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Abstract1 

This paper presents a hybrid SVM-GMM mecha-
nism based on a fuzzy rule-based system (FRBS), 
called FRBS-SVMGMM, for acoustic event detection 
(AED) applications. This method effectively combines 
the results of support vector machine (SVM) and 
Gaussian mixture model (GMM) calculations on 
acoustic data within the framework of FRBS opera-
tions. With the support of FRBS, which greatly in-
creases AED recognition accuracy, AED can make 
reliable and correct detection decisions. This ap-
proach is essential to applications where low false 
recognition is a major concern. The proposed 
FRBS-SVMGMM mechanism is conceptually simple 
and computationally inexpensive. The comparative 
recognition performance experiments in this study 
demonstrate the effectiveness and superiority of the 
proposed FRBS-SVMGMM. 

Keywords: Acoustic event detection, Fuzzy rule-based 
system, FRBS-SVMGMM, Gaussian mixture model, 
Support vector machine. 
 

1. Introduction 
 

Almost all living creatures are equipped with organs 
for both visual and aural perception; any security, sur-
veillance or remote homecare system lacking acoustic 
information is effectively crippled. Acoustic event detec-
tion (AED), sometimes referred to as acoustic event 
classification, has received more attention in recent years 
[1-9], and plays an important role in the field of speech 
and audio information processing. Conventional security, 
surveillance, and remote homecare systems rely heavily, 
if not exclusively, on motion-tracking analysis of visual 
information (i.e., data captured by video camera) [10, 
11]. Multimedia retrieval and indexing applications also 
focus on video information, but only recently have audio 
cues become an auxiliary method of detecting a specific 
shot in a video sequence [12, 13]. The image-acquiring 
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process has inherent limitations that restrict the ability of 
visual data to capture status or situation development. 
Acoustic data can be a complementary source of infor-
mation in this context. 

The fundamental issues of AED include the following: 
(1) Categorizing various kinds of sounds encountered in 

daily life [1, 2]. 
(2) Internal representation and modeling of a designated 

type of sound, to differentiate it from other sounds 
and background acoustics [3-7]. 

(3) Representation and modeling of background acous-
tics to allow the comparison required for acoustic 
event detection [8, 9]. 

This paper focuses on the second category of AED tech-
nical issues and addresses the problem of detecting “fe-
male screaming” in specific acoustic backgrounds. Early 
researches have explored detection of human activity, 
such as coughing, crying, talking, walking and running 
[3, 4]. Undoubtedly, among these detection activities, the 
detection of persons’ speaking is the major concern for 
practical applications on the real world, a smart speech 
conference system application, for example. However, it 
is interesting enough that AED researches on screaming 
detection are highly esteemed and rapidly increasing re-
cently [5-7]. In fact, screaming detection is very helpful 
for those persons, security guards, family members and 
elder/younger care providers, and it is a great contribu-
tion to homecare and security applications where 
screaming usually represents serious or urgent cases. For 
closely meeting the real homecare and security applica-
tions, the detection of female screaming in this work is 
performed in three practical acoustic background envi-
ronments, a living room, an indoor parking lot and an 
office space. 

Acoustic event detection begins with a stream of 
acoustic frames entering the system at regular intervals. 
To decide whether the designated acoustic event has oc-
curred, analysis is necessary each time a fixed number of 
frames is collected, or if a pre-determined time span, 
called the decision window, has elapsed. This study 
compares the input acoustic signals against two acoustic 
models (the singular and the normal). In acoustic or 
sound modeling, primary considerations are the type of 
representation and how to determine model parameters. 
The Gaussian mixture model (GMM) [14] and support  
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Figure 1. Model-based fusion of SVM and GMM by an 
FRBS for AED. 

 
vector machine (SVM) [15, 16] appear the most popular 
acoustic modeling techniques for AED application, due 
to ease of approximation. 

Model-based fusion (Fig. 1), also known as deci-
sion-level fusion, is an information fusion technique that 
combines outputs of different models (for example, the 
above-mentioned SVM and GMM classifiers) to yield a 
final classification score. The approach is frequently 
used in the field of pattern recognition, including acous-
tic event detection. The linear opinion pool (LOP) [17], 
also called weighted arithmetical mean (WAM) [18], is a 
fusion method that has become quite popular for its sim-
plicity and speed in combining model outputs. Although 
the famous LOP approach simply utilizes the weighted 
sum of classifier outputs, it handles each output sepa-
rately as an independent source of information. However, 
to ensure a reliable final decision, a method of consider-
ing the interactions among model outputs is necessary. 
For instance, instead of treating each model output sepa-
rately as does the LOP scheme, approaches such as 
Sugeno’s fuzzy integral (FI) and the associated fuzzy 
measure (FM) [19] can capture interactions among the 
various classifier outputs. These have been successfully 
employed to some pattern recognition applications [2, 20, 
21, 22], including acoustic event detection application 
[2]. However, computation for these methods of in-
creasing LOP estimate accuracy is complex and 
time-consuming, an adverse factor in on-line acoustic 
event detection. 

