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Abstract Dynamic consolidation of virtual machines

(VMs) in a data center is an effective way to reduce the en-

ergy consumption and improve physical resource utilization.

Determining which VMs should be migrated from an over-

loaded host directly influences the VM migration time and

increases energy consumption for the whole data center, and

can cause the service level of agreement (SLA), delivered by

providers and users, to be violated. So when designing a VM

selection policy, we not only consider CPU utilization, but

also define a variable that represents the degree of resource

satisfaction to select the VMs. In addition, we propose a novel

VM placement policy that prefers placing a migratable VM

on a host that has the minimum correlation coefficient. The

bigger correlation coefficient a host has, the greater the in-

fluence will be on VMs located on that host after the migra-

tion. Using CloudSim, we run simulations whose results let

draw us to conclude that the policies we propose in this pa-

per perform better than existing policies in terms of energy

consumption, VM migration time, and SLA violation per-

centage.

Keywords cloud computing, dynamic consolidation, VM

migration, energy consumption

1 Introduction

The number of cloud data centers that can support large scale

Internet services is increasing quickly and the operation cost

grows due to the rising energy consumption of these data
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centers [1]. Based on a report from Microsoft [2], the energy

consumed by physical resources, e.g., CPU, Memory, Stor-

age, in a data center accounts for 45% of the operating costs

have multiplied in the past five years. So any cloud providers

who want to survive fierce market competition must commit

themselves to reducing energy consumption to cut down the

high operation cost [3].

At present, virtualization is widely used in most physical

machines in cloud data centers. Resources requested by users

are be packed as virtual machines (VMs) and then placed in

different hosts based on specific criteria, such as meeting the

Service Level Agreement (SLA) requirements between cloud

providers and users, improving the utilization of resources,

reducing the number of VM migrations and so on.

Each VM requires a certain amount of resources, such as

CPU, memory, storage and bandwidth, to support application

performance, and multiple VMs can run on the same physical

machine (PM) using virtualization technology: this is helpful

to improve resource utilization and reduce energy consump-

tion. Moreover, virtualization can also help cloud providers

orderly deploy resources on-demand, which provides an ef-

fective solution to the flexible resource management and low

energy consumption. However, unnecessary VM migrations

introduce extra management cost, e.g., virtual machine re-

configuration, online VM migration, and creation and de-

struction of VMs, which causes extra energy consumption.

Therefore, we attempt to reduce the number of VM migra-

tions to reduce energy consumption.

One method to reduce energy consumption is dynamic

consolidation of VMs in which VMs are periodically real-

located to minimize the number of active hosts that use live



Xiong FU et al. Virtual machine selection and placement for dynamic consolidation in Cloud computing environment 323

migration. Nevertheless, application performance should also

be considered when placing these VMs. That is to say, if

we keep all VMs on a single server, the server’s perfor-

mance will be degraded because of its limited physical re-

sources. In that case, the first condition for VM migration

is that if the resource utilization exceeds a certain value,

VMs on the PM cannot meet the SLA between customers

and providers. Therefore, we set an upper threshold of CPU

utilization to avoid overloaded hosts and maintain the SLA

agreement.

The second method is the turning off PMs with low

utilization rate. As reported in Google data centers [4]

the average utilization of the whole data center is only

30%, which encourages us to set a low threshold. When a

host’s resource utilization is lower than the threshold, all

the VMs on that PM are migrated and the now unused

host is turned off, resulting in fewer active hosts of which

each one is highly utilized. Both of these optimizations are

considered in our work.

The process of VM dynamic consolidation refers to the

setup of a CPU utilization threshold, the selection of VMs,

and the VM placement. Because VM placement is an NP

hard problem and the workload is unstable and unpredictable,

it makes dynamic VM consolidation even more complicated,

so we divide the problem into four subproblems: 1) detection

of overloaded hosts; 2) finding underloaded hosts; 3) crite-

ria selection for migratable VMs and 4) selection of suitable

target hosts to place these VMs.

