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Abstract Pilot power management is an important issue for

efficient resource utilization in WCDMA networks. In this

paper, we consider the problem of minimizing pilot power

subject to a coverage constraint. The constraint can be used to

model various levels of coverage requirement, among which

full coverage is a special case. The pilot power minimiza-

tion problem is NP-hard, as it generalizes the set covering

problem. Our solution approach for this problem consists of

mathematical programming models and methods. We present

a linear-integer mathematical formulation for the problem. To

solve the problem for large-scale networks, we propose a col-

umn generation method embedded into an iterative rounding

procedure. We apply the proposed method to a range of test

networks originated from realistic network planning scenar-

ios, and compare the results to those obtained by two ad hoc

approaches. The numerical experiments show that our algo-

rithm is able to find near-optimal solutions with a reasonable

amount of computing effort for large networks. Moreover,

optimized pilot power considerably outperforms the ad hoc

approaches, demonstrating that efficient pilot power man-

agement is an important component of radio resource opti-

mization. As another part of our numerical study, we exam-

ine the trade-off between service coverage and pilot power

consumption.
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1 Introduction

In a WCDMA network, a cell announces its presence through

a Common Pilot Channel (CPICH), a fixed rate down-

link physical channel that carries a pre-defined bit/symbol

sequence [2]. Normally, each cell has only one CPICH, called

Primary CPICH or P-CPICH, for broadcasting the pilot sig-

nal over the entire cell. The CPICH signals, or pilot signals,

are used for channel quality estimation, cell selection/re-

selection, and handover [1]. The CPICH Received Signal

Code Power (RSCP) and CPICH Ec/N0 (the ratio of the re-

ceived energy per chip to the power density in the band) are

among the most important user equipment measurements re-

lated to the link performance. The former is used for handover

evaluation, downlink open loop power control, uplink open

loop power control, and for the calculation of pathloss which

becomes possible because the CPICH transmit power can

be read from the System Information broadcasted by radio

network controllers [3]. The CPICH Ec/N0 measurement is

used by mobile terminals for cell selection/re-selection and

may also be used for handover evaluation.

A mobile terminal in a WCDMA network continuously

monitors pilot signals and is typically attached to the cell from

which the strongest pilot signal is received. A number of fac-

tors, such as transmit power, attenuation, total interference,

and thermal noise, affect the strength of the received pilot

signal. The CPICH transmit power, or pilot power in short,

plays an important role in system engineering of WCDMA

networks since it strongly affects network coverage.

From the radio network planning point of view, the pilot

power should be minimized to leave as much power as pos-

sible for traffic channels in order to increase cell capacity.

This is especially important if the operator uses an OTSR

(Omni Transmit Sectorial Receive) configuration which al-

lows to save on power amplifiers and/or if the power levels of
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other downlink common channels, e.g., SCH (Synchroniza-

tion Channel), PICH (Paging Indicator Channel), CCPCH

(Common Control Physical Channel), and AICH (Acquisi-

tion Indicator Channel), are set relative to CPICH. The latter

is a common practice [7]. Excessive pilot power adds also

to the total downlink interference, increases cell overlap ar-

eas causing higher cell loads, and may lead to larger areas

suffering from pilot pollution. On the other hand, if the pi-

lot power is too low, the decreased cell dominance area may

cause overload of some neighboring cells and/or coverage

holes in the network.

Typically, 5–10% of the maximum downlink cell power

is used for CPICH [9], but there is no standard approach

for finding an optimal pilot power configuration. Among the

most popular approaches is the uniform pilot power setting

where all cells use the same pilot power [6, 9, 12]. Uniform pi-

lot power performs poorly from the power consumption point

of view. Moreover, it causes a high level of total interference

in the network, large cell overlapping areas, and high pilot

power pollution. Finding manually an optimal setting of pilot

power levels in the network is a tedious task, especially for

large networks. As a manual approach for assigning the pilot

power is slow and prone to error, there is a need of pilot power

management techniques that can be implemented and per-

formed automatically. In [10], the authors demonstrated that

a rule-based optimization technique for setting pilot power

levels significantly outperforms a manually-designed solu-

tion in terms of the network cost.

The authors of [8] studied the problem of minimizing the

pilot power subject to coverage constraints (similar to the

problem studied here) and presented a heuristic algorithm

that adjusts the pilot power of one cell in each iteration. In

[13], a cost-minimization method is used in network simu-

lations. Based on some target values for coverage and traffic

load, the method attempts to minimize the deviation from the

target values by adjusting pilot power levels using a gradient

descent procedure. The authors of [12, 15, 16] considered

power management for load balancing, and showed that net-

work performance can be enhanced by proper adjustments

of the CPICH transmit power.

