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The paper presents a semi-analytical method of calculating the response of a pile group. The approach is
based on tying the displacement at any point of the soil mass around a pile or group of piles to the dis-
placements experienced by the piles themselves. This is done by multiplying the pile displacements by
decay functions. Application of the principle of minimum potential energy and calculus of variations to
the resulting displacement field formulation leads to the differential equations for the soil and piles. Solu-
tion of these differential equations using finite differences and the method of eigenvectors leads to the
desired displacement field in the soil and deflection profiles of the piles. The method produces displace-
ment fields that are very close to those produced by the finite element method at a fraction of the cost. To
illustrate the ease of application of the method, it is then used to prepare pile group efficiency charts for
some typical soil modulus profiles.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The problem of the laterally loaded pile group

It is common for a single pile to not have enough capacity to sus-
tain a structural load (as from a column in a frame structure) on its
own, so pile groups capped by a reinforced concrete pile cap are very
common in foundation engineering solutions. The present paper
proposes a new solution for the problem illustrated in Fig. 1, which
addresses the lateral loading of a group of np piles connected at the
top by a rigid cap and installed in a soil profile consisting of ntotal lay-
ers. The main aim of any analysis of this problem is to relate the total
displacement of the pile cap to the load applied on it. Also of interest
are estimates of the displacements that develop in the surrounding
soil and what the internal forces in the piles are.

Horizontal forces may be due to wind, waves, traffic or seismic
loadings. These loads are, in the end, transferred to the piles sup-
porting the structures. The horizontal forces get transmitted to
the pile cap and then to the top of individual piles as concentrated
forces and/or moments. One of the challenging aspects of pile
design under lateral loads is to determine the fraction of the total
loading that gets distributed to each pile. Given the range of struc-
tures subject to significant lateral loading, there has been consider-
able research on the problem of laterally-loaded piles, an indicator
of the importance of the problem and an indicator also of the lack
of a definitive, satisfactory solution to the problem. The literature
on the topic is reviewed next.

1.2. Analysis and design approaches

1.2.1. Subgrade reaction method
Analysis of laterally loaded piles was initially based on the con-

cept of representing soil by discrete springs using Winkler’s beam
on elastic foundation approach [1]. However, this approach was
modified to account for plastic deformation of soil (which starts
at very small strains) by incorporating non-linearity in the springs
[2,3]. Further development of this concept led to the p–y method,
which is widely used today.

In the p–y method, load–displacement (p–y) curves are associ-
ated with different depths along the pile, and the pile deflections
are calculated iteratively using the so-called p–y curves [4–8].
For routine design, the p–y method is the method of choice, as
finite element analyses are too costly, but it suffers from limita-
tions [9–16].

1.2.2. Continuum approach
The continuum approach assumes the pile as embedded in an

elastic continuum. Classical work (e.g., [17,18]) on the problem of
the laterally loaded pile group has relied on analytical and numer-
ical elastic techniques and principles, often including the principle
of superposition, to solve it. The variational approach has been
used to set up the boundary value problem for a pile loaded later-
ally in an elastic medium with some assumptions on the form of
the displacement field; analytical or numerical solution of the
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Fig. 1. A laterally loaded pile group in a multi-layered soil profile.
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problem then led to the pile displacements for different boundary
conditions [19,20]. Similarly, analyses of a laterally loaded pile
installed in multi-layered soil were done by assuming mathemat-
ical forms for the displacement field in the soil and minimizing
potential energy for the pile–soil system [21–23].

There has also been considerable work on use of numerical meth-
ods, particularly the finite element method [24–29] to study the lat-
erally loaded pile group problem. The major advantage of numerical
techniques is their flexibility in adapting to different geometries,
boundary conditions and constitutive relationships. However, they
are mostly problem-specific and computationally intensive, requir-
ing, in addition, both sufficient experience on the part of the analyst
and time to properly set up the analysis. In contrast, linear elastic
methods cannot be applied in practice without a measure of judg-
ment, but provide insights into pile load response and establish
the conceptual basis for more realistic methods of analysis.

1.3. Pile group analysis and goals of the present paper

Field and model experiments have shown that pile group
response to lateral loads is extremely complex and depends on many
factors, including loading conditions, pile end restraints, pile
arrangement and spacing, and the stiffness of each pile relative to
the other piles and the soil [30–37]. In early research, displacement
and load distribution among the piles were determined considering
the effect of soil as elastic springs [38–40]. The most commonly used
method of analysis today is the p–y multiplier technique. Based on
full-scale tests of pile groups, it is known that, all other things being
equal, a pile group deflects more than an isolated pile loaded to a
load equal to the average load per pile in the group [25,41] because
the soil stiffness is reduced due to the overlapping of deformation
zones of neighboring piles. The p–y multiplier approach accounts
for this by using multipliers (with value less than one) to reduce
the ordinates of the single-pile p–y curve so that it can then be
applied to each individual pile in the group. These multipliers have
typically been back-calculated from experimental and numerical
results [42–45,36,46,47]. The multiplier values are problem-spe-
cific, and there is no rational method available that can be used to
predict the multipliers in a generalized way.

