
A
o

J
C
K

a

A
R
R
A
A

K
B
A
V
H
F
S

1

w
m
n
d
p
v
b
c
i
i

t
h
t
t
a
p
p
m
s

1
d

Applied Soft Computing 11 (2011) 3373–3384

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

hybrid method for learning Bayesian networks based on ant colony
ptimization

unzhong Ji ∗, Renbing Hu, Hongxun Zhang, Chunnian Liu
ollege of Computer Science and Technology, Beijing University of Technology, Beijing Municipal
ey Laboratory of Multimedia and Intelligent Software Technology, Beijing 100124, China

r t i c l e i n f o

rticle history:
eceived 7 June 2009
eceived in revised form 23 August 2010
ccepted 3 January 2011
vailable online 12 January 2011

a b s t r a c t

As a powerful formalism, Bayesian networks play an increasingly important role in the Uncertainty Field.
This paper proposes a hybrid method to discover the knowledge represented in Bayesian networks. The
hybrid method combines dependency analysis, ant colony optimization (ACO), and the simulated anneal-
ing strategy. Firstly, the new method uses order-0 independence tests with a self-adjusting threshold
value to reduce the size of the search space, so that the search process takes less time to find the near-

eywords:
ayesian networks
nt colony optimization
ariable search space
euristic

optimal solution. Secondly, better Bayesian network models are generated by using an improved ACO
algorithm, where a new heuristic function is introduced to further enhance the search effectiveness and
efficiency. Finally, an optimization scheme based on simulated annealing is employed to improve the
optimization efficiency in the stochastic search process of ants. In a number of experiments and com-
parisons, the hybrid method outperforms the original ACO-B which uses ACO and some other network
unction
imulated annealing strategy

learning algorithms.

. Introduction

Bayesian networks (BNs) are important probabilistic models
ithin the field of artificial intelligence, and also powerful for-
alisms to model the uncertainty in the real world. A Bayesian

etwork uses a graphical model to depict conditional indepen-
ence among random variables in the domain and encodes the joint
robability distribution. Given a network and observations of some
ariables, the values of other unobserved variables can be predicted
y a probabilistic inference. Nowadays, many systems have been
onstructed based on this paradigm in a variety of different areas
ncluding vision recognition, medial diagnosis, trouble-shooting,
nformation retrieval and so on.

With the development and popularity of BNs, earning BN struc-
ure from data has received considerable attention, and researchers
ave proposed various learning algorithms [1–13]. Generally,
hese algorithms can be classified into two main categories [3]:
he dependency analysis approach, and the score-and-search
pproach. The first poses BN learning as a constraint satisfaction

roblem, and constructs a BN by dependency tests [2,3]. The second
oses BN learning as an optimization problem, and uses a search
ethod to find a network structure with the best score where a

coring metric is employed to evaluate candidate networks [1,4].

∗ Corresponding author.
E-mail address: jjz01@bjut.edu.cn (J. Ji).

568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2011.01.009
© 2011 Elsevier B.V. All rights reserved.

Unfortunately, both approaches have their own drawbacks. For
example, the first approach has to perform an exponential number
of dependency tests and some test results of higher order are unre-
liable, while the second approach often traps in a local optimum
due to huge search spaces and the limitation of search methods.
To solve these problems, new algorithms have been developed in
recent years. For instance, there are three efficient approaches using
a meta-heuristic mechanism to get the global near-optimum in the
candidate network space. The first uses Genetic Algorithm (GA)
[5,7], the second applies Evolutionary Programming (EP) [8,11], and
the third employs ant colony optimization (ACO) [6,9]. Moreover,
there is a research focus [10,11] that combines basic ideas of the
dependency analysis approach and the score-and-search approach.
These hybrid methods first use a dependency analysis method to
reduce the search space of candidate solutions, then employ a
score-and-search method to search in the reduced space. Differ-
ent methods in dependency analysis and score-and-search phases
can be used, which compose different hybrid methods.

In this paper, we propose a hybrid method to learn BNs. The
hybrid method consists of two phases, namely, the Conditional
Independence (CI) test phase and the search phase. In the CI test
phase, order-0 independence tests with a self-adjusting threshold

value are conducted to dynamically restrict search spaces of fea-
sible solutions, so that the search process in the next phase can
be accelerated while keeping good solution quality. In the search
phase, an improved ACO for learning BNs is used to find good
models. Here we use two techniques: 1. A new heuristic function

dx.doi.org/10.1016/j.asoc.2011.01.009
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:jjz01@bjut.edu.cn
dx.doi.org/10.1016/j.asoc.2011.01.009

3 mputi

c
i
e
a
i
a
B
w
B
r
o
a

b
c
w
e

2

2

w
a
s
n
�
o
a
t
d
t
d

P

2

d
d
p
f
a
s
p
t
fi
t
t
p
w
l
n
s
t
a
t
a
l∏
c

374 J. Ji et al. / Applied Soft Co

ombining the global score-increase of a solution with local mutual
nformation between nodes is introduced to enhance the search
ffectiveness and efficiency. 2. An optimization strategy based on
Metropolis rule of simulated annealing is employed to further

mprove the optimization efficiency in the stochastic searching of
nts. We call our new method hybrid ant colony optimization for
ayesian network learning (HACO-B). In a number of experiments,
e perform an analytical study to compare the new method to ACO-
and some other network learning algorithms. The experimental

esults on benchmark data sets show that the hybrid algorithm
utperforms the original ACO-B and some other network learning
lgorithms.

The paper is organized as follows. In Section 2, we present the
ackground of Bayesian networks and the basic idea of the ant
olony optimization for learning Bayesian networks. In Section 3,
e describe our new algorithm in detail. Section 4 reports our

xperimental results. Finally, we conclude the paper in Section 5.

. Background

.1. Bayesian networks

A Bayesian network is a Directed Acyclic Graph (DAG) G = 〈X,A〉,
here each node Xi ∈ X represents a random variable in a domain,

nd each arc aij ∈ A describes a direct dependence relation-
hip between two variables Xi and Xj. Associated with each
ode Xi, is a conditional probability distribution represented by
i = P(Xi |

∏
(Xi)), which quantifies how much the node Xi depends

n its parents
∏

(Xi). As the graph structure G qualitatively char-
cterizes the independence relationship among random variables,
he conditional probability distribution quantifies the strength of
ependencies between a node and its parent nodes. It can be proved
hat a Bayesian network 〈X,A〉uniquely encodes the joint probability
istribution of the domain variables X = {X1, X2, . . ., Xn}:

(X1, X2, . . . , Xn) =
n∏
i=1

P(Xi|˘(Xi)) (1)

.2. Learning Bayesian network structures

The structure of a BN reflects the underlying probabilistic depen-
ence relations among the nodes (corresponding perhaps to a
atabase attribute) and a set of assertions about conditional inde-
endencies. The problem of learning a BN structure can be stated as
ollows: given a sample data D = {X[1], X[2], . . ., X[N]} where X[i] is
n instance of domain variables, the learning goal is to find the BN
tructure that best matches D. During the past decade, people have
roposed many algorithms on learning Bayesian network struc-
ure. As mentioned above, there are two basic mechanisms. The
rst is an approach based on the dependency analysis [2,3], which
akes the learning process as a constraint satisfaction problem, and
hen constructs a network structure by testing the conditional inde-
endence relations. The second is score-and-search approach [1,4],
hich takes the learning problem as a structure optimization prob-

em. The latter uses a score metric to evaluate every candidate
etwork structure, and then finds a network structure with the best
core. Though the implementation of the former approach is rela-
ively simple, the computations for high-order tests are complex
nd unreliable. Moreover, the precision of the learned model from
he dependency analysis approach is hard to ensure, thus the score-

nd-search approach is gradually becoming a popular approach for
earning Bayesian networks.

Given a node ordering, the parent nodes of each node in a BN,
(Xi) = {Xk:k ∈˚(i)}, are only selected from the set of nodes pre-

eding the current node Xi, namely,˚(i) ⊆ {1, 2, . . ., i − 1}, thus the
ng 11 (2011) 3373–3384

number of possible parent sets is 2i−1 for each node Xi. Further,
the number of possible structures for a BN with n nodes is 2n(n−1)/2

when a node ordering is known, and the complexity of a BN struc-
ture space is n! 2n(n−1)/2 for the case of an unknown node ordering.
Obviously, it is intractable for the complete search based on a score
to find the global optimal solution when n is large. In the last few
years, researchers proposed some effective algorithms [4,10,12]
assuming a complete node ordering. Unfortunately, these algo-
rithms still perform complete searching in the worst case, and they
are unfit to learn a BN structure without a complete node ordering.