In this paper, we study the problem of providing service

coverage using a minimum amount of pilot power and thus,

resolving a trade-off between power consumption for pilot

signalling and coverage. Our solution approach to the prob-

lem consists of mathematical programming techniques. Our

solution method comprises a column generation method and

an iterative rounding procedure. The method is suitable for

finding near-optimal solutions for large-scale networks and

is able to find solutions within a few percent from optimality

in a reasonable amount of time. In addition to an efficient

solution approach, our second contribution is the modeling

work itself. To the best of our knowledge, our work of mathe-

matical modeling of pilot power optimization is original and

novel. Specifically, the model in Section 3.1 provides a sys-

tematic description of the task of pilot power optimization.

The model allows finding optimal solutions for small net-

works. Then, the enhanced model in Section 3.2 is significant

not only in the sense that it enables an efficient method for

finding near-optimal solutions to large-scale networks, but

also because the model yields a sharp bound (derived from

the Linear Programming or LP, relaxation). This is impor-

tant since otherwise it is very difficult (if not impossible) to

find out the solution quality. Moreover, our numerical study

on large-scale, real-life networks provides valuable insights

into the significant amount of power gain that can be achieved

by means of mathematical optimization. As the second part

of our numerical study, we examine the trade-off between

coverage and power consumption.

The remainder of the paper is organized as follows.

In Section 2 we formalize the optimization problem, and

present two ad hoc solution approaches. The mathematical

formulations are discussed in Section 3, and our optimiza-

tion method is described in Section 4. Numerical results are

presented in Section 5. Finally, in Section 6 we draw some

conclusions and discuss forthcoming research.

2 The optimization problem

2.1 System model

Consider a WCDMA network consisting of m cells. Let I
denote the set of cells, i.e., I = {1, . . . , m}. The service area

is represented by a grid of bins, for which the signal propa-

gation predictions (or measurements) are known. We denote

the total number of bins by n, and define J = {1, . . . , n}.
The size of a bin determines the resolution a set of the signal

propagation data. We assume that the signal propagation con-

ditions are the same across a bin, and denote the power gain

between the antenna of cell i and bin j by gi j . We assume that

0 < gi j < 1, ∀i ∈ I, ∀ j ∈ J . (Throughout the paper, linear

scale will be used for all parameters and variables.)

Let PT
i denote the total transmission power available in

cell i . This amount of power is shared among the CPICH

channel, other common channels, and dedicated traffic chan-

nels. Let yi denote the amount of power allocated to the pilot

signal in cell i . The amount of power left for other purposes

in cell i is at most PT
i − yi . A higher value of yi results in

less power available to serve user traffic.

In bin j , the received pilot power of cell i is gi j yi . In ad-

dition to the pilot signal, some interfering signals, including

the signals for user traffic in cell i and signals from other

base stations, are received in the bin. We consider network

scenarios with high traffic load and assume that all base sta-

tions operate at full power. The assumption represents the

worst-case interference scenario. Dealing with this scenario
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is reasonable when planning service coverage, because if the

CPICH coverage is achieved in some area under this assump-

tion, then the downlink coverage of the area is guaranteed

for any traffic scenario. (The same assumption has been also

used, for example, in [12].) Under this assumption, the total

amount of interference in bin j with respect to cell i reads

Ii j = α j
(
PT

i − yi
)
gi j +

∑
k∈I:k �=i

PT
k gk j + ν j , (1)

where α j ∈ (0, 1) is the non-orthogonality factor in bin j ,

and ν j is the thermal noise power in bin j .

The strength of a pilot signal is measured by its carrier-to-

interference ratio (CIR), or CPICH EC/N 0
. We assume that a

bin can be covered by a cell if and only if the corresponding

CPICH CIR is no less than a threshold γ0. For cell i and bin

j , the CIR requirement is therefore

γi j = gi j yi

Ii j
= gi j yi

α j
(
PT

i − yi
)
gi j + ∑

k∈I:k �=i
PT

k gk j + ν j

≥ γ0. (2)

To access network service, a mobile terminal must be able

to detect at least one pilot signal that satisfies the CIR re-

quirement. Thus, for providing service in bin j , a necessary

condition is that at least one pilot signal satisfies (2). From

(2), it can be easily derived that, if cell i provides coverage

in bin j , then pilot power yi must be at least Pi j , defined as

Pi j = γ0 ·
α j PT

i gi j + ∑
k∈I:k �=i

PT
k gk j + ν j

(1 + γ0α j )gi j
. (3)

Pilot power is a configuration parameter that should not

be changed very often. A pilot power setting, optimized for

a particular traffic scenario, may perform poorly when the

demand pattern changes. For this reason, cells are considered

to be equally important in our system model which justifies

minimization of the total pilot power in the network.