An evaluation of the different available methods [48] revealed
that no single method was adequate in analyzing all aspects of pile
groups, such as pile–soil–pile interaction, position and spacing of
piles, and the relative stiffness of the piles. Deficiencies of the dif-
ferent methods have been reported by other researchers as well
[49–51]. The existing methods for analyzing the laterally-loaded
pile problem suffer from one or more of the following limitations:
(1) need for important assumptions and approximations, (2) anal-
yses that are difficult to use in practice or that do not provide much
insight into the problem or (3) continued reliance on representa-
tion of the soil by springs. This paper presents an analysis of later-
ally-loaded pile groups in multi-layered, elastic soil media. The
analysis is based on the assumption that the displacements at
points in the soil is a function of the displacements of each pile
in the group but the analysis does not rely on the superposition
principle, which means there are no restrictions on its future use
to a material that is not linear elastic. With the formulation of
the displacement field established, the principle of minimum
potential energy (or, more generally, the principle of virtual work)
can be used to set up the formulation. The analysis is equally appli-
cable to single piles (by simply making the number of piles equal to
1). The analysis has the strengths that it is based on proper physics;
it is easy to use once it has been coded; and, being a continuum
mechanics-based solution, it establishes the basis for future
improvements, including use of more realistic constitutive models.

2. Theoretical framework

2.1. Displacement, strain and stress fields

The displacement {u(x,y,z)} at any point in the soil mass around
a pile group is linked to the displacement experienced by each pile
in the group. The lateral component of {u(x,y,z)} in the soil can
then be expressed as the summation, for all np piles in the group,
of the product of the lateral displacement wi(z) of pile i by a dissi-
pation or decay function fi(x,y) associated with pile i. Each of these
np decay functions varies between 1 at the location of the specific
pile the decay function is associated with and zero both at the loca-
tions of all the other piles and at an infinite distance from the pile
group (in practical terms, at the boundaries of the domain used to
approximate the soil half space). One of the important advantages
of this approach is that this assumption on soil displacement can
be made regardless of the constitutive model used for the soil,
i.e., it is not an application of the superposition principle, with
the important implication that the approach is not restricted to
an elastic model of the soil. The displacement field may be
assumed more or less complex, making it more or less realistic.

In this paper, we assume a form for the displacement field in
terms of Cartesian coordinates and assume a linear-elastic model
for the soil. The simplest possible displacement function around
a pile group is given by:

ux ¼
Xnp

i¼1

wiðzÞf iðx; yÞ

uy ¼ uz ¼ 0

ð1Þ

where fi(x,y) is the decay function that attenuates the displacement
wi(z) induced by the ith pile across the domain. Eq. (1) applies
regardless of the shapes of the cross sections of the piles and, as
we will show, produces excellent results despite its simplicity. Dif-
ferentiation of (1) leads to the infinitesimal strain field (positive if
contractive):
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The elastic stress–strain relations

rkl ¼ 2lekl þ kemmdkl ð4Þ

produce the elastic stresses:
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2.2. Potential energy and energy minimization

The strain energy density can be expressed as:

1
2
rklekl ¼

1
2

rxxexx þ 2rxyexy þ 2rxzexz
� �

ð6Þ

The total potential energy of the soil–pile system, including
both internal and external potential energies, is given as:

P ¼ 1
2
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where EiIi is the flexural rigidity of pile i, and Fi and Mi are the exter-
nal lateral load and moment acting at the head of pile i.

Application of the principle of minimum potential energy to the
pile–soil system requires that we take the first variation of the
potential energy and require that it be zero (dP = 0). Taking the
first variation of P, as expressed in (7), we get:

dP ¼
Xnp

i¼1

EiIi

Z z¼Lp

z¼0
d

d2wiðzÞ
dz2

 !
d2wiðzÞ

dz2

 !
dz

þ 1
2

Z
Xsoil

d rxxexx þ 2rxyexy þ 2rxzexz
� �

dXsoil

�
Xnp

i¼1

FidwiðzÞjz¼0 þ
Xnp

i¼1

Mid
dwiðzÞ

dz

� �
z¼0
¼ 0 ð8Þ

which, fully expanded after stress and strain substitutions and with
recognition that the elastic properties may vary with depth z,
becomes:
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Each of the terms in (9) has a first variation of some variable.
The next step is to collect terms containing common first variations
and organize them into terms associated with the piles and terms
associated with the soil domain. We start with terms containing
variations of wi (z) and its derivatives:
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For a layered soil deposit, Eq. (10) becomes:
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where the sums are over layers, nab is the number of sub-layers
above the pile base, and ntotal is the total number of layers and
sub layers.