This paper proposes a fuzzy rule-based system (FRBS) 
mechanism [23] for AED. This approach tackles inaccu-
rate recognition due to using SVM modeling or GMM 
modeling alone, and avoids the unreliable fusion of 
SVM and GMM by linear opinion pool. It also forestalls 
the daunting cost of model fusion by fuzzy integral or 

fuzzy measure. The developed hybrid SVM-GMM 
scheme could be regulated by FRBS for rapid informa-
tion fusion, reducing inaccurate determinations resulting 
from a poor fusion of SVM and GMM calculations. The 
popular Takagi-Sugeno (T-S) FRBS [24] has controlled 
a system as complicated as an electric power plant with 
success [25]. The author employs it in researching 
acoustic event detection. 

Section 2 provides an overview of a general acoustic 
event detection framework, together with mathematical 
backgrounds for the two acoustic modeling techniques in 
popular use: SVM and GMM. The end of the section 
introduces the decision-window scheme for acoustic 
event detection. Section 3 describes the theoretical for-
mulations of the conventional linear opinion pool ap-
proach for information fusion. It then explains the for-
mulation and implementations of the proposed hybrid 
SVM-GMM scheme under T-S FRBS regulation for 
acoustic event detection. Section 4 presents experimental 
results that compare the effectiveness and performance 
of the proposed approach to conventional SVM-alone, 
GMM-alone and LOP-SVMGMM. Finally, Section 5 
provides a conclusion. 
 

2. Acoustic Event Detection (AED) System 
 

The acoustic event detection system is designed to 
identify a designated acoustic phenomenon when it ap-
pears in a certain acoustic background. Operations com-
pare input acoustic signals against two acoustic models 
(the singular and the normal) and decide whether an 
acoustic event has occurred or not. Fig. 2 shows the ar-
chitecture of a typical acoustic event detection system  
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Figure 2. Acoustic event detection (AED) system. 
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associated with two sound models. It segments the input 
acoustic stream into the frame sequence, and extracts 
acoustic features to estimate the scores of both the nor-
mal and the singular situation via the classifier operation. 
After making a decision based on score estimates, the 
classifier makes its call. 

To construct such a system, several essential issues 
such as feature extraction, acoustic model representation 
for classification, and decision-making criteria must be 
resolved. This paper considers popular LPC, LPCC, and 
MFCC acoustic features; SVM and GMM modeling 
techniques are frequently employed in the field of 
speaker recognition and therefore are extremely appro-
priate for acoustic event detection application in the 
study. Score estimate calculations provide deci-
sion-making criteria. 
 
A. SVM Classification Model  

SVM is often used as a data classifier. SVM is based 
on the theory of structural risk minimization of statistics 
[15, 16]. SVM classifies new input data by using a sepa-
rating hyperplane. If the SVM model attempted to de-
termine whether an input datum was A, it would first try 
to find the SVM model of A in the SVM database. Next, 
the separating hyperplane of the SVM model of A would 
classify the input datum as A or not-A. 

Suppose a set of labeled training points is {( 1x , 1y ), 
( 2x , 2y ),…, ( nx , ny )}. Each training point ix  belongs 
to either of two classes and is given a label, }1  ,1{−∈iy  
for ni ,...,2,1= . From these training data, the hyperplane 
is 

0=+⋅ bxw ,               (1) 
as defined by the pair ( w , b ), such that point ix  can be 
separated according to function [15]: 

⎩
⎨
⎧

−=−
==+⋅= 1,1

1   ,1)()(
i

i
ii yif

yifbxwsignxf .   (2) 

The set S is linearly separable if there exists a pair 
( w , b ) such that the inequalities 

niyifbxw
yifbxw

ii

ii ,...,2,1      ,1,1)(
,1   ,1)( =

⎩
⎨
⎧

−=−≤+⋅
=≥+⋅    (3) 

are valid for all elements of set S. If the set S is linearly 
separable, a unique optimal hyperplane exists, and for 
this hyperplane, the margin between the projections of 
the training points of two different classes is maximized. 
If set S is not linearly separable, classification violations 
must be allowed in the SVM formulation [15]. 

The abovementioned SVM classifier verifies whether 
input acoustic data belongs to the class of the singular 
acoustic event. 

 
B. GMM Classifier 

Mathematically, a GMM is a weighted sum of M 

Gaussians, denoted as 

{ } Miw iii  ..., 2, ,1  , , , =Σ= μλ , 1
1

=∑
=

M

i
iw ,   (4) 

where iw  is the weight, iμ  is the mean and iΣ  is the 
covariance [14]. To determine GMM model parameters 
for a certain sound class, the E-M algorithm [26] is read-
ily applicable. 

