
O
a

G
D

a

A
R
R
A
A

K
E
G
M
N
N
R
S
S

1

t
i
e
p
o
T
o
(
(
l
d
2
t

s

0
d

Ecological Modelling 220 (2009) 1138–1147

Contents lists available at ScienceDirect

Ecological Modelling

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

ptimization of tourism impacts within protected areas by means of genetic
lgorithms

ilberto Parolo, Alessandro Ferrarini, Graziano Rossi ∗

epartment of Ecologia del Territorio, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy

r t i c l e i n f o

rticle history:
eceived 23 July 2008
eceived in revised form 8 January 2009
ccepted 16 January 2009
vailable online 25 February 2009

eywords:
nvironmental management decision
IS
anagement plan
atura 2000 network
ature conservation
esource management
patially explicit optimization

a b s t r a c t

The search for a balance between nature conservation and tourism development within protected areas
is becoming an increasingly multifaceted problem worldwide, as outlined by an increasing number of
authors and highlighted at several international events. Since it is unlikely that all management objectives
will reach their optimum values simultaneously, an optimization approach is required to meet multiple,
conflicting goals and to obtain an overall trade-off in terms of the conceived objectives.

In this paper we propose a new model for optimizing the allocation of tourist infrastructures (refuges
and camping sites), and apply it to a protected area in the European Alps, where tourism has grown
considerably in recent years. To reach this goal, a complex model based on genetic algorithms was required
(instead of a common multicriteria analysis) to obtain a complex interplay in the form of a dynamical
simulation where candidate solutions are interactively evaluated. In accordance with local actors, we
selected 18 quantifiable criteria encompassing all relevant tourist activities within the study area. These
were translated into geographic information system (GIS) layers, submitted to a genetic optimization

 
 

 

ustainable tourism
procedure and compared the performances of the optimized tourist allocations with those of existing
infrastructures and with worst case scenarios. Resulting tourist allocations perform very well, while
existing tourist sites behaved halfway between the fittest and the least fit genetic solutions, since they
prioritized logistic and safety criteria rather than ecological ones.

The proposed model is a very flexible and effective tool, easily exportable to any protected area, with
implications for researchers and policymakers who aim to provide an effective balance between nature

and human impact.

. Introduction

The search for a balance between nature conservation and
ourism development within protected areas is becoming an
ncreasingly multifaceted problem worldwide, as outlined by sev-
ral authors (e.g. Foley et al., 2005; Turner et al., 2007) and
ointed out by several international events (Québec Declaration
n Ecotourism, 2002) and documents (Europarc Federation, 2008).
ourism in protected areas is generally viewed as a primary source
f promoting economic and social growth to local communities
Honey, 1999) and commonly perceived to safeguard biodiversity
e.g. Walpole et al., 2001; Lindsey et al., 2005). However, in the

ast few decades an increasing number of visitors along with more
iverse activities are having greater impacts on nature (Song and Li,
008). For instance, annual visits to the US National Park System and
o the European Alpine Region are currently approaching 300 and
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120 million respectively (Lawson et al., 2003; Alpine Space, 2007).
As a consequence, negative impacts have been quickly observed for
wildlife species and habitats due to air and water pollution, veg-
etation removal for tourist facilities and infrastructures (refuges,
camping sites, roads, etc.), reductions in plant and animal fitness,
habitat loss and degradation (Steidl and Anthony, 2000; Kelly et al.,
2002; Manor and Saltz, 2003; Amo et al., 2006; Rossi et al., 2006;
Griffin et al., 2007).

Consequently, nature conservation within protected areas needs
to be planned using effective methodology to assist managers and
policymakers to administer resources, assess planning decisions,
avoid user conflicts and minimize negative impacts on the environ-
ment. The challenge is to identify management opportunities that
maintain wildlife resources while minimizing restrictions to human
recreation (DeFries et al., 2007; Ferrarini et al., 2008). Environ-
mental decision-making recently introduced the pivotal concept

of “optimization”, a concept that is old in theoretical terms, but
whose application to real world problems is recent (Haupt, 2004),
in particular with regard to environmental topics. The process of
solving a problem can be considered as a search through a math-
ematical space of potential candidate solutions. Since we are after
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he optimal solution, the task is one of optimization, i.e. the best
ompromise to reach contradictory goals. Optimization involves
dentifying the solution that maximizes the benefits or, alterna-
ively, minimizes the costs while generating goal-driven scenarios.
f costs are viewed in terms of impacts on biodiversity, it becomes
lear that optimization might be a pivotal decision process for envi-
onmental planning. Stochastic genetic algorithms (GAs; Holland,
975; Goldberg, 1989), inspired by biology, do just that since they
re able to perform a systematic search in the space of control vari-
bles to find an input vector which controls the systems in the
esired way, specified by the goal function. Instead of a common
ulticriteria analysis, genetic algorithms allow to get a complex

