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Abstract—The widespread adoption of low-cost depth cameras
has opened new opportunities to improve traditional action
recognition systems. In this paper we focus on the specific problem
of action recognition under view point changes and propose a
novel approach for view-invariant action recognition operating
jointly on visual data of color and depth camera channels. Our
method is based on the unique combination of robust Self-
Similarity Matrix (SSM) descriptors and multi-task learning.
Indeed, multi-view action recognition is inherently a multi-task
learning problem: images from a camera view can be modeled
as visual data associated to the same task and it is reasonable
to assume that the data of different tasks (camera views) are
related to each other. In this work we propose a novel algorithm
extending Multi-Task Linear Discriminant Analysis (MT-LDA)
to enhance its flexibility by learning the dependencies between
different views. Extensive experimental results on the publicly
available ACT42 dataset demonstrate the effectiveness of the
proposed method.

I. INTRODUCTION

The problem of recognizing and understanding human ac-
tions in images and videos is probably one of the most impor-
tant and challenging tasks which computer vision researchers
are currently facing. Indeed, action recognition is fundamental
in many applications ranging from robotics, human-computer
interfaces, human behavior understanding, content-based video
indexing, video surveillance, and ambient-assisted living.

There is a vast literature on visual-based action recognition
systems (see e.g. [1, 2] for surveys on the topic). While the
large majority of the methods are based on traditional cameras
as sensors, recently the widespread adoption of low cost depth
cameras has shifted the interest of research toward developing
solutions specifically targeted to them.

In this paper we consider the problem of multi-view action
recognition from RGB-D cameras. Having at disposal multiple
sensors and images from both color and depth camera chan-
nels, issues related to self occlusions are greatly alleviated with
respect to a single view RGB setting and in general improved
recognition results can be obtained. However, how to address
the effect of viewpoint changes on the recognition of human
actions is still under investigation. While many works have
considered this problem in the context of traditional cameras
[3–6], very few approaches have been designed to operate
specifically on a RGB-D setup [7].

Extracting view-invariant descriptors is a possible strategy
for action recognition in the multi-view setting. Following
this idea, some recent approaches have been developed: some
are based on transferring information across views [4], other
on computing view-invariant features [8]. In particular in [8]
descriptors calculated from temporal Self-Similarity Matrices
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Fig. 1. Examples of SSMs computed from Histogram of Oriented Gradients
(HOG) and Motion History Image (MHI) features on the ACT42 dataset. (best
viewed in color)

are proposed. Temporal SSMs can be computed from different
low-level features extracted on a frame basis (e.g. Histogram
of Oriented Gradients, Histograms of Optical Flows, Motion
History Images) and have been shown to be particularly robust
to point of view changes. However, a careful analysis of
SSMs reveals that, especially when the appearance changes
considerably among different views, SSMs are similar only up
to a certain extent. This effect can be observed in Fig.1, where
SSMs computed for four sequences of the ACT42 dataset [7]
are shown. It is worth noting that SSMs extracted from HOG
descriptors and color frames are less stable with respect to
those obtained computing Motion Histogram Images (MHIs)
from depth images. In this paper we propose a novel approach
for multi-view action recognition where SSM descriptors are
used within a multi-task learning framework.

Multi-task learning [9] aims to simultaneously learn a
classification model for a set of related tasks. The intuition
is that a more accurate classifier can be obtained when taking
into account task relationships. In this paper, we consider each
camera view as a task and investigate how to share features
across different views in order to boost the recognition per-
formance. We present a novel multi-task learning framework
which enhances the discriminative power of SSM descriptors
by individuating view invariant information and by separating
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it from view specific features. Inspired by previous works on
Multi-task Linear Discriminant Analysis we propose a novel
approach for MT-LDA [10] where the task relationships are not
fixed a priori but are also learned during the training phase. In
fact, while the relatedness of different tasks can be modeled
by defining a similarity graph which reflects information about
camera geometry or generally features similarity, refining
such dependency graph during the learning process increases
classifier’s flexibility and generally improves its performance.

Our experiments show that sharing features among views is
beneficial for multi-view and view invariant action recognition.
On the ACT42 dataset, our approach achieves a recognition
accuracy 10% higher than previous works based on SSMs
descriptors.