Integration by parts and further simplification of (11) lead to:
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are integrals evaluated only over the soil domain for each layer k.



Fig. 2. Algorithm for solving the problem of laterally loaded pile groups.

Fig. 3. Schematic grid for a pile group-soil domain on x–y plane.

Fig. 4. Five-point stencil near the pile domain.
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Collecting the terms containing dfi(x,y) in Eq. (9) follows:
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Fig. 5. Soil profile used in validation of the method of analysis.
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Rewriting of Eq. (13) produces:
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Fig. 6. Soil and pile deflection properties due to 10 mm pile head deflection of a single pil
the direction of the applied load, (c) bending moment, and (d) shear force.
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2.3. Differential equations

Eq. (9) is valid only if each of the coefficients of the first varia-
tions appearing in it is zero. This requirement leads to the differen-
tial equations and boundary conditions for the laterally loaded pile
group problem. These differential equations are known as Euler–
Lagrange differential equations, and they produce the functions
wi(z) and fi(x,y) that minimize the potential energy of the system.
Using Eq. (12), the Euler–Lagrange equation for the ith pile and
kth layer is given as:
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for z 6 Lp, and
e: (a) lateral displacement at ground elevation, (b) lateral displacement of the pile in



Fig. 7. Soil and pile deflection properties due to 10 mm pile head deflection of a 1 � 2 pile group: (a) lateral displacement at ground elevation, (b) lateral displacement of the
pile in the direction of the applied load (c) bending moment and (d) shear force.

Fig. 8. Lateral displacement at ground elevation for the 1 � 3 pile group.
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for z > Lp.
Eqs. (15) and (16) are differential equations with variable coef-

ficients. For linear elastic soil, the coefficients tz;k
ij and kz;k

ij for every
layer do not vary with depth, which suggests Eqs. (15) and (16) can
be rewritten as:
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for z > Lp, which are ordinary differential equations with constant
coefficients.

The boundary conditions for the ith pile also follow from Eq.
(12). At z = 0:
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Fig. 9. Deflection of the (a) corner pile and (b) center pile in the 1 � 3 pile group.

Fig. 10. Bending moment along the (a) corner pile and (b) center pile in the 1 � 3 pile group.

Fig. 11. Shear force along the (a) corner pile and (b) center pile in the 1 � 3 pile group.
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Fig. 12. Lateral displacement at ground elevation for the 3 � 3 pile group.
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At z = Hk < Lp:
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Fig. 13. Deflection of the (a) corner pile, (b) edge pile on the x axis, (c)
At z = Hk = Lp:

wi;k ¼ wi;kþ1

EiIi
d3wi;kðzÞ

dz3 �
Xnp

j¼1

tz;k
ij

dwj;kðzÞ
dz ¼ �

Xnp

j¼1

tz;kþ1
ij

dwj;kþ1ðzÞ
dz

EiIi
d2wi;kðzÞ

dz2 ¼ 0

8>>>>><
>>>>>:

ð22Þ

for a free pile base, and

wi;k ¼ 0
wi;kþ1 ¼ 0
dwi;kðzÞ

dz

���
z¼Lp

¼ 0

8>><
>>: ð23Þ

for a fixed pile base.
At z = Hk > Lp and k < ntotal:

wi;k ¼ wi;kþ1Xnp

j¼1

tz;k
ij

dwj;kðzÞ
dz ¼

Xnp

j¼1

tz;kþ1
ij

dwj;kþ1ðzÞ
dz

8><
>: ð24Þ

Finally, at infinite depth, z ¼ Hntotal
!1 and wi,k = 0.

From Eq. (14), the Euler–Lagrange equation for the decay
function associated with pile i is given as:

Xnp

j¼1

�t1xy
ij

@2f jðx; yÞ
@x2 � t2xy

ij

@2f jðx; yÞ
@y2 þ kxy

ij f jðx; yÞ
( )

¼ 0 ð25Þ
edge pile on the y axis and (d) center pile in the 3 � 3 pile group.