Though some improved hill-climbing algorithms [12,13] can
also solve the problem of learning a BN structure with an unknown
node ordering, they usually get a local optimal solution of the
model. Recently, the development of stochastic search technologies
has provided an effective and feasible method to tackle the prob-
lem. Genetic algorithms [5,7], evolutionary programming [8,11]
and ant colony optimization [6,9] have been applied to learning
Bayesian networks, respectively. These methods perform stochas-
tically iterative searches and find the global best solution by means
of simulating various natural phenomena.

2.3. Learning Bayesian networks using ACO (ACO-B)

2.3.1. Ant colony optimization
Ant colony optimization (ACO) is a meta-heuristic search algo-

rithm, which was first proposed by Dorigo et al. in the 1990s [14,15].
Since then ACO has attracted a large number of researchers. As the
theoretical framework of ACO has grown up in recent years [16–18],
ACO is becoming popular, and it often gives satisfactory results
for various optimization problems in a wide range of domains
[19–21], such as data mining, machine learning, bioinformatics
and multiple objective optimization problems. In addition, ACO
plays a more and more important role in combination with other
meta-heuristic mechanisms to effectively solve many NP-complete
problems [22,23].

Initially, ACO was inspired by the observation of real ants look-
ing for food. Ethnologists observed that ants can find the shortest
path from their nest to the feeding food source by exploring and
exploiting pheromone information, which has been deposited on
the path when they traversed. They then can choose routes based
on the amount of pheromone. Namely, ants communicate infor-
mation about food source via pheromone, which they secrete as
they move along. The larger amount of pheromone is deposited
on a route, the greater is the probability of selecting the route by
ants. Thus, when one ant finds a good short path from the nest to
a food source, other ants are more likely to follow this path, and
such a self-strengthening behavior eventually leads all the ants
following the shortest path. The idea of the ACO is to mimic this
behavior with artificial ants walking around the graph represent-
ing the problem to solve. While constructing the solutions, each
artificial ant finds a solution starting from a start node and moving
to feasible neighbor nodes step-by-step. During the process, the
pheromone also evaporates over time, so that pheromone trails
of infrequently traveled paths become weaker while frequently
traveled paths are reinforced. Moreover, artificial ants not only
imitate the learning behavior described above, but also employ
problem-specific heuristic information to govern them to search
towards neighbor nodes stochastically. Based on this mechanism,
an effective ACO algorithm with the K2 metric for learning Bayesian
networks, called ACO-B, is proposed in [6].
2.3.2. K2 metric
The K2 metric is a well-known evaluation measure for learning

Bayesian networks from data, which uses a Bayesian scoring met-
ric to measure the joint probability of a BN. The scoring metric is

J. Ji et al. / Applied Soft Computing 11 (2011) 3373–3384 3375

n pro

r
i

P

w
t
p
a∏
o
t

f

f

l
i
T
o

2

o
w
s
f

p
a
s
r
b
s
a
a
g
t
h
a
a

Fig. 1. The constructio

eferred as the K2 metric as it is used in the K2 algorithm [24]. The
nitial expression of the K2 metric is:

(G,D) = P(G) ·
n∏
i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! (2)

here D is a given training set, G is a possible network structure, ri is
he number of possible values of the variable Xi, qi is the number of
ossible configurations (instantiations) for the variables in

∏
(Xi),

nd Nijk is the number of cases in D where Xi has its kth value and
(Xi) is instantiated to its jth value.
Assuming an uniform prior for P(G) and using log(P(G,D)) instead

f P(G,D), the scoring metric f(G:D), which evaluates G with respect
o D, can be decomposed in the following way [6]:

(G : D) =
n∑
i=1

f (Xi,˘(Xi)) (3)

More formally, the function f(Xi,
∏

(Xi)) is defined as:

(Xi,˘(Xi)) =
qi∑
j=1

(
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri∑
k=1

log(Nijk!)

)
(4)

As the joint probability is less than 1, the K2 metric using
og(P(G,D)) is always a negative value. In essence, the K2 metric
s a Bayesian scoring metric in forms of either P(G,D) or log(P(G,D)).
hus, the best K2 value is the biggest one which is related to the
ptimal BN structure.

.3.3. ACO-B algorithm
The ACO-B algorithm [6] is a score-and-search approach based

n the ant colony optimization for learning Bayesian networks,
hose main idea is to use the K2 scoring metric to evaluate a BN

tructure, and guide ants to search for the global maximum in a
easible solution space.

Let a be the number of ants in an ant colony, �ij(t) be the
heromone intensity associated with the directed arc aij at t time,
nd the initial pheromone intensity of every directed arc be a con-
tant value C, i.e., �ij(0) = C. A pheromone is a chemical substance
eleased into the environment that can reflect communication
etween ants. In constructing a solution, each ant k(k = 1, 2, . . ., a)
tarts from the empty graph G0 (arcs-less DAG) and proceeds by
dding an arc at a time. The construction process of a BN for an
nt is shown in Fig. 1, where the current state Gh of the ant is a

raph with all nodes Xi ∈ X, exactly h arcs and no directed cycle, and
here are m candidate directed arcs. If based on the pheromone and
euristic information of candidate arcs, the ant selects the sth arc
ij as a new component of a solution, and the new state after adding
n arc aij can be denoted as Gs

h+1 = Gh ∪ {aij}. Once there is no way
cess of a BN by an ant.

to make the score of a BN structure higher by adding an arc, the
construction process is ended and the ant gets its solution Gg.

The detailed process of constructing a solution can be described
as follows. At time t, the probabilistic transition rule that an ant k
selects a directed arc aij from the current candidate arcs is defined
as

i, j =
{
argmaxr,l∈DAk(t){[�rl(t)] · [�rl(t)]

ˇ}, if q ≤ q0

I, J, otherwise
(5)

where �rl(t) and �rl(t) respectively represent the pheromone inten-
sity and the heuristic information of the directed arc arl, the
methods for calculating �rl(t) and �rl(t) will be discussed in the
following; ˇ is the weighted coefficient which controls �rl(t) to
influence the selection of arcs; DAk(t) (r,l ∈ DAk(t)) is the set of
all candidate arcs that satisfy constraint conditions and whose
heuristic information is larger than zero; q0 (0 ≤ q0 <1) is an initial
parameter that determines the relative importance of exploitation
versus exploration; q is a random number uniformly distributed in
[0,1]; I and J are a pair of nodes randomly selected according to the
probabilities in Eq. (5), with ˛= 1.

pkij(t) =

⎧⎨
⎩

[�ij(t)]
˛ · [�ij]

ˇ∑
r,∈DAk(t)[�rl(t)]

˛ · [�rl]
ˇ
, if i, j∈DAk(t)

0, otherwise

(6)

where parameter ˛ depicts the relative importance of the
pheromone �rl(t) left by the real ants. As the learning goal is to
achieve the best BN structure whose K2 score is the maximum,
the heuristic information function of a directed arc can be inter-
preted as the greatest increase produced in K2 score when the arc is
added to the graph. By means of decomposability of K2, the heuristic
information function can be defined as

�ij(t) = f (Xi,˘(Xi) ∪ Xj) − f (Xi,˘(Xi)). (7)

After each iteration of the ant colony is performed, the ACO-
B algorithm will carry out the pheromone updating process, which
includes local and global updating steps. First, while building a solu-
tion, if an ant selects an arc aij, then the pheromone level of the
corresponding arc is changed in Eq. (7).

�ij(t + 1) = (1 −)�ij(t) + �0 (8)

where �0 is the initial pheromone level, and 0 < ≤ 1 is a parame-
ter that controls the pheromone evaporation. Then, the algorithm

finds the best solution from all feasible solutions obtained so far by
means of the K2 metric, and performs the global updating for each
arc of the current best solution. The global updating rule is

�ij = (1 − �)�ij + ���ij,

3376 J. Ji et al. / Applied Soft Computi

�

w
a

t

l
D
d

t
T
e
a
t

b
s
d
A
m
w
s
b
u
t
p
o

3

b
a
d
i
t
o
s
t
p

rigid �2 tests at the beginning, allowing ants to quickly construct

Fig. 2. Description of the ACO-B learning algorithm.