A. Contributions

This paper is one of the first works to cope with the
problem of multi-view action recognition when both color
and depth camera channels are considered. Moreover, up
to our knowledge, no previous works have addressed this
problem within a multi-task learning framework. Our approach
is inspired by the work in [10]. However, the proposed MT-
LDA algorithm is novel since in [10] a fixed graph modeling
tasks’ dependencies is employed. While applied to the problem
of action recognition, our algorithm is rather general and can
be used in other applications, such as image annotation, pose
estimation, etc.

II. RELATED WORK

A. View Invariant Action Recognition

Understanding human daily activities is a very challenging
problem. One of the main difficulties of action recognition
is due to the viewpoint variations which are common in real
conditions and create significant intra-class variability. Many
previous works have tried to address this issue [8, 11, 12]. In
[8] robust descriptors based on SSMs and on the traditional
bag-of-words model are introduced. Rao et al. [12] presented
a view-invariant representation of human action to capture the
dramatic changes in the speed and direction of the trajectory
using spatio-temporal curvature of 2D trajectory. In [11] the
view invariant ”Hankelet” descriptors are proposed being fea-
tures which capture the dynamic properties of short tracklets.
Other works [4, 13, 14] use transfer learning algorithms to
learn a view invariant representation.

While addressing the view invariance issue is challenging,
this is not the only problem when building an action recogni-
tion system. Additional difficulties arise due to illumination
variations or cluttered scenes. While traditional approaches
[1, 4, 11, 13] are based on the sole data recorded from color
cameras, the advent of low cost RGB-D sensors have brought
the opportunity to cope with these problems much more
effectively. Only few works have considered the problem of
action recognition combining both color and depth information
[7, 15]. In [15] the problem of activity of daily living analysis
from RGB-D data is addressed. Two multi-modality fusion
schemes are proposed, developed from state-of-the-art features
representation methods. However, a single camera setup is
considered, thus no specific solutions are developed to cope
with issues due to camera views variations. In [7] a database

for multi-view multi-modal action recognition is made publicly
available. Moreover, an approach based on combining color
and depth descriptors is proposed. However, this method is not
targeted to address the cross-view action recognition problem.
Differently, in this paper we specifically aim to alleviate
viewpoint variations by combining SSMs descriptors and a
MTL approach.

B. Multi-task Learning

In the last few years multi-task learning approaches have
become popular in the computer vision community and have
been successfully applied to many problems such as image
classification [16], image annotation [17] and head pose clas-
sification [18]. Multi-task learning methods develop from the
intuition that, when taking multiple classification/regression
problems associated to related tasks, learning a model which
considers a shared component together with task-specific rep-
resentations is convenient with respect to learning on each
single task separately. In practice in many real world problems
MTL typically leads to improved performance as compared to
single task approaches.

Traditional MTL methods consider a single shared repre-
sentation, assuming that all the tasks are related [9]. However,
when some of the tasks are independent, this may lead to
worse performance than single-task learning. Recently, more
sophisticated approaches have been proposed to address this
problem [18–20]. Multi-task extensions of Linear Discriminant
Analysis have been introduced in [10, 21, 22]. However, the
framework proposed in [21] is not flexible as no learning on the
relationship between tasks is conducted. In [22] heterogeneous
feature spaces among different tasks are considered, a scenario
that is not appropriate in our application. In [10] MT-LDA is
proposed for multi-view action recognition assuming that the
camera view dependencies are known a-priori and specified
in form of a graph. Differently, in this paper we propose to
learn the task relationships simultaneously with task-specific
parameters. Moreover while in [10] only traditional cameras
are considered, in this paper we also employ depth information.
Multi-task learning for multi-view action recognition is also
proposed in [23] but the authors did not use RGB-D data.

III. CLUSTERED MULTI-TASK LINEAR DISCRIMINANT

ANALYSIS FOR VIEW INVARIANT COLOR-DEPTH ACTION

RECOGNITION

In this section, we first present an overview of the pro-
posed framework. Then we introduce the considered color
and depth self-similarity matrix descriptors for RGB-D action
recognition. Finally, we discuss our clustered multi-task linear
discriminant analysis in detail.

A. Overview

In this section we describe the proposed approach. We
first compute SSMs descriptors separately for color and depth
images. Specifically we used different low level features, e.g.
HOG for describing RGB data and MHIs and some of its
variations for depth frames. Then, we adopt the standard bag-
of-words paradigm to compute histograms for each video and
learn a classification model for each camera view using the
proposed MT-LDA algorithm. In the following we present our
approach in detail.
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B. Self-Similarity Matrix Descriptors

Given an image sequence I = {I1, I2, ..., IT }, an SSM
is a symmetric matrix E ∈ RT×T , Eij = ‖fi − fj‖2 is
the Euclidean distance between low-level features fi, fj ∈ Rd

extracted from frames Ii, Ij .