Fig. 14. Bending moment along the (a) corner pile, (b) edge pile on the x axis, (c) edge pile on the y axis and (d) center pile in the 3 � 3 pile group.
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with boundary conditions:

f iðx; yÞ ¼
1 at pile i
0 at other piles

�
ð26Þ

This means that the value of the decay function associated with the
ith pile is 1 within the cross section of pile i and zero within the
cross section of all the other piles. Additionally, at infinity
(x ? ±1 or y ? ±1), it also tends to zero.

Eq. (25) is a system of coupled partial differential equations that
needs to be solved numerically along with the analytical solutions
of Eqs. (17) and (18) to derive the responses of the pile and the dis-
placement field in the soil. Rewriting of Eq. (25) as:

�t1xy
ii

@2f iðx; yÞ
@x2 � t2xy

ii

@2f iðx; yÞ
@y2 þ kxy

ii f iðx; yÞ

þ
Xnp

j¼1;j–i

�t1xy
ij

@2f jðx; yÞ
@x2 � t2xy

ij

@2f jðx; yÞ
@y2 þ kxy

ij f jðx; yÞ
( )

¼ 0 ð27Þ

allows us to more clearly separate the physical effects that the anal-
ysis represents. The fourth term of the left side of Eq. (27) includes
the effect of the other piles in the group on the contribution of pile i
to the displacement field (as represented by fi) in the soil domain.
This coupling was found to be superfluous in terms of accuracy
because the most important coupling between the piles in the
group is captured by Eqs. (17) and (18). Additionally, because the
values of the coefficients of Eq. (25) are within a narrow range for
all piles, consideration of that term can produce an ill-conditioned
coefficient matrix for large groups. A simplifying assumption that
eliminates this shortcoming and reduces computation time is to
simply neglect the fourth term of the left side of Eq. (27), which
leaves us with the following equation to describe the effect of any
pile in the group on the surrounding soil:

�t1xy
ii

@2f iðx; yÞ
@x2 � t2xy

ii

@2f iðx; yÞ
@y2 þ kxy

ii f iðx; yÞ ¼ 0 ð28Þ
2.4. Semi-analytical solution for pile deflection profiles

We use the eigenvalue method for solving the coupled ordinary
differential equations for the pile deflections. Eq. (17) are a system
of 4th-order ODEs for layers above the pile base, and Eq. (18) are a
system of second-order ODEs for layers below the pile base. For a
layer k above the pile base, the eigenvalue method for solving a
system of 4th-order ODEs is based on expressing the differential
equations as a matrix equation:

½A� xkf g ¼ x0k
� 


ð29Þ



Fig. 15. Shear force along the (a) corner pile, (b) edge pile on the x axis, (c) edge pile on the y axis and (d) center pile in the 3 � 3 pile group.

Table 1
Computational effort for each pile group analysis.

Case FEM SAM

Number of elements Total CPU time (s) Number of surface nodes Number of iterations Total CPU time (s)

Single pile 353,266 1357.2 15,376 5 27.8
1 � 2 Pile group 541,490 2493.4 24,676 7 71.1
1 � 3 Pile group 512,760 1909.5 23,188 6 134.5
3 � 3 Pile group 503,766 1511.5 24,649 6 350.8
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where

xkf g¼ w1;kðzÞ;w01;kðzÞ;w001;kðzÞ;w0001;kðzÞ; . . . ;wnp ;kðzÞ;
n
w0np ;kðzÞ;w

00
np ;kðzÞ;w

000
np ;kðzÞ

oT
ð30Þ

x0k
� 


¼ w01;kðzÞ;w001;kðzÞ;w0001;kðzÞ;w
4ð Þ

1;kðzÞ; . . . ;w
0
np ;kðzÞ;

n
w00np ;kðzÞ;w

00
np ;kðzÞ;w

4ð Þ
np ;k
ðzÞ
oT

ð31Þ

and the coefficient matrix [A] has the following block form:

½A� ¼

A11½ � � � � A1j
� �

� � � A1np

� �
..
. . .

. ..
. . .

. ..
.

Ai1½ � � � � Aij
� �

� � � Ainp

� �
..
. . .

. ..
. . .

. ..
.

Anp1
� �

� � � Anpj
� �

� � � Anpnp

� �

2
6666666664

3
7777777775

ð32Þ
where

Aij
� �

¼

0 dij 0 0
0 0 dij 0
0 0 0 dij

�kz;k
ij =EiIi 0 tz;k

ij =EiIi 0

2
66664

3
77775 ð33Þ

in which dij is the Kronecker delta that is equal to unity when i and j
are equal, otherwise zero.