After GMM model training is complete, the recogni-
tion procedure can be executed based on these models. 
The GMM classifier consists of two separate GMM 
models, one for background sound, and the other for 
singular sound. Consider the classifier operating with a 
decision window (or equivalently, over a time interval) 
covering n acoustic feature vectors of D dimensions, 

}..., 2, ,1|{ nixi ==Χ , together with two sound models, 

1λ  for normal events and 2λ  for singular events. 
During the recognition phase, the class of Χ  is de-

termined by maximizing a posteriori probability 
)|( XP sλ , 
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(7) 
However, for simplicity in real implementation,  

∑
=

=
=

n

i
sis

xfs
1}2,1{

)|(logmaxˆ λ           (8) 

replaces (5). At the end of the recognition procedure, the 
signal Χ  is then classified as one of the two sound 
classes indicated by ŝ . 
 
C. Decisions of the Classifier Made by DW 
The decision window (DW) is a time period covering a 
predetermined number of acoustic frames, within which 
analysis determines whether an acoustic event has oc-
curred. For event detection by GMM, two likelihood 
scores are computed for each acoustic frame, the normal 
and the singular, using (6) based on the two GMM mod-
els. Within the decision window, all normal and singular 
estimates are respectively taken in log-values and accu-
mulated, and whichever is greater determines whether 
the DW class is normal or singular, (8). For event detec-
tion by SVM, the label (normal or singular) of each 
acoustic frame is determined by (2). Within the decision 
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Figure 3. Decision window (DW) for event detection by 

SVM\GMM models. 
 
window, all normal and singular acoustic frames are 
added separately, and the class of the DW is the one that 
has more acoustic frames. 

Fig. 3 depicts a stream of decision windows, each of 
which covers the same number of acoustic frames and 
thus the same time span. The recognition performance of 
an acoustic event detection system using the DW criteria 
is evaluated according to the formula as follows, 

(%) 100 

  

×=
 all DWNumbers of

ectionorrect det DW with cNumbers of
n ratesRecognitio

. (9) 

 
3. Hybrid SVM-GMM Using Fuzzy Rule-Based 

System for AED  
 

Fusing information sources from SVM and GMM 
models can promote recognition performance of AED in 
decision-making. As mentioned, LOP is simple and di-
rect, but its effectiveness is doubtful. This section first 
presents the concept and formulation of 
LOP-SVMGMM (using LOP to consider the hybrid fu-
sion of SVM and GMM). 
 
A. LOP-SVMGMM 

Though there are numerous methods of combining the 
output information of different classifiers, the most di-
rect is the linear opinion pool technique [17, 18] which 
calculates weighted sums of the classifier outputs. In this 
study, LOP consists of a weighted sum of SVM classi-
fier output and GMM classifier output: 

10  ),()1()()( ≤≤⋅−+⋅=− ααα xPxPxP GMMSVMGMMSVM , 

(10) 

where ),(xP GMMSVM −  ),(xPSVM  and )(xPGMM  are the 
probability outputs of the singular event occurrence by 
the hybrid SVM-GMM system, the SVM classifier alone, 
and the GMM classifier alone, respectively, for x -th 
DW. α  denotes the weight parameter controlling the 
balance between )(xPSVM  and )(xPGMM  (for the sake 
of simplicity, )(xP GMMSVM −  is represented as P  here-
after). 

The LOP technique has been considered in several 

applications such as speaker recognition [27]. Although 
LOP is a common and simple fusion technique, its main 
weakness is independence of information sources [28]. It 
is also difficult to decide the value of α . A poorly esti-
mated value for α  would jeopardize the recognition 
performance of the AED system. 

Combining the SVM classifier output and the GMM 
classifier output in an accurate way is conceptually plain: 
the more reliable the decisions of SVM and GMM clas-
sifiers are, the larger value for P  will be. The follow-
ing section formulates a solution within the framework 
of a fuzzy rule-based system. 
 
B. Hybrid SVM-GMM by T-S FRBS (FRBS-SVMGMM) 

The T-S procedure presents a systematic framework 
of fuzzy modeling design for a complex system. Overall 
system output is then a function of the subsystem outputs 
which could be as simple as a “linear” combination ad-
dressing fuzzy system behaviors in coefficient handling, 
or other, more elaborate forms. Under the T-S FRBS, a 
generic system can be formulated as a set of fuzzy im-
plications (or rules) together with a system output de-
termined by consequences in the set of implications. The 
system representation would have the form 
Rule i: IF )1(x  is iA1  and … and )(nx  is i

nA , 
THEN ),(...)1(10 nxaxaay i

n
iii +++= ,,...,2,1 li =        

System output: ,

1

1

∑

∑

=

== l

i

i

l

i

ii

w

yw
y  given that 

)),((
1

pxAw
n

p

i
p

i ∏
=

=  

for a system of n inputs and l implications. Note that 
,,...,1,0  , npAi

p =  are fuzzy sets and ))(( nxAi
p  denotes 

the fuzzy values of the membership function associated 
with i

pA  for the input )(nx ; ,,...,1,0  , npai
p =  are 

consequent parameters through which the i-th conse-
quence iy  is expressed as a linear combination of n 
inputs. 
1) Concepts of Indexes SVMVD  and GMMLD  

The inputs in a fuzzy rule-based system are usually 
signals or quantities of certain attribute in precise mag-
nitudes. In acoustic event detection, two indexes, 
SVMVD  and ,GMMLD  respectively derived from 
SVM and GMM classifiers, are devised as the inputs to 
the developed fuzzy rule-based system. 