In this paper, we use HOG descriptors [24] as low-level
features computed on RGB video frames, while MHI [25] in
the form of forward and backward MHIs [15] are adopted
for depth images. Denoting the depth value corresponding to
a pixel at location x, y, and at time t as D(x, y, t), MHI is
computed as:

HD
τ (x, y, t) =

{
τ, if |D(x, y, t)−D(x, y, t− 1)| > δDth

max(0, HD
τ (x, y, t− 1)− 1), otherwise

where τ is the longest time window that the system considers
(τ is equal to the number of frames in our experiments),
and δDth is the threshold for mask generation in the motion
region. In order to exploit the depth information better, we also
consider forward-MHIs HfD

τ which encodes positive depth
gradient and backward-MHIs HbD

τ which models negative
depth gradient [15], i.e.:

HfD
τ (x, y, t) =

{
τ, if D(x, y, t)−D(x, y, t− 1) > δDth

max(0, HfD
τ (x, y, t− 1)− 1), otherwise

HbD
τ (x, y, t) =

{
τ, if D(x, y, t)−D(x, y, t− 1) < −δDth

max(0, HbD
τ (x, y, t− 1)− 1), otherwise

Once SSMs are computed for HOG, MHI, forward-DMHI
and backward-DMHI features, the same strategy as described
in [8] is adopted for calculating local descriptors. For each
point on the unimodal SSM diagonal, three local descriptors
are computed corresponding to different diameters in the log-
polar domain (diameter of 28, 42 and 56 frames respectively).
The bag-of-words model is then employed to obtain the final
histogram representation for a video clip. Also, a codebook of
500 words is used in our experiments.

In Fig.2, we show an example of MHI, forward-MHI and
backward-MHI features extracted for ACT42 dataset and the
corresponding SSM descriptors. It is worth noting that SSMs
are rather stable over different persons performing the same
action under different viewpoints. However, this invariance is
valid only to a certain extent. Therefore, in order to individuate
common features among different views, clustered multi-task
LDA is introduced as follows.

C. Clustered Multi-task Linear Discriminant Analysis

We consider a set of R related multi-class classification
problems. We are given a training set Tt = {(xt

i, �
t
i)}Nt

i=1 for
each task t = 1, 2, . . . , R, where xt

i ∈ IRd is d-dimensional
feature vector, �ti ∈ {1, 2, . . . , C} indicates the class member-
ship. We denote with Nt,j the sample size of j-th class in t-th

task, Nt =
C∑

j=1

Nt,j the total training samples in t-th tasks

and N =
R∑

t=1
Nt. We define xt ∈ IRNt×d, xt = [xt

1, ..., x
t
Nt

]′

Fig. 2. ACT42 dataset and different types of features extracted. From top to
bottom original frames, MHI, fMHI, bMHI, SSMs. (best viewed in color)

and the class indicator matrix yt ∈ IRNt×C , yt = [�t1, ..., �
t
Nt

]′
where:

(yt)ij =

⎧⎨
⎩

√
Nt

Nt,j
−
√

Nt,j

Nt
if �ti = j

−
√

Nt,j

Nt
otherwise

Concatenating xt and yt of all the R tasks the matrices
X = [x′1, . . . ,x

′
R]
′, X ∈ IRN×d and Y = [y′1, . . . ,y

′
R]
′,

Y ∈ IRN×CR are obtained. In this paper we propose to learn
a global weight matrix W = [w′1, . . . ,w

′
R]
′,W ∈ IRd×CR,

W = P+Q by solving the following optimization problem:

min
P,Q

‖Y −X(P+Q)‖2F + λΩ(P,Q) (1)

The weight matrix W is obtained summing two terms, the
matrix P = [p′1, . . . ,p

′
R]
′ modeling common features among

tasks and the matrix Q = [q′1, . . . ,q
′
R]
′ which takes into

account task specific features. The regularization term Ω(·)
is defined as:

Ω(P,Q) = ‖P‖2F + ‖Q‖2F + λc ‖GP′‖1
In the regularization term, ‖P‖2F regulates model complexity
while ‖Q‖2F penalizes large deviation of the common model
P from the global model W. The L1 norm regularizer im-
poses the weights pt of related tasks to be close together.
The relatedness of the tasks is modeled specifying a matrix
G ∈ IR|E|×CR:

(G)q=(i,j),h =

{
γij if i = h
−γij if j = h

0 otherwise

3495



Algorithm 1 Clustered Multi-task LDA

INPUT: Tt = {(xt
n, �

t
n)}Nt

n=1, ∀t = 1, . . . , R, λ, λc, G.