nterplay in the form of a dynamic simulation where candidate
olutions are interactively evaluated and cannot be considered in
solation. So far, a limited number of studies make use of GAs in
he environmental field (Cropper and Comerford, 2005; D’heygere
t al., 2006; Liu et al., 2006; Termansen et al., 2006; Chikumbo and
teward, 2007; Dreyfus-Leon and Chen, 2007; Peacor et al., 2007;
weeney et al., 2007); the combined use of GAs and geographic
nformation systems (GIS) is even more uncommon (Seppelt and
oinov, 2002, 2003; Holzkamper et al., 2006), notwithstanding its
reat potential in environmental problem solving and decision-
aking.
Despite the potential for tourism to negatively affect biodiversity

ven in protected areas, there have been no studies purporting sci-
ntifically based solutions to the optimization of protected areas
ollowing biological, safety and logistic criteria. Accordingly, the
ocus of this article is on the development of a novel GAs–GIS

ethodology that we tested in a protected area of the Alps, where
ourism recently grew considerably. We aimed to: (1) conceptualize
model for the minimization of tourism impacts within protected
reas through the use of a spatially explicit GA; (2) use the model for
lanning new tourist infrastructures (e.g. refuges, camping sites)
o be added to existent ones; (3) measure the degree of success
performance) of each of the genetically fittest solutions on the
asis of the initial criteria; (4) compare the performances of the
esulting tourist infrastructures with the performances of existing
nes; and (5) of the least fit genetic solutions (i.e. the worst pos-
ible solutions) within the study area, in order to quantitatively
nd objectively evaluate the advantages provided by the proposed
ethodology.
The proposed model is introduced in the context of the search

or a satisfactory coexistence between nature and human activi-
ies.

. Study area

The study area is the Site of Community Importance (SCI)
T2040012, i.e. one of the more than 25 000 areas belonging to
he Natura 2000 network, covering in Europe about 17% of the
erritory (European Commission, 2008) and instituted under the
Habitats” Directive 92/43/EEC (CEC, 1992). It is placed in the East-
rn Alps, N-Italy, (coordinates: 10◦14′34′′E, 46◦25′42′′N), extending
ver 59.66 km2, ranging from 1710 to 3441 m a.s.l.

The study SCI is predominantly covered by siliceous alpine and
oreal grasslands (25.92% of the SCI) and siliceous screes of the
ontane to nival belts (19.6%), alpine and boreal heaths (10.2%)

lso occur. Despite its high degree of wilderness, human visits are
requent within the study area, as a consequence of the closeness to
wo important tourist villages (Bormio and Livigno), annually host-
ng several thousand visitors during summer and winter. Tourist

 
 

 

ccess to the SCI is facilitated by seven refuges and two camp sites
Fig. 1), hosting more than 4000 people per year, in particular dur-
ng the summer period (Province of Sondrio, 2008). Human access
o the SCI is granted by 10.201 km of roads and 29.445 km of tourist
alkways.
Fig. 1. The study area “Val Viola Bormina-Ghiacciaio di Cima dei Piazzi” with the
current tourist sites.

3. Methods

3.1. Goal setting

Based on our ground-truth experience and on interactions with
local actors (a panel of local politicians, provincial and regional
administrators), we conceived a list of 18 quantitative criteria (12
factors and 6 constraints; Fig. 2) relevant to the problem under
evaluation. From an ecological point of view, new tourist infrastruc-
tures should be as distant as possible from important biodiversity
elements: (a) areas with an elevated patch richness (factor F1:
number of European Union (EU) habitats in a 500 m × 500 m sur-
round); (b) species-rich EU priority habitat Nardus grasslands (F2:
distance in meters from species-rich Nardus grasslands); (c) ecolog-
ically vulnerable EU habitat of interest transition mires (F3: distance
in meters from transition mires); (d) surveyed location of threat-
ened or rare plant species (F4: distance in meters from location of
plant species); (e) areas densely frequented by threatened or rare
animal species (F5: number of animal species). These ecological
criteria aim to prevent tourists threatening habitats and species
that are pivotal for conservation purposes due to frequent anthro-
pogenic access eased by the contiguity to tourist infrastructures.
Following McGarigal and Marks (1995), patch richness is defined
here as the number of different patch types. Species-rich Nar-
dus grasslands are rare in Europe (European Commission, 2003),
where they are limited to the colder mountain areas and sup-
port a wide range of species, including Atlantic, sub-Atlantic and
Arctic-alpine plants, several mammal species (e.g. marmots), birds
and invertebrates. They are damaged by tourists due to the col-
lection of rare and threatened plant species, noise and accidental
fires.