We first introduce the energy consumption model, VM

migration cost model, and the definition of SLA. Based on

these models, we present an improved virtual machine selec-

tion policy called MP to reduce the SLA violation rate that

maintains a low power consumption. In addition, we have de-

signed a virtual machine placement policy based on the cor-

relation coefficient that represents the relationship between

the migrating VM and each host. For a host, a greater corre-

lation coefficient indicates a greater performance degradation

for other VMs on this host due to the migration. So the host

with the minimum correlation coefficient will be the optimal

one to place the VM.

In Section 2, related work is discussed. Section 3 presents

the three models used in the following parts, including the en-

ergy consumption model, VM migration cost model, and the

negotiated SLA. After that, the VM selection policy and the

VM placement policy are explained in Section 4 and Section

5, respectively. Experimental results and analysis are shown

in Section 6. Finally, Section 7 presents conclusions and fu-

ture work.

2 Related work

With the rapid growth of cloud computing, cloud providers

now are paying more attention to the cost and efficiency

of data centers. To attract users, cloud providers must pro-

vide high quality services at the lowest cost, which means

they should reduce their energy consumption of physical ma-

chines as much as possible and continue to meet SLAs at the

same time. Therefore many researchers have begun to study

energy-efficient policies.

Dong et al. [3] described a VM allocation policy based on
limited physical resources (such as CPU and Memory), its
purpose was to reduce the number of active hosts. The VM
allocation policy was abstracted as a combination of the Bin-
Packing problem and quadratic assignment problem (QAP),
which are both classic NP-Hard combinatorial optimization
problems [1].

Nathuji et al. [5] implemented an energy management ar-

chitecture aimed at virtualized data centers. Their system

is divided into two parts: local resource management and

global resource management, which performs VM consolida-

tion. The VM consolidation problem is regarded as a sequen-

tial optimization problem in [6], and addressed using limited

lookhead control (LLC). Contrary to our approach, the pro-

posed algorithms do not handle SLA violations: SLAs are

strictly required by users.

Verma et al. [7] use a heuristic bin packing algorithm to

solve the problem of dynamic VM placement. However, the

algorithm cannot meet the requirements of SLAs because of

instability and unpredictable workloads, and is likely to result

in SLA violations.

Srikantaiah et al. [8] present a modified bin packing prob-

lem to model the VM consolidation problem, considered

from the aspect of CPU and disk optimization. Experimental

results showed that the model can effectively make a trade-

off between energy consumption and performance. However,

this method is based on a specific application and is not suit-

able for a general virtual environment.

Authors in [9] studied dynamic VM consolidation, and set

a static upper threshold of 85% for CPU utilization. They in-

troduced a heuristic method to determine whether a host was

overloaded. The static threshold of 85% was proposed for the

first time in [10], based on their workload study. In their re-

cent work [11], the authors introduce a dynamic CPU utiliza-

tion threshold.

Beloglazov et al. [11] proposed a heuristic method based

on energy-aware resource allocation and consolidated VMs
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in [12]. First, they set a fixed upper threshold of CPU uti-
lization for hosts, and then over a constant period they check
each host’s utilization. If it exceeds the threshold, the host
is marked as overloaded. Then VMs are selected to migrate
from the overloaded hosts. However, it is not suitable to use
a fixed threshold in a virtual environment, because it can-
not well reflect the complexity and instability of workloads.
Therefore, in their later work [13], the fixed threshold was
replaced by a variable one. The VM placement policy called
modified best fit decreasing (MBFD) [11] only allocates a
VM to a host that has the least increase of energy consump-
tion after the allocation, while our VM placement will select
a physical machine that has the least correlation coefficient
with the migrated VM to avoid influencing other VMs due to
the allocation.

