteration

Recombination
Changing initial
state

Number of points/
functions

5335/24 5335/24 44910/24

Computation time (s) 0.0049 0.0064 0.0044

System configuration: 2.93 GHz Intel Core 2 Quad Q9550 CPU, NVIDIA GeForce GTX
275 GPU.

Fig. 14. Textile patterns used in home decoration and fashion design. The 3D objects were rendered with ray tracing in 3D Studio Max.
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results produced by our method support various kinds of repeat
structure and can be output as vector images.

6. Conclusion

In this paper, design methodology theories are integrated with
evolutionary computation to construct an effective design system
for marbling textiles. It is the first and only evolutionary marbling
textile design environment currently available. The formulation of
the design system, from the representation of individual designs,
to the construction of design operations and design evolution, are
all based on design research theories. It assists designers' PDI
reasoning in the design process. The system encourages creativity
in the design process and accelerates design generation. The
resulting marble textile patterns fulfil the textile industry require-
ments of repeat and can output design in vector graphics. The
system is being introduced to the textile industry, and very
positive feedback has been received that the system accelerates
design generation and creates novel designs. A Japanese textile
company named MIYASHITA ORIMONO CO., LTD. (2011) has
successfully adopted our system and applied the designed textiles
to garments and accessories.

Acknowledgements

The authors would like to thank all anonymous reviewers for
constructive comments. The work described in this paper was
financially support by The Hong Kong Polytechnic University
(Project code: A-PL18). Shufang Lu was supported by Zhejiang
Provincial Natural Science Foundation of China (Grant No.
LQ14F020004) and the Open Project Program of the State Key
Lab of CAD&CG (Grant No. A1426), Zhejiang University. Xiaogang
Jin was supported by the National Natural Science Foundation of
China (Grant no. 61272298) and the Major Science and Technology
Innovation Team (Grant no. 2010R50040).

Appendix A. Supplementary Information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.engappai.2014.02.015.

References

Akin, O., Lin, C., 1995. Design protocol data and novel design decision. Des. Stud. 16,
211–236.

Akgun, B.T., 2004. The digital art of marbled paper. Leonardo 37 (1), 49–52.
Back, T., Hoffmeister, F., 1991. Extended selection mechanisms in genetic algo-

rithms. In: Proceedings of the 4th International Conference on Genetic Algo-
rithms. pp. 92–99.

Bergen, S., Ross, B., 2012. Automatic and interactive evolution of vector graphics
images with genetic algorithms. Vis. Comput. 28, 35–45.

Bentley, P., 1999. An introduction to evolutionary design by computers. Evol. Des.
Comput., 1–79

Bush, B., Sayama, H., 2011. Hyperinteractive evolutionary computation. IEEE Trans.
Evol. Comput. 15, 424–433.

Blythe, D., 2006. The Direct3d 10 System. ACM SIGGRAPH, pp. 724–734.
Corne, D., Bentley, P., 2001. Creative Evolutionary Systems. Morgan Kaufmann
Cross, N., 1984. Developments in Design Methodology. John Wiley & Sons
Darke, J., 1979. The primary generator and the design process. Des. Stud. 1, 36–44.
den Heijer, E., Eiben, A., 2012. Evolving pop art using scalable vector graphics. Evol.

Biol. Inspired Music, Sound, Art Des., 48–59
Finkelstein, L., Finkelstein, A., 1983. Review of design methodology. Phys. Sci., Meas.

Instrum. Manag. Educ.-Rev., IEE Proc. A 130 (4), 213–222.
Gero, J.S., 2002. Artificial Intelligence in Design'02Springer
Grishanov, S., Siewe, F., Cassidy, T., 2011. An application of queuing theory to modelling

of melange yarns. Part II: a method of estimating the fibre migration probabilities
and a yarn structure simulation algorithm. Text. Res. J. 81 (8), 798–818.

Grishanov, S., Meshkov, V., Omelchenko, A., 2009. A topological study of textile
structures. Part I: an introduction to topological methodsText. Res. J. 79 (8)
702–713.

Grossman, R., 2009. Digital Painting Fundamentals with Corel Painter 11. Course
Technology PTR

Kicinger, R., Arciszewski, T., Jong, K., 2005. Evolutionary computation and structural
design: a survey of the state-of-the-art. Comput. Struct. 83, 1943–1978.

Kroes, P., 2002. Design methodology and the nature of technical artefacts. Des. Stud.
23, 287–302.

Lawson, B., 2005. How Designers Think: Demystifying the Design Process. Archi-
tectural Press, Jordan Hill, GBR

Lewis, M., 2008. Evolutionary visual art and design. Art Artif. Evol., 3–37
Lu, S., Jaffer, A., Jin, X., Zhao, H., Mao, X., 2012. Mathematical marbling. IEEE

Comput. Graph. Appl. 32, 26–35.
Lutton, E., 2006. Evolution of fractal shapes for artists and designers. Int. J. Artif.