The requirement of coverage is represented by a parameter

d ≤ n, where d is the number of bins that are required to be

covered by at least one pilot signal. The case of full coverage

corresponds to d = n. Our optimization problem amounts to

choosing the pilot power levels of the cells to cover at least d
bins, such that the amount of total pilot power is minimized.

We use MPP to denote this optimization problem.

2.2 Problem complexity

We have the following result concerning the complexity of

problem MPP.

Proposition 1. Problem MPP is NP-hard.

Proof: It is sufficient to show that a special case of the

problem is NP-hard. For the case of full coverage (d = n),

an NP-hardness proof, in which the well-known set cover-

ing problem is polynomially reduced to MPP, is provided in

[14]. �

Given the NP-hardness result, it is unlikely that there ex-

ists any exact and polynomial-time algorithm for MPP. How-

ever, using a mathematical programming method tailored for

the problem, near-optimal solutions can be obtained with rea-

sonable computing effort even for large networks.

2.3 Two ad hoc solutions

It is worth mentioning two ad hoc strategies for setting the

pilot power. We will describe these two strategies for the case

of full coverage and present analytical solutions. The solu-

tions can, however, be easily adapted to the case when d < n.

The first strategy is uniform pilot power, by which the pilot

power is the same in all cells. In the second strategy, referred

to as the gain-based pilot power, a bin is always covered by

the cell with the highest power gain. For the system model in

Section 2.1, the formulas of uniform power and gain-based

power were, to the best of our knowledge, originally derived

and presented in [14] and [11], respectively.

Uniform pilot power. We use yU to denote the power

level used by a cell in the solution of uniform pilot power. A

necessary condition for covering bin j is that yU is at least

as large as the minimum of Pi j among all cells, i.e., yU ≥
mini∈I Pi j . Moreover, this condition must hold for every bin,

leading to the following inequality,

yU ≥ max
j∈J

min
i∈I

Pi j . (4)

We further observe that after setting all pilot power levels

to max j∈J mini∈I Pi j , every bin is covered by at least one

pilot signal. It follows immediately that we can change (4) to

equality, that is, yU = max j∈J mini∈I Pi j . The total amount

of power in the solution of uniform pilot power is therefore

PU = m · yU . (5)

It is straightforward to adapt the solution of uniform pilot

power to the case of partial coverage (i.e., d < n), by sorting

the bins in ascending order with respect to mini∈I Pi j . The

dth bin in the sorted sequence yields the minimum uniform

pilot power for which the coverage requirement is satisfied.

The approach of using uniform pilot power is efficient in

simple propagation scenarios, where the signal attenuation

is essentially determined by distance. In such scenarios, cell

sizes will be roughly the same for fairly uniformly distributed

traffic and equally-spread base stations. However, for an
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in-homogeneous planning situation, using the same pilot

power for all cells results in an unnecessarily large power

consumption for pilot signals.

Gain-based pilot power. A second ad hoc solution for

setting pilot power is to assign cells to bins based on the

power gain values. In this solution, a bin is always covered

by the cell with the maximum power gain. For bin j , we use

c( j) to denote the cell that maximizes the power gain among

all cells, i.e.,

c( j) = arg max
i∈I

gi j . (6)

Note that, if the power limit PT
i is the same for all cells, then

for any bin, the cell with the maximum power gain is also

the cell with the minimum required power level. In this case,

c( j) can be equivalently defined as c( j) = arg mini∈I Pi j .

By choosing the cell with the maximum gain for every

bin, and setting the power levels accordingly, we obtain a

solution in which all bins are covered. In this solution, the

pilot power of cell i equals

yG
i = max

j∈J :c( j)=i
Pi j . (7)

The total power in the gain-based pilot power solution is

therefore

PG =
∑
i∈I

yG
i . (8)

There are several ways to obtain a power-minimization

heuristic for the case of partial coverage, by adapting the

above procedure for computing gain-based pilot power. One

such heuristic is as follows. For every bin, we find the max-

imum power gain among all cells, i.e., gc( j), j , which is used

to sort the bins in descending order. The pilot power solution

is then determined by the first d bins in the sorted sequence.

The gain-based pilot power is quite intuitive for a network

planner. In fact, it significantly outperforms the solution of

uniform pilot power. However, our results also show that this

solution can still be quite far from the optimum, especially

for large networks.