Four VM allocation policies are depicted in [13] to decide
which host is suitable for placing VMs, and three VM se-
lection polices are proposed to select the VMs from the over-
subscribed host. Experimental results show that VM selection
and placement policies can effectively save energy. But in the
process of VM migration, these policies have little effect on
getting lower SLA violation rate. To solve these problems,
they implemented a new VM allocation and selection pol-
icy that takes into account SLA violation rate. The authors
of [14] designed a novel VM selection strategy that selects a
VM whose utilization has the maximum positive correlation
coefficient with the total VMs on the host. However, once a
VM has been migrated, the most and worst impact will be
on the other VMs due to the maximum correlation between
them.

In addition, the [15] and [16] study VM migration. They
mainly solve how to choose a migratable VM and find the
right target host to place the migrated VM. The goal of
the method is to improve the utilization of resources and
guarantee the performance of the application at the same
time.

In this article, we dynamically set the parameter in the
overloaded host testing policy. We propose a VM selection
policy based on the degree of performance satisfaction, and
describe a VM reallocation policy based on minimum cor-
relation coefficient. In our experiments, we will estimate
different policies from three aspects: energy consumption,
VM migration times, and SLA violation. The comparison
of the results highlights the advantages of our proposed poli-
cies.

3 Metric definition

3.1 Energy consumption model

The work in [17] and [18] shows that power consumption

by physical machines can be accurately described by a lin-

ear relationship of CPU utilization. They also point out that a

free physical machine uses about 70% of its energy consump-

tion when it is fully utilized. Therefore, we can define power

consumption as a CPU utilization function. The function is

showed in Eq. (1):

P(u) = k · Pmax + (1 − k) · Pmax · u. (1)

Pmax is the maximum power of a host in the running state;

k is the percentage of power consumed by an idle physical

machine; The CPU utilization is denoted by u. Because the

utilization of a CPU changes over time, we define it as a func-

tion u(t) of time. Therefore, total energy consumption can be

obtained by Eq. (2):

E =
∫

t
P(u(t))dt. (2)

According to this function, the energy consumption of a

physical machine is determined by the CPU utilization. Thus,

to reduce the whole energy consumption, we take the CPU

utilization into consideration in the following VM selection

and allocation policies.

3.2 Cost of VM live migration

Online migration of virtual machines allows transferring

VMs between hosts without suspension in a short down time.

However, online migration has a bad influence on the perfor-

mance of applications. According to [19], the VM migration

interferes with VMs on both the migration source and des-

tination. Thus, the number of migrations should be reduced.

The survey finds that a reduction in performance and down

time depends on the behavior of applications, for example:

how many memory pages are updated during execution time.

In order to avoid performance degradation, we use the virtual

machine migration cost model proposed in [20] to help us

choose migratable VMs. As the authors say in [20], a single

VM Migration can cause performance degradation and can

be estimated by an extra 10% of CPU utilization, and this

implies that each migration may cause SLA violations. So

we should reduce the number of VM migrations, select the

virtual machine using the least memory, and try to improve

the available network bandwidth. Thus in our experiment, we

define the performance degradation of VM j in Eqs. (3) and

(4):

Udj = 0.1
∫ t0+Tm j

t0

u j(t)dt, (3)

Tmj =
M j

B j
, (4)
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where Udj is the total performance degradation of VM j; t0
refers to the time when the migration starts; Tmi is the time

spent to complete the migration; CPU utilization at time t can

be denoted as u j(t); M j is the amount of memory used by VM

j, and B j is the available network bandwidth.

3.3 SLA violation metric

In a cloud computing environment, there are many users com-

peting for resources. Each cloud service provider should en-

sure the satisfaction of application demands, namely meeting

the requirement of the user’s quality of service (QoS), which

is usually defined in the form of an SLA. According to differ-

ent application conditions, an SLA can be defined in differ-

ent forms, such as the minimum throughput or maximum re-

sponse time. Therefore, we should define an SLA metric that

has been referred to in [11] that is independent of the loads

in Infrastructure as a Service (IaaS) platforms. In our experi-

ment, SLA violations will be measured in two aspects: i) the

percentage of time when the host experiences CPU utiliza-

tion of 100%, SLA violation time per active host (SLATAH);

and ii) performance degradation due to migrations (PDM).