Intell. Tools 15, 651–672.
Machado, P., Cardoso, A., 2003. NEvAr–System Overview. In: Proceedings of

Generative Art 2003. http://dx.doi.org/10.1.1.75.2020.
March, L., 1976. The Architecture of Form. Cambridge University Press
Maurer-Mathison, D., 1999. The Ultimate Marbling Handbook: A Guide to Basic and

Advanced Techniques for Marbling Paper and Fabric. Watson-Guptill Crafts
McClintock, J., Yen, G., 2008. A two-tiered, agent based approach for autonomous,

evolutionary texture generation. IEEE World Congress on Computational
Intelligence, pp. 3220–3227.

MIYASHITA ORIMONO CO., LTD., 2011. 〈http://miyashita-orimono.jp/index.html/〉.
Moimoto, Y., Ono, K., 2010. Computer-generated tie-dyeing using a 3d diffusion

graph. Adv. Vis. Comput., 707–718
Muni, D., Pal, N., Das, J., 2006. Texture generation for fashion design using genetic

programming. In: Proceedings of the 9th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. 1940–1944.

NVIDIA, C., 2011. Nvidia Cuda Compute Unified Device Architecture Programming
Guide. 〈http://developer.nvidia.com/cuda〉.

PBS, 2008. NOVA: Fractals – Hunting the Hidden Dimension. DVD.
Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell, A., Stanley, K., 2008.

Picbreeder: collaborative interactive evolution of images. Leonardo 41, 98–99.
Shamey, R., Zhao, X., Wardman, R., 2005. Numerical simulation of dyebath and the

influence of dispersion factor on dye transport. In: Proceedings of the 37th
Conference on Winter Simulation, pp. 2395–2399.

Sims, K., 1991. Artificial evolution for computer graphics. Comput. Graph. (ACM) 25,
319–328.

SVG, 2006. 〈http://www.w3.org/Graphics/SVG/〉.
Thomas, J., Carroll, J., 1979. The psychological study of design. Des. Stud.1, 5–11.
Unemi, T., 2002. Sbart 2.4: an iec tool for creating 2d images, movies, and collage.

Leonardo 35, 189–191.
Wiens, A., Ross, B., 2002. Gentropy: evolving 2d textures. Comput. Graph. 26,

75–88.
Wilson, J., 2001. Handbook of Textile Design: Principles, Processes and PracticeCRC

Press
Wyvill, B., van Overveld, C., Carpendale, M., 2004. Rendering cracks in batik. NPAR,

61–149
Zeng, Y., Cheng, G., 1991. On the logic of design. Des. Stud.12, 137–141.

Fig. 15. Comparison between Corel Painter and our system: (a) and (b) are the results of tiling in straight-repeat structure four single bouquet patterns produced by Corel
Painter and our system, respectively.

S. Lu et al. / Engineering Applications of Artificial Intelligence 32 (2014) 124–135 135

http://dx.doi.org/10.1016/j.engappai.2014.02.015
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref1
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref1
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref2
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref3
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref3
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref4
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref4
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref5
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref5
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref6
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref7
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref7
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref8
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref9
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref9
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref10
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref10
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref11
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref12
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref12
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref12
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref13
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref13
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref13
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref14
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref14
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref15
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref15
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref16
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref16
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref17
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref17
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref18
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref19
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref19
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref20
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref20
http://dx.doi.org/10.1.1.75.2020
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref21
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref22
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref22
http://miyashita-orimono.jp/index.html/
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref23
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref23
http://developer.nvidia.com/cuda
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref24
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref24
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref25
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref25
http://www.w3.org/Graphics/SVG/
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref26
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref27
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref27
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref28
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref28
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref29
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref29
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref30
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref30
http://refhub.elsevier.com/S0952-1976(14)00051-7/sbref31

	From design methodology to evolutionary design: An interactive creation of marble-like textile patterns
	Introduction
	Related literature
	Computer-aided textile design
	Evolutionary design of textures and images

	System formulation
	Mathematical marbling pattern functions
	System overview
	Design representation
	Population size and initial population
	Design generation
	Random alteration
	Function recombination
	Swapping head and tail
	Changing initial state
	Lock and undo functions

	Design evolution: user-in-the-loop evaluation and rule induction
	User evaluation and selection
	Design evolution


	Textile properties
	Vector graphics
	Repeat

	System implementation and discussion
	Conclusion
	Acknowledgements
	Supplementary Information
	References