3 Mathematical formulations

3.1 A cell-bin formulation

Problem MPP can be mathematically represented by a cell-

bin formulation. The formulation contains the following

three sets of variables.

yi = The pilot power of cell i,

xi j =
{

1 if the pilot signal of cell i covers bin j,

0 otherwise.

s j =

⎧⎪⎨⎪⎩
1 if bin j is covered by the pilot signal

of at least one cell,

0 otherwise.

It should be noted that only some of the combinations

between cells and bins are relevant for defining the set of

x-variables, because usually a bin can only be covered by a

small number of cells. For convenience, we define a set C( j),

which consists of cells that can cover bin j using a feasible

pilot power, i.e., C( j) = {i ∈ I : Pi j ≤ PT
i }.

The cell-bin formulation of MPP is as follows.

[MPP-CBF]P∗ = min
∑
i∈I

yi (9)

s. t.
∑

i∈C( j)

xi j ≥ s j , ∀ j ∈ J , (10)

Pi j xi j ≤ yi , ∀ j ∈ J , ∀i ∈ C( j), (11)∑
j∈J

s j ≥ d, (12)

xi j ∈ {0, 1}, ∀ j ∈ J , ∀i ∈ C( j), (13)

0 ≤ s j ≤ 1, ∀ j ∈ J . (14)

In MPP-CBF, a constraint of (10) ensures that variable

s j is one only if bin j is covered by one or more cells. By

constraints (11), the pilot power yi must be at least Pi j , if

cell i covers bin j . Finally, the coverage requirement is for-

mulated in constraint (12). Note that the non-negativity re-

strictions on the y-variables are implicitly handled by (11).

Also, we do not have to restrict the s-variables to be integral,

because for any integer solution of x , there is at least one op-

timal integral solution (which can be computed easily) of the

s-variables. MPP-CBF is a quite straightforward linear-

integer formulation for MPP. From a computational point

of view, however, this formulation is not efficient. In particu-

lar, the LP relaxation of MPP-CBF is very weak (i.e., the LP

optimum is often far away from the integer optimum). Even

for small networks, solving MPP-CBF to optimality is out of

reach of a standard branch-and-bound solution technique.

3.2 An enhanced formulation

To avoid the aforementioned weakness of formulation MPP-

CBF, we derive a second, enhanced formulation to the prob-

lem. The enhancement is based on the observation that the
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optimal pilot power of any cell belongs to a discrete set. More

specifically, the optimal value of yi is one member of the set

{Pi j , j = 1, . . . , n : i ∈ C( j)}, because otherwise the total

power can be reduced while maintaining the same level of

coverage. Assume that yi equals Pi j∗ in an optimal solution,

then j∗ is the bin with the highest pilot power requirement

among all bins covered by i in this solution.

To simplify the presentation of the enhanced formulation,

we define one set B(i) for every cell i . The set B(i) contains

all bins that may be covered by the cell, i.e.,

B(i) = {
j ∈ J : Pi j ≤ PT

i

}
(15)

Instead of using continuous variables to represent pilot

power, in the enhanced formulation we use binary variables

to enumerate all possible power levels. The following are the

variable definitions of the enhanced formulation.

zik =
{

1 if the pilot power of cell i equals Pik,

0 otherwise.

s j =

⎧⎪⎨⎪⎩
1 if bin j is covered by the pilot signal

of at least one cell,

0 otherwise.

If cell i covers bin k, then it also covers bin j if Pi j ≤ Pik .

This information is represented by the following set of indi-

cation parameters.

ai jk =
⎧⎨⎩

1 if bin j is covered by the pilot signal of cell i,
provided that the pilot power of cell i equals Pik,

0 otherwise.

The enhanced formulation for MPP is as follows.

[MPP-EF]P∗ = min
∑
i∈I

∑
k∈B(i)

Pik zik (16)

s. t.
∑

k∈B(i)

zik ≤ 1, ∀i ∈ I, (17)

∑
i∈C( j)

∑
k∈B(i)

ai jk zik ≥ s j , ∀ j ∈ J , (18)

∑
j∈J

s j ≥ d, (19)

zik ∈ {0, 1}, ∀i ∈ I, ∀k ∈ B(i), (20)

0 ≤ s j ≤ 1, ∀ j ∈ J . (21)

In MPP-EF, a constraint of (17), further referred to as a cell
pilot constraint, states that if cell i covers any bin, then its

pilot power equals Pik for some k ∈ B(i). The constraint also

allows a pilot power to be zero, in case a cell does not cover

any bin. Consequently, for any cell, at most one term in the

objective function can be positive. Constraints (18), or bin
coverage constraints, link the power-selection variables to

the coverage variables. The coverage requirement is stated

in (19). As in the cell-bin formulation, it is not necessary

to impose integrality constraints on the s-variables in the

enhanced formulation.