Initialize P0, Q0, α0 = 1.
LOOP:

αn = 1
2 (1 +

√
1 + 4α2

n−1)

Updating P:
P̂ = Pn − 2XT (XPn −Y)
FOR i = 1 : d

Initialize si,0, zi,0, pi,0

Compute Cholesky factorization of matrix A.
LOOP:

Solve Api,k+1 = bk

si,k+1 = Σλ̂1/ρ
(Gpi,k+1 + 1

ρz
i,k)

zi,k+1 = zi,k + ρ(Gpi,k+1 − si,k+1)
Until Convergence

END FOR
Pn+1 = (1 + αn−1−1

αn
)Pn+ 1

2
− αn−1−1

αn
Pn

Updating Q:
Q̂ = Qn − 2XT (XQn −Y)
Qn+ 1

2
= 1

1+λ̂θ
Q̂

Qn+1 = (1 + αn−1−1
αn

)Qn+ 1
2
− αn−1−1

αn
Qn

Until Convergence
Output: W = P+Q

Here, γij = (
∑

i �=j ‖SSMi − SSMj‖2)−1, i.e., γij is set by
calculating the inverse of the normalized euclidean distance
of SSMs descriptors between two different views (tasks) for
the same action/class, averaged on the training data. γij is
normalized into the interval [0, 1] and a large γij indicates
high similarity of specific action/class between views. It is
worth noting that while the matrix G specifies some a priori
knowledge about tasks’relatedness, the dependencies among
tasks are learned by computing the matrix Q, i.e. tasks with
the same qt are dependent.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[26] is adopted to solve (1). Considering the function
Π(P,Q) = ‖Y −X(P+Q)‖2F which is convex and smooth
and Θ(P,Q) = λ‖P‖2F + λ‖Q‖2F + λλc ‖GP′‖1 which is
convex non smooth. FISTA solves the optimization problems
in the form min

U
Π(U) + Θ(U) computing at each iteration a

proximal step:

min
U

∥∥∥U− Û
∥∥∥2
F
+

2

Lk
Ω(U)

where Û = Ũk − 1
Lk
∇Π(Ũk), Ũk is the current iterate

and Lk is a stepsize determined by line search. To solve
the proximal step, the soft-thresholding operator Σλ(x) =
sign(x)max(|x| − λ, 0) is adopted [27].

The proximal step in terms of P, Q amounts into solving
the following:

min
P,Q

∥∥∥P− P̂
∥∥∥2
F
+
∥∥∥Q− Q̂

∥∥∥2
F

(2)

+λ̂c ‖GP′‖1 + λ̂ ‖P‖2F + λ̂ ‖Q‖2F

Collapseppppp

Drink

MakePhonecall

Pickup

PutOn

TwistOpen

WipeClean

Fig. 3. Examples of different actions from the ACT42 dataset.

where P̂ = P−2XT (XP−Y) and Q̂ = Q−2XT (XQ−Y),
λ̂ = 2λ/Lk and λ̂c = 2λλc/Lk. To solve (2) we consider P
and Q separately. Solving (2) with respect to Q is straight-
forward. Solving (2) with respect to P is difficult because of
the non-smooth L1-norm term. We propose to solve d separate
optimization problems, one for each row pi of the matrix P:

min
pi

∥∥pi − p̂i
∥∥2
2
+ λ̂1

∥∥Gpi
∥∥
1
+ λ̂c

∥∥pi
∥∥2
2

and consider the equivalent constrained optimization problem
(in the following the superscripts are removed for sake of
clarity):

min
p,s
‖p− p̂‖22 + λ̂1 ‖s‖1 + λ̂c ‖p‖22 (3)

s.t. Gp− s = 0

The augmented lagrangian multipliers approach [27] is applied
to solve the problem. The associated Lagrangian is:

Lρ(p, s, z) = ‖p− p̂‖22 + λ̂1 ‖s‖1 + λ̂c ‖p‖22
+zT (Gp− s) + ρ

2 ‖Gp− s‖22
(4)

where z is the vector of augmented Lagrangian multipliers
and ρ is the dual update step length. Three steps are alternated
corresponding to solving (4) with respect to the three variables
p, s and z. Solving (4) with respect to s has a closed form
solution obtained by applying the soft-thresholding operator.
The update step corresponding to solving with respect to z is
straightforward. Solving with respect to p implies solving a
linear system Apk+1 = bk where A = ρGTG+ (2 + 2λ̂c)I
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and bk = ρGT sk −GT zk + 2p̂. In this paper, Cholesky fac-
torization is used to decompose A and solve the linear system
efficiently. The resulting algorithm is shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evalu-
ate the performance of our proposed method. We also compare
our method with other state-of-the-art methods.