�ij =
{

1
||f (G+ : D)| if aij ∈G+

�ij otherwise
(9)

here 0 <�≤ 1 is also a parameter of the pheromone evaporation,
nd f(G+:D) is the metric value of the best solution G+.

Assuming that the ACO-B algorithm will end after running NC
imes, the global best solution is G+ = arg max f (G+

(l) : D), where

∈ (1,2, . . ., NC) is the number of iterations, andG+
(l) = arg max f (Gk :

) (k ∈ 1, 2, . . ., a) is the best solution at the lth iteration. Fig. 2
isplays the overall process of ACO-B [6].

In Fig. 2, each ant uses the function called AntConstructGraph()
o construct its solution and perform local pheromone updating.
o improve the quality of a solution, the ACO-B algorithm advisably
mploys the Optimization(.) function, which uses the standard oper-
tors of addition, deletion and reversal of arcs, to locally optimize
he obtained solution Gk.

Since ACO-B algorithm adopts the stochastic search mechanism
ased on ant colony optimization, it can get the global near-optimal
olution, and the quality of solutions is higher than that of many
eterministic search methods [6]. However, there is a drawback of
CO-B algorithm, namely, the convergence time is too long. The
ain reason for this is that even if ACO-B does not traverse the
hole candidate solution space during each iteration, ants may

till select some candidate arcs that cannot be components of the
est solution at all. In other words, ACO-B might consider many
seless combinations wasting much running time. This inspired us
o present a hybrid algorithm, which integrates conditional inde-
endence tests, an improved ACO-B and a simulated annealing
ptimization strategy.

. HACO-B algorithm

The efficiency of ACO-B can be enhanced by employing a num-
er of strategies. First, order-0 independence tests with lower cost
re performed to discover some potential constraints (i.e. indepen-
ence knowledge) from the sample data D, and the search space

s effectively reduced by using the obtained knowledge. Second,
he obtained knowledge is reused to revise the heuristic function

f ACO and guides ants to carry out fast searching in the reduced
pace. Third, a simulated annealing strategy is employed to control
he optimization process, and further improves the convergence
erformance.
ng 11 (2011) 3373–3384

Since this hybrid method and an ant colony optimization algo-
rithm are used in the Bayesian network learning, we call this
method HACO-B. In the following sections, these ideas will be dis-
cussed in detail.

3.1. Order-0 independence tests with adaptable cutoff values

Based on the completely connected graph, ants in ACO-B con-
struct their feasible solutions from G0 (arcs-less DAG) by adding a
directed arc to the current graph each time. Each ant could select
a satisfied arc from the candidate connect graph at every iteration,
thus the complexity of the initial candidate connect graph deter-
mines the complexity of ACO-B algorithm to a large extent. If we
adopt some strategies to make the initial connect graph simplified,
the search space of the algorithm will be greatly reduced. In light
of the idea of the constraint satisfaction, HACO-B algorithm first
introduces Conditional Independence (CI) tests [10] to reduce the
search space before ants perform searching.

For the BN structure learning, the CI test is a typical method that
validates the conditional independence relationship between two
variables given a conditional set. The basic concept of CI tests is the
measure of an information flow in information theory. A simple and
natural measure for the information flow between Xi and Xj is the
mutual information:

Inf (Xi, Xj|Z) =
∑
xi,xj,z

P̂(xi, xj, z) log
P̂(xi, xj|z)
P̂(xi|z)P̂(xj|z)

(10)

where Z is a given condition set, P̂ denotes a probability esti-
mate for various cases in the sampling data set D, and xi, xj, and z
respectively correspond to the observed values of the variables and
the condition variable set. Let t = 2 × N × Inf(Xi, Xj|Z). If N is large
enough, then t obeys �2 distribution [2]. Therefore, by means of
comparing t with a cutoff threshold value� , we can conduct�2 tests
and determine the indirectly connected relationships between two
variables. In effect, if t >� , then the directly connected relationship
is maintained. Otherwise, it is deleted.

Considering the reliability and less computational cost of the
low order CI tests, the HACO-B algorithm only adopts order-0 inde-
pendence tests (Z is a null set) in the CI test phase. More specifically,
we first build an undirected complete graph including all variables,
and then compute the mutual information Inf(Xi, Xj) for each arc
of the completely connected graph. By means of �2 test, the algo-
rithm confirms some undirected relationships between variables
and computes the Forbidden Connect Set (FCS) using these relation-
ships. Then, all redundant connect arcs in FCS are removed from the
completely connected graph, which changes to a possible connect
graph.

The more constraint knowledge obtained by CI tests, the smaller
the search space of BNs. However, an improper cutoff value � could
bring detrimental results and influence the quality of solutions. For
instance, if some crucial edges (which must appear in the best solu-
tion) fail to pass the CI tests, they will be excluded outside the
set of candidate arcs, thus it is impossible for ants to obtain the
best structure in the subsequent search process. Even if there is an
arc addition operator in local optimization, the arcs accidentally
deleted might not be added back to the the near-optimal solution.
To tackle this problem, we adopt a new strategy where the cutoff
value can be adapted to fit the iteration process. First, we set a larger
initial � = max(t)/300, then let the value of � decrease as the num-
ber of iterations increases. That is, our algorithm conducts more
some feasible solutions from a smaller search space. However, the
solutions obtained by the approach may be imperfect because the
constraints are too strict to keep some important arcs from being
deleted. As the value of � decreases, the constraint conditions grad-

mputi

u
c
c
o

r
a
p
a
k
c
b
c
a
p
a
a
s

i
s
s
a
s
c
a
F
s
t

p
s
t
t
o

3

i
d
t

f

o
o
i
a
a
t
t

�

w
i
t
t
m
e
m
n
b
i
w
t

J. Ji et al. / Applied Soft Co

ally loosen and search spaces are enlarge correspondingly, so ants
an select from many more candidate arcs, including some of the
rucial arcs previously lost. The strategy can retain a good quality
f solutions while the search space is still effectively reduced.

To illustrate the change of candidate connect graphs with the
eduction of � value, we take a network model with 4 nodes as
n example, shown in Fig. 3. Given a larger � at the beginning, we
erform order-0 CI tests and get three conditional independency
ssertions, I(X1,X3), I(X1,X4), and I(X3,X4). Using these constraint
nowledge, we can delete some redundant arcs, and get a possible
onnect graph shown as Fig. 3(a). With the increase in the num-
er of iterations, the value of � will decrease, and the constraint
ondition will relax. If only two independency assertions I(X1,X3)
nd I(X1,X4) are obtained at certain iteration, then we get another
ossible connect graph shown as Fig. 3(b). When the value of �
pproaches 0 after a number of iterations, then there is a direct
rc between every two nodes and the completely connected graph
hown in Fig. 3(c) will be obtained.

The different initial candidate connected graphs will directly
nfluence the size of search spaces at different iterations. Corre-
ponding to the connected graphs in Fig. 3, the changes of search
paces for the parent set of X4 are given in Fig. 4. Since interrelated
rcs failed to pass the CI tests, those candidate parent sets of X4,
hown shaded in Fig. 4 could be pruned. It is obvious that the more
onstraints, the smaller a search space is, e.g., Fig. 4(a) presents that
search space only has two candidate sets of parent nodes {},{X2}.
ig. 4(b) depicts that the search space extends the four candidate
ets of parent nodes {},{X2},{X3},{X2,X3}. And Fig. 4(c) shows that
he search space equals to the whole state space in the worst case.

Since many network structures, including the arcs that failed to
ass CI tests, will be prevented from being constructed, the search
pace is greatly reduced (especially in the early iterations). With
he search space subsequently expanding, the negative effects of
he inappropriate selection of � will be eliminated. Thus the quality
f solutions can be ensured.