SLATAH and PDM can be calculated by Eqs. (5) and (6):

SLATAH =
1
N

N∑
i=1

Tsi

Tai

, (5)

PDM =
1
Q

Q∑
j=1

Cdj

Cr j

. (6)

The number of hosts and VMs are denoted as N and Q in

a data center respectively. Tsi is the time when the host’s uti-

lization reaches 100% which will lead to an SLA violation.

Tai is the time during which the host i is in active state. Cdj

is an estimate of the performance degradation caused by VM

migrations. Cr j is the total CPU utilization requested by VM

j. In our experiment, we set Cdj to 10% of the CPU utilization

during the total migration time of VM j. Here we introduce

the SLAV (SLA Violation) metric, which is an integration of

the host’s workload and the influence of VM migrations. Its

computation formula is in Eq. (7):

SLAV = SLATAH ∗ PDM. (7)

4 VM selection Policy

4.1 Host overloading detection

In this part, we focus on solving the first subproblem of VM

consolidation. The subject of this problem is to determine

whether a host is overloaded or not and when to migrate VMs

from the host. As mentioned above, many methods have been

proposed to choose the moment to migrate the VMs in order

to prevent a potential SLA violation. One of the most widely

used methods is to set upper and lower utilization thresholds

for hosts and keep the total utilization by all the VMs between

these thresholds. If the CPU utilization exceeds the thresh-

olds, it will invoke the VM selection and placement poli-

cies, such as median absolute deviation (MAD), interquartile

range (IQR), local regression (LR) and robust local regres-

sion (IQR). You can learn more about these polices in [11].

4.2 VM selection

Since more than one virtual machine runs on a host, we need

to consider how to choose a migratable VM when a host’s

CPU utilization exceeds the upper threshold. If a random se-

lection policy is adopted in our VM consolidation, some VMs

that are operating efficiently will be moved while those that

use many resources and provide poor efficiency still run nor-

mally. This will not only increase the energy consumption of

the data center, but also reduce the utilization of resources.

Therefore, a VM selection policy is needed in the dynamic

VM consolidation.

At present, there are four types of VM selection pol-

icy: maximum correlation (MC), minimum migration time

(MMT), minimum utilization (MU), and random selection

(RS). MC migrates a VM that has the maximum correlation

coefficient compared to the other VMs on the same host. The

MMT migrates those VMs that will take the least time to

move. MU selects a VM with the lowest utilization. And, RS

migrates VMs randomly without any rules.

We propose a novel virtual machine selection policy which

is different from the above policies. First, compare host’s uti-

lization deviation dev over the upper threshold, and compare

this with the utilization of VMs on the host and a correspond-

ing strategy is selected on the basis of different comparison

results. The policy will make the host’s utilization closer to

the upper threshold after migration, which will reduce num-

ber of migrations needed. At the same time, the aspect of

resource satisfaction is taken into consideration and the VM

with the lowest satisfaction will get priority to be migrated.

We call this policy meets performance (MP).

Step 1 Initialize the host list HostList = {H1,H2, . . . ,

Hi, . . . ,Hn} and define the CPU utilization of each host as

hUtil. There are m VMs placed on each host and they are

represented as vmList = {vm1, vm2, . . . , vmj, . . . , vmm}
Step 2 Traverse the hostList and see whether each host’s
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hUtil is above the upper threshold T HRES H_UP. If a host’s

hUtil > T HRES H_UP, then go to Step 3, otherwise go to

Step 8;

Step 3 Sort the VMs on the overloaded host Hi in de-

scending order of their current CPU utilization and get the

VM list of this host as vmList = {vm1, vm2, . . . , vmj, . . . ,

vmm}. The CPU utilization of VM j is utilvmj and this

host’s dev can be obtained by the equation dev = hUtil −
T HRES H_UP, where dev is the part of CPU utilization that

exceeds the upper threshold.