A. Experimental Setup

In this paper the ACT42 dataset [7] is used for experimental
evaluation. This is a very recent dataset which contains video
sequences depicting 14 representative daily actions recorded
through both RGB and depth channels simultaneously. Ev-
ery action is recorded from four cameras. The daily actions
considered are: collapse, drink, make phone call, mop floor,
pick up, put on, read book, sit down, sit up, stumble, take off,
throw away, twist open and wipe clean. Figure 3 shows some
examples of different actions from ACT42 dataset. To evaluate
the proposed approach we adopt the well known leave-one
user-out strategy: videos of one actor are selected for testing
while videos of the remaining people are used as training
data. The optimal values of the regularization parameters λ
and λc are determined using a separate validation set. We
perform two series of experiments, to evaluate the benefit of
our approach in the context of Multi-view and View-invariant
action recognition.

B. Multi-view Action Recognition Results

In this series of experiments, all training samples from
all camera views are used. According to multi-task learning
theory, all related tasks are learned together in order to increase
each individual task’s performance. Specifically, once P,Q are
learned with our learning framework, for experiments in this
series, the test sample xtest is projected into C dimensional
output space by x′test(pt + qt) using pt + qt according to
the specific view t where a test sample belongs. The class
label of the test sample is assigned using a k-nearest neighbor
classifier.

Figure 4 shows the results of the comparison between our
method and two baselines: a SVM classifier operating on the
same features (i.e. a single task learning scenario) and the
�2,1-norm multi-task learning approach in [9] (assuming all the
tasks related to each other). It is evident how sharing similarity
information among different views using multi-task learning
outperforms SVM by at least 5%. Moreover, it is clear that
using a graph specifying some a-priori knowledge about the
degree of similarity of different views is better than adopting
a �2,1-norm multi-task learning approach.

Figure 5 shows the confusion matrix on the ACT42 dataset.
It is interesting to observe that for some actions such as
drink, thowaway and wipeclean, our method achieves very
high recognition accuracies. Even for some challenging actions
(e.g., twistopen and takeoff ) having small and ambiguous mo-
tions, our method still guarantees quite accurate recognition.
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Fig. 4. Multi-view action recognition accuracy: comparison with baselines
on the ACT42 dataset.
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Fig. 5. Confusion matrix on the ACT42 dataset.

C. View-invariant Action Recognition Results

In this series of experiments, one camera view is missing
in the training data and we use the model learned with data
form the other views to perform prediction on the missing
view. Specifically, once P,Q are learned with our learning
framework, for experiments in this series, the test sample
xtest is projected into (R − 1)C dimensional output space
by x′test(P+Q) since only R−1 tasks are considered in this
setting. The class label of the test sample is again assigned
using a k-nearest neighbor classifier. The results are shown in
Table I. Although there is some performance drop compared
to the situation where all camera views are available at the
training phase, our approach still achieves the best performance
compared to a single task SVM and to �2,1-norm multi-task
learning.
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TABLE I. CROSS-VIEW ACTION RECOGNITION ACCURACY ON ACT42

DATASET WHEN TRAINING IS PERFORMED WITH ONE VIEW MISSING.

Missing View
Cam1 Cam2 Cam3 Cam4

Proposed 0.451 0.478 0.453 0.493
Junejo - SVM [8] 0.363 0.399 0.378 0.401
�12 MTL [9] 0.415 0.453 0.448 0.462

V. CONCLUSIONS

In this paper, we proposed clustered multi-task LDA for
view-invarinat human action recognition in the color-depth
camera setup. Experimental results on the ACT42 datasets
demonstrate the superior performance of our method compared
to other SSM-based state-of-the-art methods. The proposed
multi-task LDA algorithm is general and can be used in
other applications, such as image annotation, pose estimation,
etc. Future works include the integration of other features in
combination with SSM descriptors and the investigation of a
different strategy for graph construction.
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