.2. Heuristic function with a weighted factor

In ACO-B, the heuristic function is defined as the score-increase
ntroduced by the operator of an arc addition. According to the
ecomposability of K2 metric, the operator that adds an arc Xj → Xi
o the current Gh will bring the score change:

(Gh+1 : D) − f (Gh : D) = f (Xi,˘(Xi) ∪ Xj) − f (Xi,˘(Xi)). (11)

This heuristic function definition also reflects the score increase
f the changing structure, thus representing the global information
f the solution. However, the definition has a drawback. Namely,
t only gives the heuristic information of arcs by the evaluation of
n arc combination (solution structure), but does not consider each
rc’s own connecting intensity, implied in sample data D. This is apt
o make the heuristic information unilateral. Therefore, we redefine
he heuristic function of a directed arc:

ij(t) = ω · (f (Xi,˘(Xi) ∪ Xj) − f (Xi,˘(Xi))) (12)

here ω is a weighted factor concerned with the arc connecting
ntensity, and its value is larger than 1. In light of information
heory, the mutual information Inf(Xi,Xj) of Xi and Xj can objec-
ively reflect whether the two nodes in BN are dependent and how

uch the dependency is. Intuitively, Xi and Xj are independent of
ach other when Inf(Xi,Xj) = 0, otherwise the bigger the value of the
utual information, the stronger the dependence between the two

odes. It shows that the value of the mutual information can also
e used as heuristic knowledge to guide ants’ activity of select-

ng arcs. Thus we define the weighted factor as ω = 1 + Inf(Xi, Xj),
hich employs the local dependency information (mutual informa-

ion) of arcs to control ants’ selection of arcs. Obviously, when the
ng 11 (2011) 3373–3384 3377

dependency intensity is stronger and the score-increase is larger,
the heuristic information becomes greater, and vice versa. That is,
the new definition integrates the global solution information with
the local component information, which can give ants much better
insight in the selection of arcs.

3.3. Optimization strategy based on simulated annealing

To overcome the local optimum and improve the quality of solu-
tions, the ACO-B algorithm employs a local optimizer to perform
greedy searches in some neighbors of the current solution. How-
ever, the original optimizing process is conducted in light of a fixed
length of iterations. The study did not provide much attention to
the efficiency of optimizing processes. In other words, the original
method might waste some running time when the local optimizer
is not required. Therefore, we introduce an optimization strategy
based on a simulated annealing strategy to enhance optimization
efficiency in the HACO-B algorithm. Before conducting the optimiz-
ing process at a certain step, HACO-B compares the best solution in
the current iteration with that of last iteration, and then determines
whether to carry out the local optimizing process. The practical
Metropolis rule can be denoted as:

P =
{

1, if �F ≤ 0
exp(−�F/tl), otherwise

(13)

where tl is the annealing temperature tl =
·tl−1 (l = 2, 3, . . ., NC) and

< 1 is a control parameter, and �F is the score difference of the
solution obtained at two iterations. If the score of the solution at
the current iteration is smaller than that of the last iteration, then
the optimizing process is necessarily carried out. On the contrary,
when the score of the solution at the current iteration is better,
the optimizing process is randomly carried out at a certain proba-
bility. Moreover, the annealing temperature will reduce as the ACO
runs, hence the random optimizing process will gradually decrease.
When tl → 0, the strategy only performs optimization for the cases
of stagnating solutions.

3.4. Algorithm description

Combined with the three aforementioned strategies, the algo-
rithm of HACO-B is summarized in Fig. 5.

From Fig. 5, we can see that HACO-B is a hybrid algorithm
which merges the dependence analysis approach with the score-
and-search approach. First, HACO-B employs the adaptable cutoff
value to dynamically change search spaces of different iterations.
This not only effectively restricts search spaces, but also prevents
the crucial arcs from being lost if the parameter is not appropriate.
Secondly, the knowledge from CI tests is reused in the new heuristic
function, which enhances the insight ability of the heuristic func-
tion. That is, the new algorithm not only makes use of the constraint
knowledge to reduce search spaces, but also uses constraint knowl-
edge as the heuristic information that guides searching. Finally, a
simulated annealing strategy is used to control the local optimizing
process, which can save time in the optimization process.

3.5. Algorithm analysis

Similar to all other stochastic search algorithms for learning BNs,
the main cost of ACO-B is the computation of statistical factors. Each
new search object needs to carry out new statistical counts, so each
iteration of ants contributes much to the computing cost. And in the

case of same sample capacity, the more the number of iterations,
the more the computing cost. In contrast to ACO-B, HACO-B not only
employs the constraint knowledge to reduce search spaces, but
also takes the constraint knowledge as a kind of heuristic knowl-
edge to guide the process of stochastic searches. Moreover, HACO-B

3378 J. Ji et al. / Applied Soft Computing 11 (2011) 3373–3384

Fig. 3. The changes of candidate connected graphs with the reduction of � value.

h spa

a
l
s
i

C
i
b
l
t
1
S
c
t

Fig. 4. The changes of searc

pplies a simulated annealing strategy to improve the process of the
ocal optimization. In essence, the employment of these three new
trategies decreases the computing cost of stochastic searches and
mproves the time performance of the ant colony optimization.

Theoretically, the more the constraint knowledge obtained by
I tests, the smaller the search space and the higher the search-

ng efficiency. However, the results of higher-order CI tests may
e unreliable [2], and there is some extra computing cost even for

ower-order CI tests. For instance, since the number of order-0 CI
2 2
ests isCn , the computing complexity is O(n); The number of order-

CI tests is C2
n · C1

n−2, hence the computing complexity is O(n3);
imilarly, the number of order-2 CI tests is C2

n · C2
n−2, the computing

omplexity is O(n4). Therefore, HACO-B only uses order-0 CI tests
o reduce the search space. Even so, the experimental results show

Fig. 5. The HACO-
ces for the parent set of X4.

that the pruning operator based on order-0 CI tests may acciden-
tally delete a few candidate arcs in the best solution. Hence, HACO-B
makes cutoff values vary with different iterations, and yields vari-
able search spaces with different sizes. Though this costs extra time,
the detriment caused by an inappropriate cutoff value is overcome.

The convergence is an important character of ant colony opti-
mization, where the convergence of the ACS algorithm has been
proved by a theorem in [18]. Let P*(t) be the probability that the
algorithm finds an optimal solution at least once within the first

*
t iterations. The theorem pointed that the P (t) is asymptotically
close to 1 for a sufficiently large t, and the condition that the the-
orem holds is only 0 <�ij < +∞ for each pair (i,j) and ˇ < +∞. Both
ACO-B and HACO-B are ACO algorithms in the ACS formalism, and
the heuristic function of HACO-B is weighted for one of the ACO-

B algorithm.

J. Ji et al. / Applied Soft Computing 11 (2011) 3373–3384 3379

Table 1
Data sets used in our experiments.

Data set (D) Original network (G) Sizes of D Nodes of G Srcs of G K2 score of G

Alarm 1000 Alarm 1000 37 46 −5023.28
Alarm 2000 Alarm 2000 37 46 −9717.46
Alarm 3000 Alarm 3000 37 46 −14401.29
Alarm 4000 Alarm 4000 37 46 −19098.41
Alarm 5000 Alarm 5000 37 46 −23781.98
Alarm 6000 Alarm 6000 37 46 −28347.11
Alarm 7000 Alarm 7000 37 46 −33022.93
Alarm 8000 Alarm 8000 37 46 −37745.28

B
t
A
t

f
r
s
m
o
w
a
t
w

4

c
s
p
r
o
k
A
u

C
m
p
N
l
m
d

4

B
s
H

4

A
w
s
a
e
o
d

Alarm 9000 Alarm 9000
Alarm 10000 Alarm 10,000
Insurance 10000 Insurance 10,000
Asia 1000 Asia 1000

. Since the K2 score-increase of ACO-B is always larger than 0 for
he candidate arcs and the weighted factorω≥ 1, both HACO-B and
CO-B satisfy the condition in the theorem, consequently ensuring

he convergence of HACO-B.
One problem is that though local optimizations are very use-

ul for getting a global optimum, these processes also cost more
unning time. HACO-B adopts the optimizing strategy based on
imulated annealing to remedy this drawback. In HACO-B, the opti-
izing process is dynamically adjusted in light of the convergence

f solutions. On the one hand, the local optimization is carried out
hen the evolution of solutions is stagnant. On the other hand, it is

lso called randomly when the evolvement is durative. Therefore,
he strategy can not only save optimization time, but also keep up
ith the diversity of solutions.

. Experimental evaluation

To assess the performance of the HACO-B algorithm, we use a
ommon evaluation method, which is to test the algorithm on data
ets generated from known networks using probabilistic logic sam-
les. We test HACO-B on 12 different data sets, and compare the
esults with that of the original ACO-B and other new algorithms
n the same data sets. All of the data sets are generated from well-
nown benchmarks of Bayesian networks including the Alarm, the
sia and the Insurance. Table 1 shows a summary of the data sets
sed in our experiments.