Solution of the ODE system represented by (29) is given by:

xkf g ¼
X4np

i¼1

ci expðkizÞ v if g ð34Þ

where ci are arbitrary integration constants that are determined by
applying the boundary conditions at the interfaces of layer k, ki are
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the eigenvalues of the coefficient matrix [A ], and {vi} is the ith
eigenvector of the coefficient matrix [A].

For any pile j in the group, the deflection and its derivatives
within the kth layer are given by:

wj;k ¼
X4np

i¼1

ci expðkizÞv ð4j�3Þ;i ð35Þ

dwj;k

dz
¼
X4np

i¼1

ci expðkizÞv ð4j�2Þ;i ð36Þ

d2wj;k

dz2 ¼
X4np

i¼1

ci expðkizÞv ð4j�1Þ;i ð37Þ

d3wj;k

dz3 ¼
X4np

i¼1

ci expðkizÞv4j;i ð38Þ

where as an example, v(4j�3),i is the (4j � 3)th component of the ith
eigenvector.

Below the pile base, we can rewrite Eq. (18) for the kth layer as:

� T½ � w00f g þ K½ � wf g ¼ 0 ð39Þ

where

wf g ¼ w1;kðzÞ; . . . ;wnp ;kðzÞ
� 
T ð40Þ

w00f g ¼ w001;kðzÞ; . . . ;w00np ;kðzÞ
n oT

ð41Þ

T½ � ¼

tz;k
11 � � � tz;k

1j � � � tz;k
1np

..

. . .
. ..

. . .
. ..

.

tz;k
i1 � � � tz;k

ij � � � tz;k
inp

..

. . .
. ..

. . .
. ..

.

tz;k
np1 � � � tz;k

npj � � � tz;k
npnp

2
6666666664

3
7777777775

ð42Þ

and

K½ � ¼

kz;k
11 � � � kz;k

1j � � � kz;k
1np

..

. . .
. ..

. . .
. ..

.

kz;k
i1 � � � kz;k

ij � � � kz;k
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..

. . .
. ..

. . .
. ..

.

kz;k
np1 � � � kz;k

npj � � � kz;k
npnp

2
6666666664

3
7777777775

ð43Þ

To produce an equation similar to Eq. (29), we can write:

T½ � w00f g ¼ K½ � wf g ð44Þ

or

w00f g ¼ T½ ��1 K½ � wf g ¼ W½ � wf g ð45Þ

Now we have the following relationship:

½B� nf g ¼ n0f g ð46Þ

where

nf g ¼ w1;k zð Þ;w01;k zð Þ; . . . ;wnp ;k zð Þ;w0np ;k zð Þ
n oT

ð47Þ

n0f g ¼ w01;k zð Þ;w001;k zð Þ; . . . ;w0np ;k zð Þ;w00np ;k zð Þ
n oT

ð48Þ

½B� ¼

B11½ � � � � B1j
� �

� � � B1np

� �
..
. . .

. ..
. . .

. ..
.

Bi1½ � � � � Bij
� �

� � � Binp

� �
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. . .

. ..
. . .

. ..
.
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� �

� � � Bnpj
� �
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� �

2
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3
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ð49Þ

Bij
� �

¼
0 dij

Wij 0

	 

ð50Þ
Solution of the ODE system represented by Eq. (46) is given by:

nkf g ¼
X2np

i¼1

ci expðkizÞ v if g ð51Þ

where ci are integration constants, ki are the eigenvalues of coeffi-
cient matrix [B], and {vi} is the ith eigenvector of the coefficient
matrix [B].

For any pile j in the group, the deflection and its derivatives
within the kth layer below the level of the pile base are given by:

wj;k ¼
X2np

i¼1

ci expðkizÞv ð2j�1Þ;i ð52Þ

dwj;k

dz
¼
X2np

i¼1

ci expðkizÞv2j;i ð53Þ

The solution vectors {xk} and {nk} may be complex vectors. We con-
sider only the real part of these vectors to obtain the displacement
along the pile.

2.5. Numerical determination of the decay functions fi (x,y)

We use a 2D central-difference finite difference formulation to
solve the decay function differential equations. In order to reduce
computation time, we use unequal spacing to discretize the
domain. As discussed in more detail in Appendix A, a five-point
stencil was used to derive the discretized forms of the partial
derivatives of fi (x,y).