The index SVMVD  (Support Vector Machine Vote 
Difference) that governs the probability output of the 
hybrid SVM-GMM system with the SVM separating 
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hyperplane is designed in the form of (11): 
normalsingular NNSVMVD −= ,        (11) 

where singularN  and normalN  denote the number of 
frames devoted to the singular sound and the normal 
sound classes, respectively. Note that 

mNN normalsingular =+  if the decision window is set to 
cover m  acoustic frames. The rationale for (11) is that 
a relatively large value of SVMVD  is estimated when 
the class inclination of the m frames in a decision win-
dow is obviously singular (the singularN  value clearly 

larger than the normalN  value). In contrast, the value of 
SVMVD  would approach zero if resolution of the class 
inclination is difficult to make and be much smaller than 
zero if the class is normal.  

The GMMLD  (Gaussian Mixture Model Likelihood 
Difference) index that governs the probability output of 
the hybrid SVM-GMM system in the case of two GMM 
sound models is devised as follows: 

)|(log)|(log 2
1

1
1

λλ ∑∑
==

−=
m

i
i

m

i
i xfxfGMMLD , (12) 

where 1λ  and 2λ  are the singular and normal sound 
models respectively in consideration, )|( 1λixf  and 

)|( 2λixf  are given by (6), representing the likelihood 
of 1λ  and 2λ  model classification, respectively, for 
frame ix , and m represents the number of frames cov-
ered in a decision window. The rationale behind (12) is 
that at the decision stage covering m frames of a decision 
window, if the class inclination of the frames is clearly 

singular, the term )|(log 1
1

λ∑
=

m

i
ixf  in (12) is substan-

tially greater than the term )|(log 2
1

λ∑
=

m

i
ixf . This yields 

a large GMMLD  value, indicating the occurrence of 
the singular acoustic event. If the class of the m frames 
cannot be resolved, both terms in (12) are competitive 
and lead to a 0-approaching value for GMMLD . A 
small GMMLD  value indicates that the m frames be-
long to the normal class. 
2) Designs of SVMVD- and GMMLD-driven FRBS 

The hybrid SVM-GMM approach that fuses SVM and 
GMM classifiers uses a fuzzy rule-based system. As al-
ready explained, two input variables (the SVMVD  and 
GMMLD  indexes) can be used to control the probabil-
ity output (P) of the singular event occurrence of the hy-
brid SVM-GMM AED system. As a result, an FRBS 
dictated by six IF-THEN fuzzy rules can be designed 
accordingly: 
Rule i: If SVMVD  is )(1 SVMVDA  and GMMLD  is 

)(GMMLDBi , 
then ),( GMMLDSVMVDfP i= ,  ,3,2,1=i  

Rule (j+3): If SVMVD  is )(2 SVMVDA  and 
GMMLD  is )(GMMLDB j , 

 then ),(3 GMMLDSVMVDfP j+= , ,3,2,1=j  
where  
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 (13) 
along with the implication functions 

,),( iiii cGMMLDbSVMVDaGMMLDSVMVDf +⋅+⋅=
6,...,2,1=i .               (14) 

Note that )(1 SVMVDA  and )(2 SVMVDA  are mem-
bership functions associated respectively with small and 
large values of SVMVD , and )(1 GMMLDB , 

)(2 GMMLDB , and )(3 GMMLDB  are membership 
functions associated respectively with small, medium, 
and large values of GMMLD  (Figs. 4 and 5). 
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Figure 4. Membership functions of FRBS for the input SVMVD . 
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Figure 5. Membership functions of FRBS for the input GMMLD . 
 

The final system output is as follows [24] 

∑

∑

=

=

⋅
= 6

1  

6

1  

),(

i

i

i
i

i

w

GMMLDSVMVDfw
P ,     (15) 

where 
)()( 11

1 GMMLDBSVMVDAw ⋅= ,         
)()( 21

2 GMMLDBSVMVDAw ⋅= ,          
)()( 31

3 GMMLDBSVMVDAw ⋅= ,         
)()( 12

4 GMMLDBSVMVDAw ⋅= ,          
)()( 22

5 GMMLDBSVMVDAw ⋅= ,         
)()( 32

6 GMMLDBSVMVDAw ⋅= .      (16) 
The resulting system has 23 hyperparameters ( 1a , 2a , 

3a , 4a , 5a , 6a , 1b , 2b , 3b , 4b , 5b , 6b , 1c , 2c , 

3c , 4c , 5c , 6c , 1SVMVD , 2SVMVD , 1GMMLD , 

2GMMLD , 3GMMLD ) that must be fixed. An iterative 
process sets these hyperparameters. 
Step 1: Initialization of parameters. Let 