The experimental platform was a PC with Pentium 4, 2.8 GHz
PU, 512 M memory, and Windows XP. The algorithm was imple-
ented by Java. By large numbers of experiments, the main

arameters were set as follows: ˛= 1, ˇ = 2, � = = 0.4, q0 = 0.8,
C = 100, t0 = 3000, a = 10, lstep = 20, �� = 0.1 and
= 0.99. Here a,

step,
 and�� are parameters which may mainly influence perfor-
ances of HACO-B. How to select their values will be emphatically

iscussed in the following subsection.

.1. Performance analysis of HACO-B

We study the factors that affect the performance of HACO-
. Particularly, we wish to investigate the contributions of three
trategies and the effects of different parameter selections on
ACO-B performance.

.1.1. Contributions of three strategies
We employed four algorithms to learn a BN structure from the

larm data sets with different sample sizes. The four algorithms
ere called the original ACO-B, the ACO-B1 (only using variable
earch spaces), the ACO-B2 (only using the new heuristic function)
nd the ACO-B3 (only using the simulated annealing strategy). The
xperimental results are shown in Table 2, where the performance
f algorithms is evaluated using three measures: K2, It. and Time. K2
enotes the K2 metric values of the solutions obtained for different
37 46 −42361.50
37 46 −47076.20
27 52 −57567.62

8 8 −9800.13

sample capacities. It. is the number of iterations when the algo-
rithm finds a near optimal structure. Time is the execution time
(s) when the algorithm finds the near optimal structure. Results in
the form �±� indicate the mean � and the standard deviation �
over 10 executions independently carried out by the corresponding
algorithm. Moreover, numbers in parentheses in the K2 column are
the best results found over 10 executions, and numbers in paren-
theses in the It. and Time columns are the smallest numbers of the
iterations and the shortest running time when the best K2 were
obtained, respectively. The bold numbers are the best values in
different cases (the same as in following tables).

By analyzing these data in Table 2, we can draw the conclu-
sion that all three strategies introduced in the paper can evidently
improve the running time of the ACO-B algorithm. More specifi-
cally, (1) the order-0 CI tests with variable cutoff values not only
effectively enhance the time performance but also improve the
solution quality on a majority of data sets. As the time saved dur-
ing searching is much longer than the time increased in CI testing
(especially when the sample size is large), the strategy can improve
the time performance of ACO-B. Moreover, the logical reduction of
search space also ensures the algorithm to obtain better solutions in
limited iteration cycles. (2) The new heuristic function can improve
the convergence performance (the number of the iterations and
the running time) while keeping the solution quality. The main
reason is that the improvement of the heuristic ability increases
the diversity of solutions, thus ACO-B2 is apt to escape from a local
optimum, and reduces the number of the iterations and the running
time. (3) The new optimization strategy can improve the conver-
gence performance, and the improvement of the running time is
especially remarkable. This suggests that the optimization strategy
based on solution convergence instances can effectively control the
optimization process, saving optimization time.

It is obvious that the three aforementioned strategies, derived
from three different phases, are all effective in the improvement of
the performance of the ACO-B algorithm. This fact encourages us
to put these strategies into a new algorithm (HACO-B) to get even
better results.

4.2. Effects of different parameter selection

In this experiment, we test HACO-B with different parameter
settings on the Alarm when the sample capacity is 5000. Table 3
summarizes the performance of HACO-B with 10 different ant
colony sizes (a). The best and worst scores are respectively the high-
est and lowest scores of the 10 trails. The average score indicates
the mean and the standard deviation of K2 measurements over 10

trails, and the running time is the average running time for 10 trails.

A large ant colony means that more search points are employed,
and as reflected by three K2 scores, better solutions are obtained
than in a smaller ant colony. However, the search time also
increases proportionally to the size of the ant colony. To acquire

3380 J. Ji et al. / Applied Soft Computing 11 (2011) 3373–3384

Table 2
The contributions of three strategies on ACO-B.

Sample capacity ACO-B ACO-B1 ACO-B2 ACO-B3

K2 It. Time (s) K2 It. Time (s) K2 It. Time (s) K2 It. Time (s)

1000 −5024.14 75.20 54.58 −5023.66 71.90 32.39 −5024.16 65.80 48.44 −5024.56 74.0 34.4
±0.34 ±4.61 ±2.10 ±0.22 ±2.80 ±0.89 ±0.58 ±8.39 ±3.83 ±0.38 ±6.78 ±1.54
(−5023.28) (79) (55.95) (−5023.28) (60) (28.50) (−5023.28) (32) (33.89) (−5023.28) (56) (31.32)

2000 −9717.64 59.30 95.71 −9717.79 50.0 47.41 −9717.57 50.30 84.05 −9718.25 45.80 56.75
±0.11 ±6.96 ±5.76 ±0.24 ±5.37 ±3.04 ±0.08 ±7.45 ±5.77 ±0.59 ±5.23 ±2.88
(−9717.46) (30) (67.06) (−9717.46) (20) (26.61) (−9717.46) (38) (77.17) (−9717.46) (40) (54.01)

3000 −14402.01 72.10 196.93 −14401.54 60.80 100.78 −14401.88 61.40 144.92 −14402.10 72.60 107.03
±0.37 ±6.32 ±9.35 ±0.19 ±7.32 ±12.72 ±0.35 ±5.42 ±6.61 ±0.40 ±5.97 ±3.74
(−14401.29) (61) (177.66) (−14401.29) (40) (63.18) (−14401.29) (40) (117.77) (−14401.29) (44) (93.07)

4000 −19099.64 66.70 247.79 −19098.76 69.40 110.68 −19099.26 62.50 193.09 −19100.18 64.30 138.07
±0.65 ±6.07 ±10.97 ±0.33 ±5.65 ±17.27 ±0.69 ±7.95 ±11.33 ±1.15 ±5.53 ±4.49
(−19098.41) (60) (256.45) (−19098.41) (60) (62.04) (−19098.41) (20) (122.81) (−19098.41) (43) (114.37)

5000 −23782.17 72.30 272.58 −23782.12 78.10 183.24 −23782.72 66.50 248.16 −23782.55 69.50 179.74
±0.13 ±4.78 ±10.67 ±0.04 ±6.97 ±18.76 ±0.52 ±5.06 ±8.06 ±0.33 ±4.90 ±4.43
(−23781.98) (48) (213.70) (−23781.98) (80) (184.67) (−23781.98) (55) (235.95) (−23781.98) (51) (159.96)

153
±24
(10

a
r

v
f
p
c
T
m
T

f
�
f
a
t
s
o
a
t

c
s
u
W
d
a

a

T
C

6000 −28347.17 65.60 315.59 −28347.50 65.50
±0.03 ±4.71 ±8.91 ±0.20 ±6.48
(−28347.11) (40) (265.58) (−28347.11) (60)

balance between getting a better solution and using less time, we
ecommend an ant colony size of 10 (a = 1).

As described in Section 3.1, each search space has its own cutoff
alue � . The next search space will inherit the cutoff value from its
ormer one with a possible decrement by�� . Thus, each ant colony
erforms its search in a different search space and this search space
an be modified dynamically by changing the cutoff value of CI tests.
o investigate the effect of �� on HACO-B, we perform experi-
ents using different values of �� . The results are presented in

able 4.
From the table, we notice that the best score can be obtained

or seven cases except �� = 0.20, the best result is obtained for
� = 0.14. However, it is not significantly different from the scores

or other values of �� . Moreover, two smaller running times are
chieved for�� = 0.10 and 0.09. They are significantly smaller than
hose of the other values of�� , which shows that a smaller search
pace can improve the time performance of HACO-B. Thus, we rec-
mmend a�� value of 0.10 because the corresponding score values
re comparable to that of�� = 0.14 and its running time is also close
o the best result.

In our algorithm, we introduce a simulated annealing rule to
ontrol the local optimizing process. To investigate the effect of the
imulated annealing strategy on HACO-B, we perform experiments
sing different values of
. Table 5 gives the experimental results.

e observe that there are some differences in running time for

ifferent values of
. However, there is no significant difference
mong the three score values. To get the best result, we can select
= 0.85. Of course, we can select
= 0.99 if we especially pay

ttention to time.

able 3
omparisons of the K2 score and running time for different a.