From a safety point of view, new tourist infrastructures should
be as far as possible from grazed areas (F6: distance in meters from
grazed areas) and placed where surface roughness is as flat as pos-
sible (F11: surface roughness). F6 was conceived since tourists may
disturb cattle during foraging activities and vice versa, while F11
aims at privileging flat areas where the tourist access is easier and
safer. Surface roughness is defined here as ratio between the sur-
face area (i.e. true 3D area) and the flat area (2D projection) in a
fixed-radius area surrounding a pixel, estimated of at least 200 m,
following the advice of experts from the study area, to guarantee
safer tourist access.

From a logistic standpoint, we valued five factors as significant
for the new tourist infrastructures: (a) distance in meters from cur-
rent tourist sites (F7), (b) from each other (F8), (c) closeness to
existent tourist paths (F9: distance in meters from existing roads

and/or tourist paths), and (d) to areas of aesthetic relevance (F10),
(e) separation in elevation (F12). F7 and F8 aims at guaranteeing
tourist sites are as spaced as possible within the study area, hence
properly covering the horizontal width of the SCI. The same is true
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Fig. 2. Conceptual framework (12 factors and 6 constraints) employed b

or F12, a factor trying to ensure tourist sites are as spaced as pos-
ible in elevation a.s.l. to cover the vertical width of the study area.
9 favours the allocation of new tourist sites near to existent tourist
aths, since a more distant allocation would require additional and
xpensive work to plan and build new paths. F10 follows the cri-
erion of the landscape attractiveness (Parsons and Daniel, 2002),
hus favouring the allocation of new tourist sites where landscape
ttractiveness is higher.

Besides the previous factors, we also imposed six constraints
Fig. 2). In GIS terms, constraints refer to dichotomous criteria that
xclude unsuitable areas, i.e. portions of the study area where pro-
osed tourist infrastructures are a priori left out. Three constraints
C1, C2, C3) deal with relevant elements of biodiversity. Following
ur experience of the study area, we reputed 300 m as a proper
afety distance to avoid tourist disturbance. C5 was conceived as
strengthening of F8 (distance from each tourist site). Finally, we

xcluded areas at elevated geological risk (C4) and ineligible areas
streams, lakes, snowfields, glaciers; C6).

In accordance with local actors, we decided to assign a different
eight of importance to the three categories of criteria (Fig. 2). Since

cological criteria should be predominant within protected areas,
cological factors were given the highest importance (i.e. 2), while
afety and logistic criteria were assigned weights equal to 1 and 0.5
espectively.
.2. Data collection

In order to translate the above-depicted goals into GIS terms,
e realized an accurate GIS model at 1:10 000 scale whose layers
ave been selected on the basis of the criteria employed in the GA-
proposed optimization procedure to locate new optimized tourist sites.

based site selection procedure. Land-cover was accounted by the
authors, by mapping the EU-habitats (European Commission, 2003)
of the SCI through 3-year long field surveys and digital orthopho-
tos (referred to year 2000), thereby a 13-class categorical map was
generated. In particular, the EU-habitats map provided the spatial
information about the presence of species-rich Nardus grasslands
and transition mires, i.e. two habitats of high conservation rele-
vancy. Furthermore, the habitat map of the study area was analyzed
using a 500 m × 500 m moving window that produced a resulting
map where each pixel was given the number of patch types present
within a radius of 500 m. We used this raster map as a measure
of local patch richness. The occurrence of rare or threatened plant
species was mapped in a 4-year period (2003–2006), using a global
positioning system (GPS), with an error lower than 1 m (Appendix
A). We accounted for plant species belonging indistinctly to Euro-
pean (Annexes of ‘Habitats’ Directive 92/43/EEC), Italian (Italian
Red list; Conti et al., 1992; Scoppola and Spampinato, 2005) and
local lists of conservation concern (Conti et al., 1997; Parolo et
al., 2005). The presence of animal species belonging to annexes
of Dir. 92/43/EEC (‘Habitats’ Directive) and Dir. 79/409/EEC (‘Birds’
Directive) was provided by the provincial administration of Sondrio
(Appendix B). By means of digital orthophotos and field surveys
we detected: (1) roads, (2) tourist paths, (3) tourist sites (refuges
and camp sites) and (4) grazed areas. The digital elevation model
(DEM) of the study area was digitized by the authors from available

topographic maps of Lombardy Region. Surface roughness was then
derived from DEM using a 200 m × 200 m moving window. Finally,
a geomorphologic risk map depicting four levels of risk (null, low,
average and elevated) and a map of the areas at elevated aesthetic
relevance were supplied by Lombardy Region.
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.3. GAs–GIS combination