The discretized form of the governing differential equations for
the decay functions associated with pile i is:
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Reordering and simplification of (54) produces:
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2.6. Algorithm

With the formulation of the boundary-value problem complete,
we turn to the algorithm to perform the calculations, which is
shown in Fig. 2. The algorithm is based on feedback between the
piles and the soil. The soil stiffness results from the pattern of
deformation in the soil determined by the decay functions fi(x,y)
and the pile displacements wi(z), which result in the quantities tz

and kz that appear in the coefficients of the pile differential equa-
tions. Once the new pile displacement profiles are obtained by
solution of the system of the pile differential equations, the quan-
tities t1xy, t2xy and kxy, which appear in the differential equations for
the decay functions, can be calculated, allowing new estimates of
the decay functions to be calculated and the cycle to restart. This
process continues until convergence is achieved.



Fig. 16. Lateral displacement at ground elevation for the 3 � 3 pile group.
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The solution starts by assuming initial values for the coefficients
tz and kz for each layer; the pile deflections and their derivatives
are then solved for using Eqs. (17) and (18). Once the pile deflec-
tion profiles are obtained, the coefficients t1xy, t2xy, and kxy of the
decay function differential equations are calculated; this is
Fig. 17. Deflection of the (a) corner pile, (b) edge pile on the x axis, (c)
followed by calculation of the decay functions (Eq. (28)) and their
partial derivatives. In the subsequent iteration, the values of the
decay functions and their partial derivatives obtained in the previ-
ous step are used to recalculate the values of the coefficients tz and
kz for each layer and the pile deflections in the current step. These
steps are repeated until convergence, which is checked by compar-
ing the current values of deflection, rotation, shear force, and bend-
ing moment of each pile at the pile head with values at the
previous step and by enforcing a relative error less than the toler-
ance tol, for which a value of 10�3 was found to be sufficient. This
check also ensured convergence of these quantities at other loca-
tions along the pile length.
3. Analysis validation

3.1. Grid size analysis

Solving the partial differential equations (PDEs) for the decay
functions requires discretizing the domain in the x–y plane and
solving the discretized form of the PDEs using the finite difference
method. It is necessary to discretize the domain with sufficient
accuracy using a fine grid to capture the shape of the pile and sur-
rounding soil with sufficient accuracy, but it is equally important
to do so while keeping computational costs down to reasonable
levels. This was achieved by decomposing the domain into
edge pile on the y axis and (d) center pile in the 3 � 3 pile group.



Fig. 18. Bending moment along the (a) corner pile, (b) edge pile on the x axis, (c) edge pile on the y axis and (d) center pile in the 3 � 3 pile group.
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multiple zones, each discretized with grids of different sizes, as
shown in Fig. 3.

A five-point stencil is used for the finite difference scheme
(Appendix A). To enhance the accuracy of the results and minimize
the effect of pile shape discretization on the decay function and its
partial derivatives at the pile–soil interface, nodes (such as node 10

in Fig. 4, which illustrates this process for a circular pile and nodes
0 through 4) are added to the pile–soil interface. The value of the
decay function within the pile domain is equal to unity, and that
applies also to node 10 in Fig. 4 (and all other nodes like it).

A grid size analysis was done to establish the largest grid size
producing acceptable accuracy. A grid with size starting with Bp/
100 immediately next to the pile and increasing gradually to 2Bp

at a distance of 18Bp from the pile at the edge of a pile group
was found to be acceptable for all configurations considered.

3.2. FEM validation

In order to illustrate the versatility and potential of the method,
we analyzed four pile foundation configurations (a single pile, a
1 � 2 group, a 1 � 3 group, and a 3 � 3 group) installed in a layered
soil profile. The soil profile consists of three layers (see Fig. 5). The
elastic properties of the soil layers are: Es1 = 10 MPa and ms1 = 0.35
for layer 1, Es2 = 30 MPa and ms2 = 0.25 for layer 2, and Es3 = 60 MPa
and ms3 = 0.15 for layer 3. The first and second layers are 3-m thick,
and the third layer extends below the level of the bases of the piles.
The piles are all circular with Bp = 0.5 m, Lp = 15 m and Ep = 25 GPa.
This combination of piles and soil profile lead to conditions
referred to in the literature as ‘‘long’’ pile conditions, meaning that
displacements, rotation and internal forces approach zero for a
depth less than the pile length. The spacing s is 3Bp. The pile heads
are all fixed to simulate a rigid pile cap. A lateral displacement of
10 mm was applied, together with rotation constraint (Eq. (20)),
to the head of each pile (implicitly simulating pile cap rigidity).
The soil domain is 60 m (=120Bp) long, 60 m (=120Bp) wide, and
30 m deep.