The LP relaxation of the enhanced formulation provides

a sharper bound to P∗ than that of the cell-bin formulation.

We formalize this result in the following proposition.

Proposition 2. The lower bound provided by the LP relax-
ation of MPP-EF is at least as strong as that of MPP-CBF. In
addition, there are instances for which the former is strictly
better than the latter.

Proof: The proof is similar to the proof for the full coverage

case presented in [14]. �

4 The solution approach

4.1 Overview

We propose a solution approach in which a column gener-

ation method is embedded into an iterative rounding proce-

dure. For large networks, an obvious difficulty of solving

MPP-EF is its size. We observe that the number of variables

(columns) exceeds far more the number of constraints in this

formulation. To be able to efficiently solve the LP relaxation

of MPP-EF, we apply a column generation method. Column

generation decomposes a linear program (typically with a

large number of variables) into a master problem and a sub-

problem. The former contains only a subset of the columns.

The latter is a separation problem for the dual LP, and is used

to check optimality, i.e., whether additional columns need to

be added to the master problem or not.

The optimal LP solution to MPP-EF usually contains

fractional-valued variables. To find an integer solution, we

embed the column generation method into an iterative round-

ing procedure. The rounding procedure selects the largest

fractional-valued z-variable in the LP optimum, and rounds

the value of this variable up to one. The column genera-

tion method is then invoked again to solve the (modified)

LP problem with an additional constraint stating that the

value of the selected z-variable equals one. These steps

are then repeated, until the column generation method pro-

duces an integer solution. The column generation method

and the iterative rounding procedure generate both lower

and upper bounds to the optimum. These two bounds de-

fine an interval within which the minimum total pilot power

lies.
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4.2 Column generation

Let us consider the LP relaxation of MPP-EF. In the LP re-

laxation, the integrality constraints of the z-variables are re-

laxed. We denote by MPP-LP the LP problem obtained by

replacing (20) with zik ≥ 0, ∀i ∈ I, ∀k ∈ B(i). In a column

generation context, this LP problem is also referred to as the

master problem.

We start the column generation method by considering a

restricted version of MPP-LP (restricted master problem),

where the sets of bins B(i), i ∈ I are replaced by some sub-

sets B ′(i) ⊆ B(i), i ∈ I. Usually, the size of B ′(i) is much

smaller than that of B(i). Let us denote the restricted master

problem by MPP-MAS.

We assume that the sets B ′(i), i ∈ I, contain sufficiently

many members such that MPP-MAS is feasible. (As will

be clear later on, this condition can be easily satisfied.) The

optimal solution to MPP-MAS is clearly feasible to MPP-LP.

To examine whether this solution is also optimal to MPP-LP,

we need either to identify a cell i and a bin k ∈ B(i) \ B ′(i)
for which the variable zik should be added to MPP-MAS

so the current solution can be improved, or to show that no

such variable exists. In LP terms, this amounts to examining

whether there exists any z-variable for which the reduced cost

is strictly negative. If such a variable is found, it is added to

MPP-MAS, which is then re-optimized. If, on the other hand,

all reduced costs are nonnegative, then the optimal solution

to MPP-MAS is also optimal to MPP-LP.

The reduced cost of a z-variable depends on the optimal

dual solution to MPP-MAS. Let us denote by (π , μ) an opti-

mal dual solution to MPP-MAS, where μ = {μi : i ∈ I} are

the dual variables associated with the cell pilot constraints,

and π = {π j : j ∈ J } are the dual variables associated with

the bin coverage constraints. By LP duality, the reduced cost

of zik is then given by

c̄ik = Pik −
∑

j∈J :i∈C( j)

π j ai jk − μi

= Pik −
∑

j∈B(i)

π j ai jk − μi . (22)

Note that the second equality of (22) is due to the fact that,

for cell i , the sets { j ∈ J : i ∈ C( j)} and B(i) coincide.