3:2:1:: 321 =GMMLDGMMLDGMMLD and 
3:1: 21 =SVMVDSVMVD . And initialize parame-

ters 1SVMVD  and 1GMMLD . 
Step 2: Estimate the parameters 1a , 1b  and 1c  under 

the conditions, 1SVMVDSVMVD ≤  and 

1GMMLDGMMLD ≤ ,  
where ,1)()( 11 == GMMLDBSVMVDA  

,0)()()( 322 === GMMLDBGMMLDBSVMVDA  
11 =w , 065432 ===== wwwww , and 

    1111 ) ,( cGMMLDbSVMVDaGMMLDSVMVDfP +⋅+⋅== . 
In this case, i.e. the SVM vote difference 

1SVMVDSVMVD ≤  and the GMM likelihood difference 

1GMMLDGMMLD ≤ , the appropriate values of 1a , 1b  

and 1c  are determined by using the try-and-error ex-
perimental method that would maximize the recognition 
rate of acoustic event detection, iR ,  

iR = event_detection( 111 cGMMLDbSVMVDaP +⋅+⋅= , 
tunning_database), 

where the function )(_ ⋅detectionevent  is used to return 
the recognition rate of the proposed FRBS-SVMGMM 
detection with the probability output P  controlled by 
selecting 1a , 1b  and 1c  for the testing data set tun-
ning_database, and iR  denotes the returned recogni-
tion rate after performing the i-th iteration. Note that the 
try-and-error procedure for fixing the 3 hyperparameters 
of the fuzzy system would thus finally return an overall 
recognition rate that is better than the baseline 0R . 
An algorithm for fixing 1a , 1b  and 1c  is developed as 
follows: 

BEGIN 
 Input 1a , 1b  and 1c , of untrained hyperparameters. 

 Initialize 0=i , and the values of 1a , 1b  and 1c . 
Increment 1a . 
Increment i . 
Calculate iR  using the function )(_ ⋅detectionevent . 
IF ( 1−> ii RR ) THEN 

 DO UNTIL ( 1−≤ ii RR ) 
  Increment 1a . 
  Increment i . 

Determine iR  using the function 
)(_ ⋅detectionevent . 

 END DO UNTIL 
ELSE 

DO UNTIL ( 1−≤ ii RR ) 
  Decrement 1a . 
  Increment i . 

Determine iR  using the function 
)(_ ⋅detectionevent . 

 END DO UNTIL 
END IF 
Increment 1b . 
Increment i . 
Calculate iR  using the function )(_ ⋅detectionevent . 
IF ( 1−> ii RR ) THEN 

 DO UNTIL ( 1−≤ ii RR ) 
  Increment 1b . 
  Increment i . 

Determine iR  using the function 
)(_ ⋅detectionevent . 
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 END DO UNTIL 
ELSE 

 DO UNTIL ( 1−≤ ii RR ) 
  Decrement 1b . 
  Increment i . 

Determine iR  using the function 
)(_ ⋅detectionevent . 

 END DO UNTIL 
END IF 
Increment 1c . 
Increment i . 
Calculate iR  using the function )(_ ⋅detectionevent . 
IF ( 1−> ii RR ) THEN 

 DO UNTIL ( 1−≤ ii RR ) 
  Increment 1c . 
  Increment i . 

Determine iR  using the function 
)(_ ⋅detectionevent . 

 END DO UNTIL 
ELSE 

 DO UNTIL ( 1−≤ ii RR ) 
  Decrement 1c . 
  Increment i . 

Determine iR  using the function 
)(_ ⋅detectionevent . 

 END DO UNTIL 
END IF 

END 
Step 3: Estimate the parameters 3a , 3b  and 3c  under 

the conditions, 1SVMVDSVMVD ≤  and 

3GMMLDGMMLD ≥ , 
where ,1)()( 31 == GMMLDBSVMVDA  

,0)()()( 212 === GMMLDBGMMLDBSVMVDA  
13 =w , 065421 ===== wwwww , and 

    3333 ) ,( cGMMLDbSVMVDaGMMLDSVMVDfP +⋅+⋅== . 
The values of 3a , 3b  and 3c  are fixed using the same 
process as for 1a , 1b  and 1c  with the initial condition 

iRR =0  from step 2. 
Step 4: Estimate the parameters 4a , 4b  and 4c  under 

the conditions, 2SVMVDSVMVD ≥  and 

1GMMLDGMMLD ≤ ,  
where ,1)()( 12 == GMMLDBSVMVDA  

,0)()()( 321 === GMMLDBGMMLDBSVMVDA  

14 =w , 065321 ===== wwwww , and 
   4444 ) ,( cGMMLDbSVMVDaGMMLDSVMVDfP +⋅+⋅== . 
The values of 4a , 4b  and 4c  are fixed using the same 

process as for 1a , 1b  and 1c  with the initial condition 
iRR =0  from step 3. 