Step 4 Select the first VM in the vmList vm j, and then we

denote the result of utilvmj −dev as t, namely t = utilvmj −dev.

Step 5 If t � 0, the VM is selected to be migrated and

pushed into the queue ToMigrateList and then end the pol-

icy. This step will make the CPU utilization lower but much

closer the upper threshold.

Step 6 If t < 0, calculate the degree of resource satisfac-

tion sla for each VM in vmList using Eq. (8):

sla = (Utilreq − Utilalloc)/Utilreq, (8)

where Utilreq and Utilalloc represent the VM’s respective re-

quested and allocated CPU in MIPS.

Step 7 Sort the VMs in an ascending order of sla value.

Select the first VM and push it into the queue ToMigrateList.

Update the host’s utilization and repeat Steps 2–7;

Step 8 If the host’s utilization is smaller than the lower

threshold T HRES H_LW, i.e., hUtil � T HRES H_LW, then

all VMs on the host will be selected to be pushed into the

queue ToMigrateList and the source host will be turned off

after completing all the migrations.

5 VM placement policy

The VMs that need to be migrated are acquired by the imple-

mentation of the VM selection policy in Section 4, and then

we need a policy to select in which host to place the VMs.

One method used in [11] is the power aware best fit decreas-

ing (PABFD). It allocates each VM to a host that provides the

least increase of power consumption due to this allocation. In

our work, we propose a new policy called the minimum cor-

relation coefficient (MCC). The correlation coefficient is used

to represent the degree of association between a chosen VM

and the target host. The greater the correlation coefficient, the

greater the influence on the performance of the other VMs

when the chosen VM is migrated to the target host. A VM

will be migrated to a host with the minimum correlation co-

efficient to avoid performance degradation on other VMs.

Assuming that the hosts in a data center can be denoted as

the set Uhs, and the target host can be obtained when both

of the following two conditions are satisfied: 1) a VM can

be migrated to a host only when the remaining physical re-

sources of that host can satisfy the VM’s request; 2) a VM

will be migrated to a host with the minimum correlation co-

efficient. Finally, a host that meets the two conditions above

will be chosen to place the VM. The policy is implemented

by the following steps:

Step 1 Initialize the set H = {H1,H2, . . . ,Hn} ⊆ Uhs where

H refers to the set of hosts that satisfy the first condition

Step 2 Select a host Hi from H, and assume that it contains

m VMs. The CPU utilization of the m VMs are collected dur-

ing p time slices and values are stored in the matrix

utili[m][p] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 u12 · · · u1p

u21 u22 · · · u2p

...
... u jk

...

um1 um2 · · · ump

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where u jk refers to the CPU utilization of VM j on host Hi

during time slice k.

Step 3 Let the array Utili[k] denote the CPU utilization of

host Hi at time slice k (k = 1, 2, . . . , p) and then it can be

obtained by the following formula:

Utili[k] =
m∑

j=1

utili[ j][k]. (9)

Step 4 Calculate the correlation coefficient between the VM

and each host in set H according to Eq. (1):

ρi =

E[(u − 1
p

p∑
k=1

uk)(U − 1
p

p∑
k=1

Utili[k])]

√
V(u)

√
V(U)

. (10)

The sign u and U refer to the current CPU utilization of

the chosen VM j and the host Hi, respectively. 1
p

∑p
k=1 uk and

1
p

∑p
k=1 Utili[k] refer to the respective average CPU utiliza-

tion of the VM j and the host Hi during the past p time slices.