For cell i , there exists some z-variable with a negative

reduced cost if and only if the minimum of c̄ik, k ∈ B(i), is

negative. We are therefore interested in the solution to the

optimization problem of mini∈I,k∈B(i) c̄ik , which is referred

to as the column generation subproblem. Observe that the

subproblem decomposes by cell, and, for cell i , the minimum

reduced cost of the z-variables is found by computing (22)

for all k ∈ B(i):

c̄∗
i = min

k∈B(i)
c̄ik . (23)

If c̄∗
i < 0, then the corresponding variable, zik∗ , where

k∗ = arg mink∈B(i) c̄ik , is added to the restricted master prob-

lem MPP-MAS by setting B ′(i) = B ′(i) ∪ {k∗}. Examining

all the cells, at most m variables will be added to MPP-

MAS in the same iteration. The restricted master problem

is then re-optimized, and we proceed to the next iteration.

If c̄ik ≥ 0, ∀i ∈ I, ∀k ∈ B(i), then the optimal solution to

MPP-MAS is also optimal to MPP-LP.

The column generation method solves MPP-LP correctly

because in the worst case, all the z-variables are added, (gen-

erated) to MPP-MAS, which then becomes identical to MPP-

LP. In addition, this will occur after a finite number of itera-

tions. Typically, only a few of the z-variables are generated

before MPP-LP is solved to optimality. For large-scale prob-

lems, this greatly reduces the computational effort for solving

MPP-LP.

In the first iteration of the method, we need to initialize the

sets B ′(i), i ∈ I. These sets should be defined to ensure the

feasibility of the restricted master problem. One possibility

for this purpose is to use the solution of gain-based pilot

power discussed in Section 2.3 and to assign to set B ′(i)
the single bin which defines the pilot power of cell i in the

solution.

4.3 The iterative rounding procedure

The column generation method is efficient for solving the LP

relaxation of MPP-EF. To ensure integer optimality, a branch-

and-bound scheme, which embeds column generation into

its enumeration tree, is necessary. This requires, however,

very long computing time for large networks. We therefore

consider an iterative rounding procedure, which is aimed to

generate a near-optimal solution.

In one iteration, the procedure rounds one fractional-

valued variable in the optimal solution of the LP relaxation up

to one. Let z̄ = {z̄ik, i ∈ I, k ∈ B ′(i)} be an optimal solution

to the LP relaxation. The rounding procedure chooses the

variable whose value is largest among all fractional-valued

variables in this solution. We denote such a variable by z̄i∗k∗ ,

i.e.,

z̄i∗k∗ = max
i∈I,k∈B F (i)

z̄ik . (24)

In (24), B F (i) = {k ∈ B ′(i) : 0 < z̄ik < 1}. The following

constraint is then added to MPP-MAS,

zi∗k∗ = 1. (25)

Adding constraint (25) makes the current solution z̄ infeasi-

ble to MPP-MAS, because z̄i∗k∗ < 1. We need therefore re-

optimize MPP-MAS. In addition, re-optimization of MPP-

MAS alters the optimal values of the dual variables, which,
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in turn, may result in negative reduced costs for some z-

variables that are currently not present in the restricted mas-

ter problem. If this occurs, the re-optimization process must

add new elements to some of the sets B ′(i), i ∈ I, in order to

solve MPP-LP with the new constraint (25) to optimality. In

other words, we apply again the column generation method

to solve the modified version of MPP-LP.

The iterative rounding procedure, which repeatedly ap-

plies column generation to a sequence of LPs, can be sum-

marized as follows,

1. Solve MPP-LP using the column generation method.

2. If all z-variables are integral, terminate.

3. Find a variable zi∗k∗ that solves (24).

4. Add constraint (25) to MPP-LP, go to Step 1.

Because adding (25) will always increase the value of a

z-variable, feasibility is maintained throughout the iterative

rounding procedure. Moreover, the procedure generates an

integer solution within a finite number of steps.

5 Numerical results

5.1 Test networks

We present computational results obtained for six test net-

works of various sizes. Among them, networks N1 and N6

are real-life planning scenarios. In particular, N1 is provided

by Ericsson Research, Sweden, and N6 is a planning scenario

for the city of Berlin, provided by the MOMENTUM project

group [5]. Tables 1 and 2 show the network statistics and the

parameter setting used in our experiments, respectively.

For each of the test networks, we are given predicted atten-

uation values for a specific network configuration for each

cell. These values, beside the pathloss component, include

also the shadowing (or slow fading) component modelled

statistically as a zero-mean log-normal distribution with a

standard deviation of 8 dB. Figure 1 shows the cumulative

distribution function of the best-server attenuation values (for

a bin, this is the smallest attenuation among those between

this bin and the antennas of potentially covering cells) of all

Table 1 Test network statistics

Network Sites Cells (m) Bins (n) Area1, [m2] Bin size, [m2]

N1 22 60 1375 1280 × 1800 40 × 40

N2 15 42 2708 2400 × 2000 40 × 40

N3 25 70 5029 2880 × 2800 40 × 40

N4 50 140 9409 4000 × 4000 40 × 40

N5 65 188 15112 5200 × 5200 40 × 40

N6 50 148 22500 7500 × 7500 50 × 50

1For some instances, a small portion of the area is not subject to service

coverage.