Step 5: Estimate the parameters 6a , 6b  and 6c  under 
the conditions, 2SVMVDSVMVD ≥  and 

3GMMLDGMMLD ≥ ,  
where ,1)()( 32 == GMMLDBSVMVDA  

,0)()()( 211 === GMMLDBGMMLDBSVMVDA  
16 =w , 054321 ===== wwwww , and 

   6666 ) ,( cGMMLDbSVMVDaGMMLDSVMVDfP +⋅+⋅== . 
The values of 6a , 6b  and 6c  are fixed using the same 
process as for 1a , 1b  and 1c  with the initial condition 

iRR =0  from step 4. 
Step 6: Estimate the parameters 2a , 2b  and 2c  under 

the conditions, 1SVMVDSVMVD ≤  and 

21 GMMLDGMMLDGMMLD ≤≤ , 
 where  ,1)(1 =SVMVDA   

   ,0)()( 32 == GMMLDBSVMVDA    
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With the initial condition iRR =0  from step 5 and { 1a , 

1b , 1c } already obtained at step 2, the parameters 2a , 

2b , 2c , could be determined through the same tuning 
process as in step 2 for best recognition rate too. 
Step 7: Estimate the parameters 5a , 5b  and 5c  under 

the conditions, 2SVMVDSVMVD ≥  and 

32 GMMLDGMMLDGMMLD ≤≤ , 
where  ,1)(2 =SVMVDA  

,0)()( 11 == GMMLDBSVMVDA     

,)(
23

3
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With the initial condition iRR =0  from step 6 and { 6a , 

6b , 6c } already obtained at step 5, the parameters 5a , 

5b , 5c , could be estimated through the same tuning 
process as in step 2 for best recognition rate too. 
Step 8: Re-estimate both the parameter sets { 2a , 2b , 

2c } and { 3a , 3b , 3c } again under the conditions, 

1SVMVDSVMVD ≤  and GMMLDGMMLD ≤2  
3GMMLD≤ , where 

,1)(1 =SVMVDA  ,0)(2 =SVMVDA  ,0)(1 =GMMLDB  
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With the initial condition iRR =0  from step 7 and the 
initial values of { 2a , 2b , 2c } and { 3a , 3b , 3c } al-
ready separately calculated at steps 6 and 3 respectively, 
both the parameter sets { 2a , 2b , 2c } and { 3a , 3b , 3c } 
could be re-estimated with determined initial values 
through the same tuning process as in step 2 for best 
recognition rate too. 
Step 9: Re-estimate the parameter set { 6a , 6b , 6c } 

again under the conditions, SVMVDSVMVD ≤1  

2SVMVD≤  and 3GMMLDGMMLD ≥ , where 
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With the initial values of { 6a , 6b , 6c } already indi-
vidually determined at step 5 and the values of { 3a , 3b , 

3c } already re-estimated at step 8, new values for { 6a , 

6b , 6c } can now be acquired by tuning for a higher iR  
value than in step 8. 
Step 10: Re-estimate the parameter set { 5a , 5b , 5c } 

again under the conditions, ≤≤ SVMVDSVMVD1  
2SVMVD  and 32 GMMLDGMMLDGMMLD ≤≤ , 
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With the initial values of { 5a , 5b , 5c } already indi-
vidually determined at step 7 and the values of { 2a , 2b , 

2c }, { 3a , 3b , 3c } and { 6a , 6b , 6c } already 
re-calculated at step 9, new values for { 5a , 5b , 5c } can 
now be obtained by tuning for a higher iR  value than 
in step 9. 
Step 11: Re-estimate the parameter set { 4a , 4b , 4c } 

again under the conditions, 2SVMVDSVMVD ≥  
and 21 GMMLDGMMLDGMMLD ≤≤ , where  
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Since initial values of { 4a , 4b , 4c } have been already 
separately determined at step 7 and the re-estimated val-
ues of { 5a , 5b , 5c } already calculated at step 10, new 
values for { 4a , 4b , 4c } can now be acquired by tuning 
for a higher iR  value than in step 10. 
Step 12: Re-estimate the parameter set { 1a , 1b , 1c } 

again under the conditions, ≤≤ SVMVDSVMVD1  
2SVMVD  and 1GMMLDGMMLD ≤ , where 
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New values for { 1a , 1b , 1c } can now be obtained by 
tuning for a higher iR  value than in step 11 since the 
initial values of { 1a , 1b , 1c } have been already sepa-
rately calculated at step 2 and the re-estimated values of 
{ 4a , 4b , 4c } already obtained at step 11. 
Step 13: Re-estimate theses two parameters 2SVMVD  

and 3GMMLD  under the conditions, ≤1SVMVD  
2SVMVDSVMVD ≤  and ≤≤GMMLDGMMLD1  

,2GMMLD  where 
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With parameter sets { 1a , 1b , 1c }, { 2a , 2b , 2c }, { 4a , 

4b , 4c } and { 5a , 5b , 5c } already re-estimated at 
steps 12, 8, 11 and 10 respectively, new values for 

2SVMVD  and 3GMMLD  can now be acquired by tun-
ing for a higher iR  value than in step 12. 
Step 14: Update the values of 1SVMVD , 1GMMLD  and 

2GMMLD  such that 3:1: 21 =SVMVDSVMVD  
and 3:2:1:: 321 =GMMLDGMMLDGMMLD , 

*

*

R

RRi −
=δ , /* *R : desired recognition rate */ 

iRR =0 . 
Repeat from step 2 until δ  is less than a predefined 
threshold. 