Results of the analyses of piles installed in the 3-layered soil
profile shown in Fig. 5 are presented in Fig. 6 (for a single pile),
Fig. 7 (for a 1 � 2 pile group), Figs. 8–11 (for a 1 � 3 pile group)
and Figs. 12–15 (for a 3 � 3 pile group). The figures show the pro-
file of soil displacements at ground surface level in the direction of
application of the load and the displacement, bending moment and
shear force along the axis of each pile obtained both from the anal-
yses and from the finite element method. There is good agreement
between the results from the analyses and those from the finite
element method. The sharp discontinuities in the shear force plots
for the piles at the location of layer interfaces results from the tran-
sition from a layer with larger shear modulus to one with lower
shear modulus: there is a difference in shear force carrying capac-
ity between one layer and the next that must be absorbed by the



Fig. 19. Shear force along the (a) corner pile, (b) edge pile on the x axis, (c) edge pile on the y axis and (d) center pile in the 3 � 3 pile group.
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pile(s). These discontinuities are not observed in the FEM because
it relies on variable interpolations that produce a smooth plot.

For each calculation case, we perform calculations also using a
finite element analysis. The finite element analyses were per-
formed using ABAQUS CAE on a 24-core x86 server containing
twelve 3.0-GHz dual-core Xeon 5675 processors with 48-GB
RAM. The analyses relied on 20-noded brick elements, with
domains identical to those of the analyses. Plots of displacement
in the soil domain and along the pile axis are provided for each
case to illustrate the close match between the results of the anal-
yses and the FEM. The analyses were performed with a Visual C#
code running on a desktop computer with 2 Intel Quad 2.66-GHz
processors and 4-GB RAM. A summary of the computational effort
in each single pile and pile group analysis using FEM and SAM is
presented in Table 1.

The analysis works equally well for ‘‘short’’ piles, that is, piles
for which displacements, rotations and internal forces do not go
to zero anywhere along the pile. This is illustrated for a 3 � 3 pile
group consisting of short piles embedded in a uniform soil profile
with Es = 10 MPa and ms = 0.2. The piles are all circular with
Bp = 1 m and Lp = 6 m and Ep = 25 GPa. The spacing s is 2Bp. The pile
heads are all fixed to simulate a rigid pile cap. A lateral displace-
ment of 10 mm was applied, together with rotation constraint to
the head of each pile. The soil domain is 120 m (=120Bp) long,
120 m (=120Bp) wide, and 40 m deep. Results of the analyses are
presented in Figs. 16–19. The figures show the profile of soil dis-
placements at ground surface level in the direction of application
of the load, and the displacement, bending moment and shear force
along the axis of each pile obtained both from the analyses and
from the finite element method. The results show that there is
good agreement between the analyses and the finite element
method in predicting the pile and soil response.

Fig. 20 shows a comparison between the predictions of the load
carried by piles at four different locations of a 4 � 4 pile group pre-
dicted by the current method, FEM using ABAQUS and an isotropic
linear elastic constitutive model for the soil, and the methods of
[52–54]. The pile–soil relative stiffness KR = EpIp/EsL

4 = 10�5, the
soil Poisson’s ratio ms = 0.5 (0.49 for SAM and FEM), and the pile
length-to-diameter ratio Lp/Bp = 25. The load carried by each pile
is divided by the average load applied to the pile group. Fig. 20
shows that the load carried by individual piles within the group
predicted by all the methods are in generally good agreement for
larger spacings, with the present method comparing favorably
with the FEM predictions at closer spacings; the method of, [53]
fares better than the other three methods but the differences are
relatively small.
4. Group efficiency

A particularly useful result from calculations using the analyses
proposed in this paper is the possibility of preparing pile group



Fig. 20. Distribution of horizontal load in a 4 � 4 pile group: (a) pile 1, (b) pile 2, (c) pile 3 and (d) pile 4.

Fig. 21. Soil profiles for the 3 � 3 pile group.
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efficiency charts, which give engineers a basis for design of later-
ally loaded pile groups if information on the response of an isolated
pile is available. The pile group efficiency factor gl here is defined
simply as the ratio of the average lateral load capacity of a pile
in the group to the lateral load capacity of a single pile under the
same conditions. Mathematically:
gl ¼
Htotal=np

Hsingle
ð56Þ

where Htotal is the lateral capacity of the pile group, and Hsingle is the
lateral capacity of a single pile at the same displacement level and
identical conditions.



Fig. 22. Effect of pile-to-pile spacing on group efficiency of the 3 � 3 pile group with (a) Lp/Bp = 6, (b) Lp/Bp = 10, (c) Lp/Bp = 15, and (d) Lp/Bp = 20.