Ant colony sizes Best score Worst score

2 −23782.06 −23892.97
4 −23782.15 −23866.97
6 −23781.97 −23786.71
8 −23782.06 −23783.24
10 −23781.97 −23782.15
12 −23781.97 −23784.16
14 −23781.97 −23786.52
16 −23781.97 −23782.15
18 −23781.97 −23782.15
20 −23781.97 −23784.25
.20 −28347.67 46.90 266.83 −28347.50 61.30 202.07
.91 ±0.34 ±5.49 ±14.19 ±0.16 ±7.28 ±10.78

6.98) (−28347.11) (20) (201.53) (−28347.11) (63) (215.56)

Moreover, to study the effect of different optimization inter-
vals on HACO-B, we perform experiments using different values of
lstep. The experimental results are presented in Table 6. We notice
that both running time and score value approximately decrease
when the value of lstep increases. This shows that the more fre-
quent the local optimizing process, the better the quality of solution
obtained. However, it also costs much more time. Thus, we recom-
mend lstep = 20 after considering effects on factors of running time
and solution quality.

4.3. Comparing HACO-B with ACO-B

Table 7 provides a summary of the performance comparison
between the HACO-B and ACO-B algorithms on five different data
sets. Both algorithms are independently executed 10 times for each
data set, and the figures are, therefore, an average of 10 trails.

In Table 7, A., D. and I. are used to denote the structure differ-
ences between the learned and the original network, namely, the
number of arcs accidentally added (A.), deleted (D.) and inverted
(I.), compared with the original network. Total Num. represents the
total number of statistics evaluated for the instances of all local
structures during the learning process. Practical Num. represents
the number of statistics truly computed from data. Since we have
used the hashing techniques to cache the results, we avoid the

necessity of recomputing previously calculated values, which can
greatly save the running time. The meanings of other items and
data formats are the same as those of Table 2.

Compared with ACO-B, HACO-B can always find better or equally
good network structures for all the data sets in terms of both K2

Average score Running time (s)

−23806.43 ± 11.56 26.51 ± 1.67
−23792.51 ± 0.02 41.25 ± 4.08
−23783.10 ± 0.22 58.43 ± 2.66
−23782.21 ± 0.12 84.92 ± 3.04
−23782.03 ± 0.02 98.75 ± 7.54
−23782.38 ± 0.23 114.06 ± 5.28
−23782.95 ± 0.48 137.17 ± 8.59
−23782.06 ± 0.02 144.88 ± 13.42
−23782.06 ± 0.02 158.55 ± 9.85
−23782.27 ± 0.22 173.17 ± 11.92

J. Ji et al. / Applied Soft Computing 11 (2011) 3373–3384 3381

Table 4
Comparisons of the K2 score and running time for different�� .

�� Best score Worst score Average score Running time (s)

0.33 −23781.97 −23784.25 −23782.29 ± 0.22 103.23 ± 7.05
0.25 −23781.97 −23782.15 −23782.05 ± 0.02 101.56 ± 6.19
0.20 −23782.06 −23782.15 −23782.08 ± 0.02 99.37 ± 8.68
0.17 −23781.97 −23782.15 −23782.05 ± 0.22 102.89 ± 6.32
0.14 −23781.97 −23782.06 −23782.03 ± 0.01 97.58 ± 8.84
0.12 −23781.97 −23782.15 −23782.02 ± 0.02 90.69 ± 4.65
0.10 −23781.97 −23782.15 −23782.05 ± 0.02 86.92 ± 6.60
0.09 −23781.97 −23784.25 −23782.27 ± 0.22 84.38 ± 4.44

Table 5
Comparisons of the K2 score and running time for different
.

 Best score Worst score Average score Running time (s)

0.99 −23781.97 −23784.34 −23782.53 ± 0.29 91.34 ± 5.36
0.98 −23782.06 −23784.34 −23782.54 ± 0.25 97.48 ± 4.52
0.97 −23781.97 −23783.24 −23782.15 ± 0.12 107.63 ± 5.79
0.96 −23781.97 −23784.16 −23782.29 ± 0.21 100.94 ± 7.81
0.94 −23781.97 −23789.36 −23782.82 ± 0.72 107.01 ± 5.83
0.92 −23781.97 −23784.34 −23782.73 ± 0.33 102.94 ± 5.13
0.9 −23781.97 −23783.24 −23782.31 ± 0.16 113.83 ± 4.13

s
a
I
i

s
t
o
b
t
a
i
6
o

t
w
i
F
t
A
m
a
s

a
B

T
C

0.87 −23781.97 −23785.42
0.85 −23781.97 −23782.15
0.83 −23782.06 −23784.34
0.8 −23782.06 −23784.34

core and structure difference. On the other hand, the Total Num.
nd the Practical Num. are evidently reduced on all data sets, and the
t. is also reduced on most of data sets, hence the Time of HACO-B
s greatly improved.

Since the K2 score is a key measure to evaluate the quality of
olutions for different methods, we compare the K2 scores of the
wo algorithms on ten Alarm data sets. Table 8 provides a summary
f the performance comparison between two algorithms, where the
est score is the optimum result in ten trails (numbers in the paren-
heses are the number of hits-runs out of 10), the average score is
n average of ten trails, and the standard deviation is correspond-
ng deviation amplitude. Apart from three cases (i.e. Alarm 5000,
000 and 9000), HACO-B algorithm outperforms ACO-B algorithm
n the quality of solutions.

In Fig. 6, we compare the iteration numbers of two algorithms on
en data sets with different sample capacities. For each algorithm,
e record the iteration number averaged over 10 runs when obtain-

ng the K2 scores shown as Table 8 on the respective data sets. From
ig. 6, we observe the iteration number is not specifically related to
he sample capacity, which illuminates the stochastic property of
CO. Furthermore, the new strategies adopted by HACO-B do not
ake the iteration process postponed. On the contrary, there are
pparent improvements on the iteration number for half of the data
ets.

Fig. 7 gives the time performance comparison between two
lgorithms, which corresponds to Fig. 6. We can see that HACO-
performs better than ACO-B in terms of the running time on all

able 6
omparisons of the K2 score and running time for different lstep .

lstep Best score Worst score

1 −23781.97 −23782.15
5 −23781.97 −23783.24

10 −23781.97 −23784.25
15 −23781.97 −23784.26
20 −23781.97 −23784.53
25 −23782.06 −23784.44
30 −23782.06 −23784.87
35 −23782.06 −23793.17
40 −23782.06 −23800.09
45 −23782.06 −23785.44
−23782.60 ± 0.38 102.89 ± 5.32
−23782.07 ± 0.02 102.63 ± 6.24
−23782.32 ± 0.23 100.02 ± 4.17
−23782.52 ± 0.29 98.71 ± 5.94

data sets. Moreover, the advantage in running time is most remark-
able when the data set is large, namely, the bigger the sample
size, the more obvious the improvement. The first reason for this
is that HACO-B takes the learned mutual information as a heuris-
tic knowledge to revise the heuristic function, which can enhance
the insight of the heuristic function and improve the time perfor-
mance of the ACO searching algorithm. The second reason is that
HACO-B employs order-0 CI tests with self adjusting cutoff val-
ues to effectively reduce the search space, which can cut down
much computation of statistical factors, scoring of structures and
comparison of solutions. The last reason is that HACO-B uses the
simulated annealing strategy based on the solution’s evolution to
control the local optimizing process, which can save optimizing
time. The experimental results also show that the running time
of ACO-B increases more quickly as the sample capacity increases.
However, HACO-B is not sensitive to the increase of the sample
capacity. The fact that the running time of HACO-B increases slowly
suggests that HACO-B is capable of handling very large data sets,
and is a more promising algorithm for learning BNs.

4.4. Comparing HACO-B with other algorithms
To evaluate roundly the new algorithm, we compare the solu-
tion performance of different algorithms on some Alarm data sets,
where Alarm 1000, Alarm 2000, Alarm 5000 are derived from
[11], and Alarm 10000 is derived from [3]. Our main objective
in this section is to determine whether HACO-B is more efficient

Average score Running time (s)

−23782.04 ± 0.02 105.16 ± 5.63
−23782.16 ± 0.12 100.02 ± 8.28
−23782.59 ± 0.29 101.86 ± 7.14
−23782.65 ± 0.29 96.15 ± 4.03
−23782.80 ± 0.35 96.08 ± 5.16
−23782.99 ± 0.33 88.08 ± 5.43
−23782.49 ± 0.27 92.73 ± 4.27
−23783.78 ± 1.08 85.49 ± 3.67
−23786.22 ± 1.95 90.66 ± 4.26
−23782.83 ± 0.38 90.01 ± 4.34

3382 J. Ji et al. / Applied Soft Computing 11 (2011) 3373–3384

Table 7
The results for two algorithms on some benchmark data with different capacities.