When completing fixing hyperparameters by the above 
developed iterative process, the previous set of rules is 
expected to achieve the following IF-THEN implication 
representations: 
Rule 1: If SVMVD  is small and GMMLD  is small, 

then P is extremely small, 
Rule 2: If SVMVD  is small and GMMLD  is medium, 

then P is small, 
Rule 3: If SVMVD  is small and GMMLD  is large, 

then P is slightly small, 
Rule 4: If SVMVD  is large and GMMLD  is small, 

then P is slightly large, 
Rule 5: If SVMVD  is large and GMMLD  is medium, 

then P is large, 
Rule 6: If SVMVD  is large and GMMLD  is large, 

then P is extremely large, 
where “extremely small,” “small,” “slightly small,” 
“slightly large,” “large” and “extremely large” P values 
can be determined by functions  

),,(1 GMMLDSVMVDf  ),,(2 GMMLDSVMVDf  
),,(3 GMMLDSVMVDf  ),,(4 GMMLDSVMVDf  

),(5 GMMLDSVMVDf  and ),,(6 GMMLDSVMVDf  
respectively. 

The SVMVD  and GMMLD  input variables in the 
fuzzy rule base are divided into a range of two states, 
“small” and “large,” and a range of three states, “small,” 
“medium,” and “large,” respectively. In most studies 
about speech and voice classification (including this 
study), the SVM approach achieves better performance 
than the GMM approach in recognition accuracy [1]. 
Compared with GMM, SVM has lower size require-

ments for training data. In addition, SVM is also less 
sensitive to the presence of irrelevant features than 
GMM [29]. In the proposed fuzzy rule base, the value of 
SVMVD  is the major concern for inferring an output of 
the rather large P value. As long as the SVMVD  value 
falls into the range of the “large” set, the output P value 
will be rather large (more than 0.5). The GMMLD  in-
put can be used as a secondary variable to fine-tune the 
inferred output P value. Note that during the entire 
FRBS hyperparamters training process, a predefined 
threshold is used to be compared with the inferred output 
P of FRBS in such way that if the value of P is larger 
than the value of the threshold, then a decision of the 
singular acoustic event occurrence will be achieved, oth-
erwise the normal condition decision will be made. The 
same threshold is used for decision making of online 
AED testing applications through the proposed 
FRBS-SVMGMM. 
 

4. Experiments and Results  
 

This study includes experiments to evaluate perform-
ance of the proposed FRBS-SVMGMM acoustic event 
detection approach and detect female screaming in three 
environments with different acoustic backgrounds: an 
office space, a parking lot, and a living room. 
 
A. Database and Experiment Design 

The experiments in this study established (1) SVM and 
GMM models for female screaming and acoustic back-
grounds, (2) the training phase for fixing hyperparame-
ters of the fuzzy rule-based system, and (3) the recogni-
tion phase for performance evaluation on the fusion of 
SVM and GMM decisions by FRBS (FRBS-SVMGMM) 
in Section 3. 

The training phase of the GMM models constructs 
three models for “office space,” “parking lot,” and “liv-
ing room” as background models using a ten-minute re-
cording in each environment. The recordings were taken 
at 8 K Hz sampling rate, from which LPC, LPCC, and 
MFCC were extracted for each 20 ms frame (consisting 
of 160 samples). A 12-D LPC, a 12-D LPC/mel cepstrum, 
and a 12-D delta cepstrum were used. Three GMM mod-
els for “female screaming” in each of the three environ-
ments were built using two thirds of a 180-s recording 
(60 s for each environment) from each of 15 female par-
ticipants to extract the same set of three acoustic features. 
The participants were requested to scream in every pos-
sible way they could during the recording. Three SVM 
models for “female screaming” in each of the three en-
vironments were also established using the same data-
base as the GMM models training phase. 

In the FRBS hyperparameter-tuning phase described 
above, the remaining one-third of the screaming data (20 
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s for each environment and 900 s in total for all 15 fe-
males in all three environments) was used as the training 
data. 

In the performance evaluation phase, an entirely new 
group of 15 women was asked for screaming recordings 
of 60 s each (20 s for each of the three environments) as 
test data to compare recognition performance of the four 
acoustic event detection schemes: SVM alone, GMM 
alone, LOP-SVMGMM, and the proposed 
FRBS-SVMGMM. 
 