Fig. 23. Soil profiles for the 4 � 4 pile group.
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Fig. 21 shows a 3 � 3 pile group with a rigid cap embedded in
soil profiles with different stiffness that is loaded laterally to a dis-
placement ux = 10 mm. The piles are all circular with Bp = 1 m and
Ep = 25 GPa. Three general stiffness profiles are considered. In case
1, soil stiffness is zero at the ground surface and increases linearly
with depth. In case 2, the soil stiffness at the ground surface is non-
zero (taken as 10 MPa) and increases linearly with depth. In case 3,
soil stiffness is uniform with depth. In cases 1 and 2, the soil pro-



Fig. 24. Effect of pile-to-pile spacing on the group efficiency of the 4 � 4 pile group
(Lp = 16 m and Bp = 0.4 m, with Lp/Bp = 40).

Fig. A.1. Unequal-armed five-point stencil for finite difference discretization.
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file, which is 40-m deep, was sub-divided into relatively thin sub-
layers with thickness of 1 m, and the elastic soil properties in the
middle of every sub-layer were used to solve the differential equa-
tions for the piles.

Fig. 22(a)–(d) shows group efficiency as a function of pile spac-
ing for the three stiffness profile cases considered in this paper for
piles with Lp/Bp of 6, 10, 15, and 20 and pile spacing ranging from
2Bp to 10Bp. The critical length separating ‘‘long’’ from ‘‘short’’ pile
response is approximately 10 m for these conditions. As expected,
Fig. 22 shows that group efficiency increases with increasing spac-
ing. Fig. 22(a)–(d) shows that efficiency initially drops slightly as
length approaches the critical length, then increases very slightly
and stays unchanged for lengths clearly greater than the critical
length. Additionally, as shown in Fig. 22(a)–(d), when the soil stiff-
ness decreases, group efficiency increases, particularly for greater
spacings.

The analysis, applied to a 4 � 4 pile group in two-layered soil
profiles, allows insights into pile group response in cases in which
a softer soil layer (such as soft clay or very loose sand) overlies a
stiffer soil layer (such as very stiff clay or dense sand) and vice
versa (see Fig. 23). The piles considered in the calculations have
Ep = 25 GPa, Lp = 16 m and Bp = 0.4 m, with Lp/Bp = 40. The soft layer
has Es,soft = 10 MPa and ms,soft = 0.2, while the stiffer layer has
Es,stiff = 110 MPa and ms,stiff = 0.2. The thickness of the upper layer
is 6 m. A horizontal displacement of 10 mm was applied to the pile
cap. The group efficiency was calculated for spacings equal to 2Bp,
4Bp, 6Bp, 8Bp and 10Bp. Fig. 24 shows that the group efficiency is
greater for the soft-over-stiff layer soil profile than for the stiff-
over-soft layer soil profile. It also shows that the group efficiency
of the pile group is the same for the two soil profiles for a pile spac-
ing of 2Bp, but the values of the efficiency diverge as the pile spac-
ing increases. Due to the large value of Lp/Bp, the maximum group
efficiency is well below unity, which is consistent with what is
observed also in Fig. 22.

5. Summary and conclusions

This paper presented a method for the analysis of single piles
and pile groups subjected to lateral loads. The method is based
on a formulation of the displacement field that ties the displace-
ment within a soil mass to the displacements of the pile(s) and
relies on application of the principle of virtual work and calculus
of variations to this displacement field formulation. One of the
key advantages of this method is that it allows use of any constitu-
tive model, being based on the principle of virtual work and not
relying on the superposition principle or any elasticity-bound con-
cept, so the analysis can be extended to simple nonlinear elastic
models or even to full-blown, realistic constitutive models.

The method produces results that compare well with finite ele-
ment predictions. The effort involved in preparing and performing
an analysis is minimal compared to that required for finite element
analysis. The usefulness of the method was illustrated by preparing
efficiency plots for pile groups considering typical soil modulus
profiles. These plots can be used, given the lateral load capacity
of a single pile (which may be obtained from a pile load test), to
produce an estimate of the total capacity of the group.
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Appendix A

The unequal-arm, five-point stencil used to derive the finite dif-
ference discretizations used in the present paper is shown in
Fig. A.1.

The forward and backward Taylor series expansions of fi(x,y)
about x are:
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The forward and backward Taylor series expansions of fi(x,y)
about y are:
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Neglecting terms of order higher than one in Eqs. (A.1)–(A.4),
we can write first-order, central-difference approximations to the
partial derivatives of fi(x,y) for unequal spacing:
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Using the central-difference formulation, the second-order par-
tial derivatives of function fi(x,y) can be approximated as follows:
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Simplifying these expressions:
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