The variance of the CPU utilization of VM and the host Hi

are represented as V(u) and V(U) accordingly: they are com-

puted by Eqs. (11) and (12):

V(u) = E[(u − 1
p

p∑
k=1

uk)2], (11)

V(U) = E[(U − 1
p

p∑
k=1

Utili[k])2]. (12)

Step 5 Compute all the correlation coefficients of the hosts

in the set H and acquire the set of squares of the correlation

coefficients ρ = {ρ2
1, ρ

2
2, . . . , ρ

2
n}, then select the host that has
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the minimum squared correlation coefficient and migrate the

VM to it.

Step 6 Allocate the VMs from the queue ToMigrateList ac-

cording to Steps 1–5. The ToMigrateList is obtained by the

VM selection policy mentioned in Section 4.

6 Performance evaluation

6.1 Experimental setup

Carrying out experiments on a real world system would be

prohibitively expensive and complicated. Also it is difficult

to carry out repeatable experiments in complicated system

conditions and user deployments to evaluate the performance

of cloud provisioning policies. Therefore, we use CloudSim

[12, 21] for modeling and simulation of cloud computing en-

vironments. CloudSim is an extensible simulator developed

by Melbourne University whose goal is to enable modeling

and simulation of cloud computing systems. It can simulate

virtualized resources and cloud entities like data centers, vir-

tual machines, and physical hosts. And, we can implement

different resource allocation policies and evaluate policy per-

formance.

We use CloudSim-3.0 and simulate a data center that com-

prises 800 physical hosts, half of which are HP ProLiant

ML110 G4 servers (Intel Xeon 3040, 2cores×1 860 MHz,

4 GB), and the other half consists of HP ProLiant ML110 G5

servers (Intel Xeon 3075, 2cores×2 660 MHz, 4 GB). There

are 500 VMs on the data center and they are divided into four

types: High-CPU Medium Instance (2 500 MIPS, 0.85 GB);

Extra Large Instance (2 000 MIPS, 3.75 GB); Small Instance

(1 000 MIPS, 1.7 GB) and Micro Instance (500 MIPS, 613

MB). At the beginning, different amounts of resources are

requested by different types of VMs, and can be changed in

real time according to the VM workload traces: this creates

an opportunity for dynamic VM consolidation.

In order to make the results more realistic, we use the CPU

utilization traces collected from more than a thousand VMs

operating in more than five hundred locations from around

the world and collect the data every five minutes. In our ex-

periments, a randomly generated set of VMs and CPU uti-

lization traces is allocated to the host.

6.2 Performance metrics

There are many metrics to measure the efficiency and supe-

riority of various algorithms. One metric is the energy con-

sumption consumed by the data center which can be calcu-

lated according to the energy model discussed in Section 3.1.

In this model, the parameter Pmax is equal to 250 w since a

host consumes 250 w when its CPU utilization is 100% ac-

cording to [11]. And the value of coefficient k is set to 0.7

[22]. Another metric is the SLA violation percentage, which

is defined as the ratio of SLA violation time to the whole

running time. SLAV (SLA violation), SLATAH (SLAV time

per active host), and PDM (performance degradation due to

migration), [11], are introduced to evaluate the SLA perfor-

mance which is negotiated by the users and cloud providers.

The third metric is the total number of VM migrations in the

data center.

6.3 Simulation results and analysis

We compare our work with the algorithms IQR, MAD, LR

and LRR, and VM selection policies MC, MNT, MMT, and

RS [11] (we briefly described in Section 4.1) Comparing our

work and these four algorithms using the four different selec-

tion policies gives a total of 20 combinations. In addition, the

parameters in the four host overloading detection are set ac-

cording to Beloglazov et al. [11]. The simulation results and

analysis are displayed from the following four aspects:

1) In our first group of experiments, we compare the differ-

ent VM selection policies with the default VM allocation pol-

icy PABFD, mentioned in Section 5.1, which allocates each

VM to a host that has the least increase of energy consump-

tion after this allocation. These experiment results highlight

the superiority of the MP VM selection policy. For each host

overload detection algorithm, we compare the performance

of the five VM selection policies in three aspects: the energy

consumption, the number of VM migrations, and SLA vio-

lation percentage. The results are displayed in Figs. 1–3 and

the observations are summarized as follows: i) there is no re-

markable difference between the IQR and MAD algorithms,

nor between the two local regression algorithms (LRR and

LR), the two local regression based algorithms exhibit less

energy consumption, VM migration times and SLA violation

Fig. 1 Energy consumption PABFD
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percentage compared with the other algorithms like IQR and

MAD; ii) it is obviously that the MP algorithm consumes less

energy consumption, VM migration times than the other VM

selection policies no matter which host overloading detection

algorithm is adopted; iii) although combinations of IQR-MP

and MAD-MP generate more SLA violations, the other two

combinations of LR-MP and RLR-MP have the fewest SLA

violation (Fig.3).

Fig. 2 The number of VM migrations PABFD

Fig. 3 SLA violations

2) Unlike the first group experiments, the VM placement

policy deployed in this group is MCC. The data for the three

metrics discussed in Section 3 are shown in Figs. 4–6. The

observations are summarized as follows: i) MP exhibits the

least energy consumption; ii) VM migration times are greatly

reduced, almost half that of other VM selection algorithms,

showing the superiority of our MP algorithm; iii) MP exhibits

fewer SLA violations than the other VM selection policies.

Fig. 4 Energy consumption MCC

Fig. 5 The number of VM migrations MCC

Fig. 6 SLA violations MCC

3) A comparison of MCC and PABFD VM allocation al-

gorithm is shown in Figs. 7–9, we only consider the default

four VM selection policies, the MP is not included. This can

avoid the effect of MP. The results are estimated from three

points of view: energy consumption, number of VM migra-

tions and SLA violations. We can conclude that the MCC al-

gorithm performs better than the PABFD algorithm in energy

consumption no matter which combination of algorithms is

used. In addition, the number of VM migrations is nearly re-

duced by 50% with the use of MCC algorithm when com-

pared with the PABFD algorithm. Except for the combina-

tion of IQR-MU, the other combinations that apply the MCC

VM placement algorithm have better results than the PABFD

from the angle of SLA violations.

Fig. 7 Energy consumption MCC/PACFD
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Fig. 8 The number of VM migrations MCC/PACFD

Fig. 9 SLA violation MCC/PACFD

4) Comprehensively considering the above comparisons,

the combination LR-MP performs the best in energy con-

sumption, number of VM migrations, and SLA violations.

However, the performance of the combined algorithm will

change as different parameters are applied. In this experi-

ment, the parameter of LR is increased from 0.4 to 1.4 in

increments of by 0.1. The result is shown in Fig. 10, in which

the left y-axis represents the product of the energy consump-

tion and SLA violation and we denote it as ESV, and the right

y-axis refers to the number of VM migrations. The perfor-

mance of LR-MP algorithm achieves an optimal value both

in ESV and VM migrations when the parameter is 1.2.

Fig. 10 The value of parameter

7 Concluding remarks and future direction

It is necessary to reduce the energy consumption without the

SLA violation degradation in virtualized data centers. In this

paper, we design a new VM selection policy (MP) which con-

siders the degree of resource satisfaction and can reduce en-

ergy consumption, VM migration times and SLA violation.

In addition, a VM placement policy (MCC) is proposed to

search the target host that has the least correlation coefficient

with the migratable VM. Experimental results show that the

VM selection and VM placement policies proposed in this

paper have the optimal performance in the three aspects. The

performance of each combination of algorithms varies with

the changing value of the parameter.
Although the policies we present have better performance

in the simulated environment, we still do not know their ef-

fects in a real cloud infrastructure. In future work, we will

extend them to a real-word cloud environment like Open-

Stack in order to evaluate the proposed policies.
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