Table 2 Parameter setting

Parameter Networks N1-N5 Network N6

PT
i 15 W, for all cells 19.95 W, for all cells

γ0 0.015 0.01

α j 0.4, for all bins {0.327, 0.633, 0.938},
depending on bin type

(urban, rural, or mixed)

ν j 10−13 W, for all bins 1.5488 · 10−14 W,

for all bins

the test networks. Power gains used in our system model are

derived from the attenuation values by changing the sign and

applying the scale transformation.

5.2 Results and analysis

In the first part of our computational study, we focus on

the case of pilot power minimization subject to full service

coverage (i.e., d = n). For each of the test networks, we ex-

perimented with the following solution approaches: the two

ad hoc strategies discussed in Section 2.3, a standard linear

integer solver [4], and, finally, the column generation method

and the iterative rounding procedure. All the computational

experiments have been conducted on a Sun UltraSPARC sta-

tion with a 400 MHz CPU and 1 GB physical memory.

We present the results of uniform pilot power and the

gain-based pilot power in Table 3. The table displays the

total power consumption as well as the average power per

cell, in Watt, for the two solutions. We note that uniform

pilot power is significantly outperformed by the gain-based

pilot power approach. Specifically, the pilot power of a cell

ranges between 1.0 W and 2.3 W in the former approach,

whereas the latter approach leads to an average power of less

than 1.0 W for all the test networks.
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values
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Table 3 Two ad hoc solutions

Uniform power approach Gain-based approach

Network Total (PU ) Average Total (PG ) Average

N1 65.2384 1.0873 31.6053 0.5268

N2 50.5748 1.2042 30.9283 0.7364

N3 82.2443 1.1892 52.8006 0.7543

N4 175.9084 1.2565 106.0703 0.7576

N5 270.2355 1.4374 150.1760 0.7988

N6 345.0963 2.3317 147.0142 0.9933

An attempt was made to solve the formulation MPP-EF

of our test networks using CPLEX [4]. We then applied the

column generation method and the iterative rounding proce-

dure. These results are summarized in Table 4. For networks

N1-N4, the left part of the table shows the optimal total and

average pilot power, as well as the computing time used by

CPLEX. For the other two networks, CPLEX did not man-

age to find the optimal solution (or any near-optimal integer

solution) because of lack of memory. The results of the col-

umn generation method and the iterative rounding procedure,

including the total and average pilot power of the integer so-

lution, the LP bound, the relative gap between the upper and

lower bounds, and the computing time, are displayed in the

right part of Table 4.

We observe that the LP relaxation of MPP-EF yields a

good bound to the integer optimum, and that the iterative

rounding procedure finds near-optimal solutions. The relative

gap between the integer solution and the LP bound is less than

2% for the first five test networks, and less than 5% for the last

test network. Examining the results obtained by our method,

we observe up to 25% improvement over the solutions of

gain-based pilot power.

The main advantage of our solution method is its capa-

bility of finding a feasible solution of high quality for large

networks, for which a standard solver fails. From a practical

point of view, the quality of the obtained solutions is suffi-

ciently high for the purpose of network planning, because of

the uncertainty in the network data (the power gain values in

particular).

Fig. 2 Coverage statistics, network N6

For network N6 (the city of Berlin), the solution found by

our method is further illustrated in Figs. 2 and 3. Figure 2

depicts the number of cells with a pilot signal satisfying the

CIR requirement in each bin of the service area. Dark pixels

represent bins covered by several cells. (Since full coverage

is a requirement for this solution, the minimum number of

covering cells in any bin is one.) Observe that most parts of

Fig. 3 Pilot power, network N6

Table 4 Optimal and

near-optimal pilot power

solutions

Column generation and iterative rounding

CPLEX solution Integer solution
LP bound Gap Time

Network P∗ Average Time Total Average (%)

N1 27.8689 0.4645 0.3s 27.8884 0.4648 27.8387 0.18 0.4s

N2 26.3226 0.6267 5m50s 26.5643 0.6325 26.2803 1.09 6s

N3 46.6949 0.6671 55m 46.9224 0.6703 46.4233 1.08 34s

N4 92.4697 0.6605 2h47m 93.1238 0.6652 92.0477 1.17 4m46s

N5 — — — 127.9024 0.6803 125.4856 1.93 13m50s

N6 — — — 115.1785 0.7782 109.7558 4.94 3h2m
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the area are covered by one or two pilot signals and only

a few percent are covered by three or four cells. This is a

significant improvement over the uniform solution where it

turned out that more than 70% of the area are covered by

more than one pilot signal. Figure 3 presents the optimized

pilot power setting. For each bin, the color represents the

power level of the strongest pilot signal. We observe that in

the optimized solution most cells use a pilot power of less

than 1.5 W. The number of cells that need the power level of

the uniform solution (2.33 W) is very small.