Sample capacity Statistic Algorithm

ACO-B HACO-B

Alarm 2000 K2 −9717.64 ± 0.11 (−9717.46) −9717.46 ± 0.00 (−9717.46)
A. 3.20 ± 0.13 (3) 3.0 ± 0.0 (3)
D. 1.0 ± 0.0 (1) 1.0 ± 0.0 (1)
I. 1.6 ± 0.4 (1) 1.0 ± 0.0 (1)
It. 59.3 ± 7.55 (30) 42.0 ± 6.28 (20)
Time (s) 95.71 ± 5.76 (67.06) 40.96 ± 3.55 (26.20)
Total Num. 79.14E05 ± 0.57 (79.66E05) 71.77E05 ± 1.16 (66.91E05)
Practical Num. 36108.2 ± 174.66 (36615) 28813.6 ± 327.47 (27363)

Alarm 3000 K2 −14402.01 ± 0.36 (−14401.29) −14401.29 ± 0.0 (−14401.29)
A. 2.30 ± 0.33 (2) 2.0 ± 0.0 (2)
D. 1.0 ± 0.0 (1) 1.0 ± 0.0 (1)
I. 2.3 ± 0.3 (2) 2.0 ± 0.0 (2)
It. 72.10 ± 6.32 (61) 40.80 ± 5.43 (20)
Time (s) 196.93 ± 9.35 (177.66) 54.11 ± 4.65 (36.81)
Total Num. 82.20E05 ± 0.70 (83.60E05) 66.82E05 ± 0.89 (63.94E05)
Practical Num. 40200.9 ± 311.24 (40490) 29604.80 ± 205.15 (28646)

Alarm 4000 K2 −19099.64 ± 0.65 (−19098.41) −19098.70 ± 0.17 (−19098.41)
A. 2.40 ± 0.22 (2) 2.0 ± 0.15 (2)
D. 1.0 ± 0.0 (1) 1.1 ± 0.10(1)
I. 2.5 ± 0.43 (2) 1.50 ± 0.17 (2)
It. 66.70 ± 6.07 (60) 62.3 ± 7.05 (40)
Time (s) 247.79 ± 10.97 (256.45) 104.22 ± 16.02 (158.70)
Total Num. 82.51E05 ± 1.58 (76.27E05) 58.61E05 ± 1.65 (57.74E05)
Practical Num. 40475.8 ± 512.67 (42122) 25380.5 ± 137.88 (25858)

Insurance 10000 K2 −57591.19 ± 8.13 (−57568.43) −57580.01 ± 0.32 (−57567.62)
A. 5.80 ± 1.35 (3) 3.70 ± 0.30 (3)
D. 9.80 ± 0.48 (8) 8.60 ± 1.63 (8)
I. 7.90 ± 1.35 (5) 5.60 ± 0.31 (5)
It. 44.30 ± 7.20 (60) 82.1 ± 4.38 (72)
Time (s) 296.07 ± 19.90 (337.22) 235.78 ± 17.66 (187.53)
Total Num. 37.74E05 ± 0.72 (36.47E05) 32.54E05 ± 0.94 (29.13E05)
Practical Num. 25577.4 ± 412.14 (25587) 18995.6 ± 231.34 (18871)

Asia 1000 K2 −9800.13 ± 0.0 (−9800.13) −9800.13 ± 0.0 (−9800.13)
A. 0.0 ± 0.0 (0) 0.0 ± 0.0 (0)
D. 0.0 ± 0.0 (0) 0.0 ± 0.0 (0)
I. 1.0 ± 0.0 (1) 1.0 ± 0.0 (1)

17.90
4.85 ±
1.22E0
457.6

a
b
H
[
g
M
s
c
l
P
t

T
C

It.
Time (s)
Total Num.
Practical Num.

nd effective than some state-of-the-art approaches on compara-
le performances. We compare the performance of HACO-B with
EA [11], MDLEP [8], PheGT2

R [25], BNPC [3], WinMine and Toolkit
26]. In light of the MDL score, MDLEP [8] applies evolutionary pro-
ramming for network learning. HEA is an improved algorithm of
DLEP, which adopts both, CI tests to reduce the size of the search
pace, and a new merge operator, to further enhance search effi-
iency and effectiveness. PheGT2

R applies a genetic algorithm to
earn Bayesian networks from data. Therefore, MDLEP, HEA and
heGT2

R algorithms are stochastic search approaches, which need
o be executed time after time for each testing instance. BNPC [9]

able 8
omparisons of the K2 score on different data sets for both algorithms.

K2 Algorithms Sample capacity

1000 2000 3000 4000 5000

Best ACO-B −5023.28 −9717.46 −14401.29 −19098.41 −2378
(2) (8) (6) (4) (6)

HACO-B −5023.28 −9717.46 −14401.29 −19098.41 −2378
(4) (10) (10) (4) (3)

� ACO-B −5024.14 −9717.64 −14402.01 −19099.64 −2378
HACO-B −5023.79 −9717.46 −14401.29 −19098.70 −2378

� ACO-B 0.34 0.11 0.37 0.65 0.13
HACO-B 0.23 0.0 0.0 0.17 0.23
± 4.09 (10) 22.0 ± 2.0 (20)
0.30 (2.64) 2.78 ± 0.09 (2.48)
5 ± 0.02 (1.17E05) 0.69E05 ± 0.01 (0.59E05)

0 ± 4.32 (451) 325.33 ± 3.75 (304)

is an algorithm based on the dependence analysis approach, and
WinMine Toolkit is a set of tools for the windows environment that
build statistical models from data. Both algorithms are determin-
istic algorithms. Thus, they are only executed once for each testing
instance. Since the reported results for HEA, MDLEP, PheGT2

R are
obtained from forty trails [11], we also run HACO-B forty times. In

Table 9, we summarize the results over 40 runs. The figures are an
average of 40 runs for HACO-B, HEA, MDLEP and PheGT2

R. Numbers
in parentheses are the standard deviations.

Comparing with stochastic algorithms such as HEA and MDLEP,
HACO-B uses much fewer generations to obtain the final solution

6000 7000 8000 9000 10000

1.97 −28347.11 −33022.93 −37745.28 −42361.50 −47076.20
(6) (3) (3) (3) (7)

1.97 −28347.11 −33022.93 −37745.28 −42361.50 −47076.20
(1) (7) (4) (3) (8)

2.17 −28347.16 −33023.92 −37745.93 −42361.81 −47076.31
2.38 −28347.97 −33023.48 −37745.72 −42361.92 −47076.23

0.03 0.49 0.49 0.17 0.11
0.26 0.26 0.22 0.18 0.02

J. Ji et al. / Applied Soft Computing 11 (2011) 3373–3384 3383

Fig. 6. Comparison of the iteration numbers on Alarm for both algorithms.

Fig. 7. Comparison of the time performance on Alarm for both algorithms.

Table 9
Performance comparison among HACO-B, HEA, MDLEP, PheGT2

R, BNPC, and WinMine on Alarm data sets.

Performance Algorithms Data sets

Alarm 1000 Alarm 2000 Alarm 5000 Alarm 10000

The average generation HACO-B 62.4 (3.06) 57.45 (3.12) 50.4 (3.0) 61.29 (2.95)
HEA 913.1 (1260.5) 206.8 (155.1) 331.0 (465.2) 877.3 (817.9)
MDLEP 4301.2 (654.3) 4046.6 (634.1) 3946.3 (651.2) 4523.8 (482.1)
PheGT2

R 62.8 (56.6) 86.8 (111.3) 61.7 (68.4) 55.8 (36.7)
BNPC – – – –
WinMine – – – –

The average structure difference HACO-B 10.58 (0.48) 4.70 (0.42) 4.75 (0.18) 5.48 (0.73)
HEA 10.8 (2.1) 7.6 (0.6) 6.1 (0.4) 8.9 (5.0)

.2)

.1)

f
t
f
d
a
H
e
a
a
a
o

f

MDLEP 19.4 (4
PheGT2

R 17.0 (3
BNPC 17
WinMine 34

or all data sets. It is also competitive with PheGT2
R on the genera-

ions. Moreover, HACO-B can always find better network structures
or all the data sets in terms of the structure difference. The stan-
ard deviations are much less for all the data sets in terms of both
verage generation and structure difference. When we compare
ACO-B with BNPC and WinMine, the average structure differ-
nces of HACO-B are smaller than those of the two deterministic
lgorithms for all the data sets. Thus, in light of the average gener-

tion and the structure difference, HACO-B is the most outstanding
lgorithm which can learn the Bayesian networks without a node
rdering.