B. Experimental Results 

As mentioned, the 20 s recording segments of the 
acoustic event “female screaming” occurring in “office 
space,” “parking lot” or “living room” backgrounds from 
15 women formed an acoustic stream 15 min long. This 
stream was used to evaluate the performance of the pro-
posed approach. The following observations were made 
during the experiment. 
(1) Tables 1, 2, and 3 record the recognition perform-

ances of female screaming detection using the con-
ventional LOP-SVMGMM with various α  values 
by LPC, LPCC, and MFCC acoustic features, re-
spectively. The best choices of α  for 
LOP-SVMGMM by LPC, LPCC, and MFCC were 
0.6, 0.7 and 0.7, respectively. Therefore, these values 
of α  were selected in LOP-SVMGMM for com-
parison. 

 
Table 1. Event detection by LOP-SVMGMM, using only LPC 

feature. 
Average recognition rates (%) 

Selected backgrounds 
 

Weight α  
settings Living room Parking lot Office space 

0.1 82.33 86.67 93.67 
0.2 82.33 87 94.33 
0.3 82.67 87.33 94.67 
0.4 82.67 87 94.67 
0.5 83.33 88 95.33 
0.6 84 89 95.67 
0.7 83.67 88.33 95.67 
0.8 83 87.67 95 
0.9 82.67 87.33 94.33 

 
Table 2. Event detection by LOP-SVMGMM, using only 

LPCC feature. 
Average recognition rates (%) 

Selected backgrounds 
 

Weight α  
settings Living room Parking lot Office space 

0.1 89.67 89.67 92.33 
0.2 89.67 90 92.67 
0.3 90.67 90.67 93.33 
0.4 90.33 91 93.33 
0.5 90.67 91.67 94.67 
0.6 90.67 92 95.67 
0.7 90.67 92.67 96.33 
0.8 90 92.67 96 
0.9 89.67 92 95.67 

 
 

Table 3. Event detection by LOP-SVMGMM, using only 
MFCC feature. 

Average recognition rates (%) 
Selected backgrounds 

 
Weight α  

settings Living room Parking lot Office space 
0.1 89.67 90.67 94 
0.2 90 91 94.33 
0.3 89.67 91 94.33 
0.4 90 91.67 95 
0.5 90 92 95.67 
0.6 90.67 92.33 96.33 
0.7 91.67 93 96.67 
0.8 91 92.67 96.67 
0.9 90.33 92 96.33 

 
(2) Figs. 6, 7, and 8 show the experimental records of 

female screaming detection by SVM alone, GMM 
alone, LOP-SVMGMM and FRBS-SVMGMM 
conducted in  “living room,” “parking lot,” and 
“office space” backgrounds, respectively. The 
method exploiting hybrid SVM-GMM governed by 
the FRBS achieved an average of 85.33%, 91.67%, 
and 92.67% recognition rates for event detection us-
ing LPC, LPCC, and MFCC respectively in the test-
ing context of living room (Fig. 6). In all cases, the 
recognition accuracy of SVM alone, GMM alone, 
and LOP-SVMGMM was inferior to the scores of 
FRBS-SVMGMM. The proposed FRBS-SVMGMM 
leads to the best recognition, followed by 
LOP-SVMGMM, then by SVM alone, and GMM 
alone yields the worst recognition. Furthermore, 
against the FRBS-regulated fusion of SVM and 
GMM, the LOP-fusion of SVM and GMM reaches 
competitive scores of 84%, 90.67%, and 91.67% on 
the use of LPC, LPCC, and MFCC features, respec-
tively. Similar conclusions came from the test con-
texts of parking lot and office space (Figs. 7 and 8). 

(3) For all testing in the three backgrounds, MFCC per-
formed best in acoustic event detection, LPCC the 
second and LPC the third, regardless of which detec-
tion scheme being adopted (Figs. 6-8). 
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Figure 6. Living room acoustic event detection. 
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Figure 7. Parking lot acoustic event detection. 
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Figure 8. Office space acoustic event detection. 
 
(4) In the experiment, the noisiest background was the 

living room (where family members exchanged 
conversation while children ran and played, with a 
TV set turned on aloud), followed by the parking lot, 
and then the office space. Such a phenomenon seems 
to reflect the recognition accuracy of event detection. 
To be specific, event detection had the best recogni-
tion performance in office space, followed by the 
parking lot, and then the living room, regardless of 
which of the three acoustic features was used. 

 
5. Conclusions 

 
This paper proposes an FRBS-SVMGMM mechanism 

that uses an FRBS to govern the decisions of SVM and 
GMM detection in acoustic event detection. This study 
examines the performance of female screaming detection 
in three operational backgrounds (office space, indoor 
parking lot, and living room) with three distinctive 
acoustic features. For all test cases, experimental records 
indicate that the proposed FRBS-SVMGMM scheme is 
superior to conventional acoustic event detection tech-
niques: the SVM classifier alone, the GMM classifier 

alone, and the fusion of SVM and GMM classifiers by 
linear opinion pool (LOP-SVMGMM). 
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