In the next part of our computational study, we exam-

ine the impact of the level of coverage on the total power

consumption of the pilot signals. There are several reasons

for considering partial coverage. First, in many real-life plan-

ning scenarios, guaranteeing full coverage can be very expen-

sive from both economic and resource management points

of view. Therefore it is rather common (especially in rural

areas) to have a coverage requirement of less than 100%.

Second, reducing the coverage requirement will most prob-

ably lead to significant savings in power consumption. Be-

cause in our system model the pilot power is planned for

the worst-case interference scenario, a solution obtained for

a coverage requirement of slightly less than 100% is likely

to be sufficiently good for the average interference scenario.

Thus adopting a pilot power solution derived from partial

coverage is of interest for a network operator, provided that

the resulting saving in power is large. Third, solving our op-

timization model under partial coverage reveals bins that are

most expensive in terms of radio resource management. This

provides an operator with useful information when measures

other than pilot power are considered for improving cover-

age. Examples of such measures include adjusting radio base

station antenna azimuth to yield a better span, and antenna

downtilt for reducing interference.

We chose two of the test networks, N1 and N6, for which

we let the number of bins in the coverage constraint, d,

take 21 different (uniformly spaced) values in the range of

[0.8 · n, n]. For each of these values, we applied the method

of column generation and iterative rounding to generate up-

per and lower bounds to the optimal total power. The results,

together with those obtained from the two ad hoc approaches,

are shown in Figs. 4 and 5, where the upper and lower

bounds (UB and LB) are plotted using solid and dotted lines,

respectively.

From the two figures, it is evident that the total pilot power

grows rapidly with respect to the degree of coverage. For

network N6, for example, the amount of pilot power for cov-

ering 90% of the service area is only about 55% of that for

full coverage, and is approximately 60% of the total amount

of uniform pilot power needed to provide 90% coverage. Re-

ducing pilot power leads to higher network capacity (in those

areas covered by pilot signals). We also observe that, except

for the case of full coverage of network N6, the integer so-
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lution found by the method is extremely close to optimum

in the two figures. Another observation is that although in

both figures the difference in the total amount of pilot power

between the solutions decreases when decreasing the cov-

erage degree, the gap between the ad hoc solutions and the

optimized pilot power is significant for a large network (N6).

6 Conclusions

Engineering WCDMA networks gives rise to many optimiza-

tion problems. In this paper, we have addressed the problem

of providing service coverage using a minimum amount of

pilot power. We presented two mathematical models and a

solution approach based on column generation and iterative

rounding. The approach is aimed to find a near-optimal so-

lution within a reasonable amount of computing time.

Several conclusions can be drawn from our computational

study. First, even for the scenario of worst-case interference,

full coverage by pilot signals needs less than five percent of

the total downlink power in a network. Second, a slight de-

crease in the degree of coverage enables considerable reduc-

tions in the pilot power. Coverage versus power consumption
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is thus an important trade-off in WCDMA network design.

Moreover, optimized pilot power considerably outperforms

ad hoc approaches, and, therefore, mathematical models can

be very helpful for maximizing power efficiency in WCDMA

networks.

An extension of the current research is pilot power opti-

mization for the purpose of load balancing. The power of a

pilot signal influences the cell size, and thereby the load of the

cell. Taking into account the variation of traffic intensity over

the service area, pilot power levels can be adjusted to equal-

ize cell load. Another possible extension is joint optimization

of pilot power and radio base station antenna configurations,

e.g., antenna azimuth and antenna tilt. An interesting topic

to be addressed in our forthcoming work is to develop an al-

gorithm that can rapidly come up with a rather good (but not

necessarily very close to optimal) pilot power setting. This

would be very useful when pilot power is to be optimized for

a large number of alternative network designs (i.e., various

combinations of antenna tilt and azimuth).
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Ericsson Research, Linköping, Sweden, for the technical discussions

and providing some of the test data, and the group of the MOMENTUM

project for providing the test data for Berlin [5]. This work is financed

by the Swedish Research Council and CENIIT (Center for Industrial
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