After comparing the performance of different algorithms and
ocusing on HACO-B versus ACO-B, it is evident that HACO-B is more
12.9 (4.9) 10.7 (4.9) 17.5 (6.9)
12.2 (3.1) 10.7 (3.8) 10.2 (5.2)
13 8 9
30 23 25

efficient and effective than ACO-B. Most importantly, HACO-B runs
significantly faster than ACO-B. Moreover, HACO-B performs better
than HEA, MDLEP, PheGT2

R, BNPC, and WinMine on the solution
quality for all data sets.

5. Conclusion

In this paper, we propose a new algorithm, HACO-B, for learning

Bayesian networks effectively and efficiently. The algorithm com-
bines dependency analysis, ant colony optimization (ACO) and the
simulated annealing strategy. Based on the mechanism of learn-
ing BNs by ACO, three new improvements are described. Empirical
results illustrate that the new algorithm is superior in terms of the

3 mputi

c
a
t
l
W
H
t

i
r
o
s
w
i
m

A

g
B

R

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

384 J. Ji et al. / Applied Soft Co

omputational time on all data sets we have tested, while it can
lso achieve better solution quality on most data sets. Most impor-
antly, our algorithm greatly enhances the convergence speed on
arge scale data sets compared to the original ACO-B algorithm.

e have also presented the performance comparison between
ACO-B, HEA, MDLEP, PheGT2

R, BNPC, and WinMine, and found
hat HACO-B can discover better BNs effectively.

The three new strategies used with HACO-B yield improvements
n the reduction of search spaces, the enhancement of the explo-
ation ability of search algorithms and the adjustment of local
ptimizations, all of which are equally significant for stochastic
earch algorithms to solve other optimization problems. Our future
ork is to extend our study to more complex problems in learn-

ng BNs, e.g., problems with incomplete data, hidden variables and
ulti-relational data.

cknowledgments

This work is partly supported by the NSFC major research pro-
ram (No. 60496322, 60496327), NSFC (No. 60825203), and the
eijing Natural Science Foundation (No. 4102010).

eferences

[1] D. Heckerman, A tutorial on learning Bayesian networks, in: M.I. Jordan (Ed.),
Learning in Graphical Models, 1996, pp. 301–354.

[2] M. Luis, D. Campos, J. Huete, A new approach for learning belief networks using
independence criteria, International Journal of Approximate Reasoning 24 (1)
(2000) 11–37.

[3] J. Cheng, R. Greiner, J. Kelly, D. Bell, W. Liu, Learning belief networks from data:
an information theory based approach, Artificial Intelligence 137 (2002) 43–90.

[4] J. Suzuki, Learning Bayesian belief networks based on the minimum description
length principle: basic properties, IEICE Transactions on Fundamentals E82 (10)
(1999) 2237–2245.

[5] D.Y. Liu, F. Wang, Y.N. Lu, W.X. Xue, S.X. Wang, Research on learning Bayesian
network structure based on genetic algorithms, Journal of Computer Research
and Development 38 (8) (2001) 916–922.

[6] M.C. Luis, M.F. Juan, A.G. Jose, M.P. Jose, Ant colony optimization for learning

Bayesian networks, International Journal of Approximate Reasoning 31 (2002)
291–311.

[7] P. Larranaga, M. Poza, Y. Yurramendi, R.H. Murga, M.H. Kuijpers, Structure
learning of Bayesian networks by genetic algorithms: a performance analy-
sis of control parameters, IEEE Transactions on Pattern Analysis and Machine
Intelligence 18 (9) (1996) 912–925.

[

[

ng 11 (2011) 3373–3384

[8] M.L. Wong, K.S. Leung, Using evolutionary programming and minimum
description length principle for data mining of Bayesian networks, IEEE
Transactions on Pattern Analysis and Machine Intelligence 21 (2) (1999)
174–178.

[9] A.G. Jose, M.P. Jose, Searching the best elimination sequence in Bayesian net-
works by using ant colony optimization, Pattern Recognition Letters 23 (1–3)
(2002) 261–277.

10] J.Z. Ji, H.X. Zhang, R.B. Hu, C.N. Liu, A Bayesian network learning algorithm based
on independence test and ant colony optimization, Acta Automatica Sinica 35
(3) (2009) 281–288.

11] M.L. Wong, K.S. Leung, An efficient data mining method for learning Bayesian
networks using an evolutionary algorithm-based hybrid approach, IEEE Trans-
actions on Evolutionary Computation 8 (4) (2004) 378–404.

12] I. Tsamardinos, L.E. Brown, C.F. Alieris, The max–min hill-climbing Bayesian
network structure learning algorithm, Machine Learning 65 (1) (2006) 31–78.

13] J.R. Alcob, Incremental hill-climbing search applied to Bayesian network struc-
ture learning, in: Proceedings of the 15th European Conference on Machine
Learning, IEEE, Pisa, Italy, 2004.

14] M. Dorigo, V.A. Maniezzo, Colorni, The ant system: optimization by a colony of
cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part
B 26 (1) (1996) 29–41.

15] M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning
approach to the traveling salesman problem, IEEE Transactions Evolutionary
Computation 1 (1) (1997) 53–66.

16] C. Blum, M. Dorigo, Search bias in ant colony optimization: on the role of
competition-balanced systems, IEEE Transactions Evolutionary Computation
9 (2) (2005) 159–174.

17] C. Blum, M. Dorigo, The hyper-cube framework for ant colony optimization,
IEEE Transactions on Systems, Man, and Cybernetics 34 (2) (2004) 1161–1172.

18] T. Stutzle, M. Dorigo, A short convergence proof for a class of ant colony opti-
mization algorithms, IEEE Transactions Evolutionary Computation 6 (4) (2002)
358–365.

19] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization: artificial ants as a
computational intelligence technique, IEEE Computational Intelligence Maga-
zine 11 (2006) 28–39.

20] M. Dorigo, T. Stutzle, Ant Colony Optimization, The MIT Press, 2004.
21] D. Angus, C. Woodward, Multiple objective ant colony optimization, Swarm

Intelligence 3 (1) (2009) 69–85, 22 (special issue on ant colony optimization).
22] Z.J. Lee, C.Y. Lee, S.F. Su, An immunity-based ant colony optimization algo-

rithm for solving weapon-target assignment problem, Applied Soft Computing
2 (2002) 39–47.

23] Z.J. Lee, S.F. Su, C.C. Chuang, K.H. Liu, Genetic algorithm with ant colony opti-
mization (GA-ACO) for multiple sequence alignment, Applied Soft Computing
8 (2008) 55–78.

24] G.F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic

networks from data, Machine Learning 9 (1992) 309–347.

25] C. Cotta, J. Muruzbal, Toward a more efficient evolutionary induction of
Bayesian networks, in: Proceedings of the 7th International Conference on
Parallel Problem Solving From Nature, Granada, Spain, 2002, pp. 730–739.

26] D.M. Chickering, The WinMine Toolkit, Microsoft Research, Redmond, WA,
2002 (MSR-TR-2002-103).

	A hybrid method for learning Bayesian networks based on ant colony optimization
	Introduction
	Background
	Bayesian networks
	Learning Bayesian network structures
	Learning Bayesian networks using ACO (ACO-B)
	Ant colony optimization
	K2 metric
	ACO-B algorithm

	HACO-B algorithm
	Order-0 independence tests with adaptable cutoff values
	Heuristic function with a weighted factor
	Optimization strategy based on simulated annealing
	Algorithm description
	Algorithm analysis

	Experimental evaluation
	Performance analysis of HACO-B
	Contributions of three strategies

	Effects of different parameter selection
	Comparing HACO-B with ACO-B
	Comparing HACO-B with other algorithms

	Conclusion
	Acknowledgments
	References