GAs consist of optimization procedures based on principles
nspired by natural selection. GAs involves ‘chromosomal’ repre-
entations of proposed problem solutions which undergo genetic
perations such as selection, crossover and mutation (Holland,
975; Goldberg, 1989).

For the purposes of this study, a GAs procedure was devel-
ped using GAlib (Wall, 1996), a free library of genetic algorithm
bjects and tools for doing optimization using any representation
nd genetic operators. A GIS was used to prepare input data for the
As and to analyze and visualize the resulting optimized solutions.
o this aim, the study area has been partitioned into homogeneous
ells (pixels) measuring 100 m × 100 m, and each cell was assigned
n identification number representing a candidate solution for the
ptimization process. Each identification number was a gene used
y the GAs procedure. Hence, a chromosome was a vector having
number of genes equal to the amount of optimized allocations
e searched for. In a n-sites-to-add scenario, each chromosome is
ence composed by a string of n identification numbers (pixels) that
epresent a feasible solution to the optimization problem. Each cri-
erion (F1, F2, F3, etc.) was then translated into a GIS layer, hence
ach pixel of the SCI assumed a vector of values corresponding to
he initial performance criteria. This database was then linked to the
As as input data for finding optimal solutions. It should be noted

hat two factors (i.e. F8 and F12) and one constraint (C5) are spatially
mplicit since they are not represented by a GIS layer, instead they
re dynamically calculated during the GAs process. Hence, the opti-
ization process was based both on GIS-based (10 factors and five

onstraints) and numerical criteria (two factors and one constraint).
Before the optimization process, all factors have been normal-

zed in the 0–1 interval thus making them unitless and comparable.
ince they were not normally distributed, we applied a min-max
ormalization instead of a standardization in the form of standard
eviations from mean. Following our decision framework, to solve
he general case of n-sites-to-add scenario (n > 1), the GAs objective
unction (OF) was calculated as follows:

Fn =
n∑

1

2F1 + 2F5 + 0.5F9 + 0.5F10 + F11
2F2 + 2F3 + 2F4 + F6 + 0.5F7 + 0.5F8 + 0.5F12

(1)

here the numerator estimates the costs, while the denomina-
or takes benefits into account. Hence the optimization goal was
chieved by minimizing the cost–benefit function OFn subject to:

1 > 300 m (2)

2 > 300 m (3)

3 > 300 m (4)

4 /= “elevated geologic risk” (5)

5 > 2000 m (6)

6 /= “unsuitable areas” (7)

To solve the optimized selection of just one site (n = 1; OF1), fac-
ors F8 and F12 and the constraint C5 have been left out since they
nly deal with the case that more than one tourist site is to be
earched for. Hence, OF1 was in the form:

F1 = 2F1 + 2F5 + 0.5F9 + 0.5F10 + F11
2F2 + 2F3 + 2F4 + F6 + 0.5F7

(8)

 
 

 

Since the genetic algorithm is based on random searching for
olutions, its final results cannot be identical as the starting points
re randomly selected, although the other input parameters are
nique. Therefore, we performed iterative processes for determin-

ng appropriate parameters. Previous research revealed that the
ling 220 (2009) 1138–1147 1141

optimal solution may be to search at a high rate of crossover, a
low rate of mutation and proper population size (Kuo et al., 2000).
In this study, crossover was set at a probability of 60% while muta-
tions occur with a probability of 5%. This low setting helps to avoid
getting trapped local optima during the search (D’heygere et al.,
2006). The initial population consisted of 500 chromosomes that
were evolved over minimal 10 000 generations. These parameters
were set after preliminary experiments. In our study we apply a
steady-state genetic algorithm with a one-point crossover operator
(Wall, 1996) to accomplish crossover. In this case the parent genome
strings are cut at some random position to produce two “head” and
two “tail” segments. The “tail” segments are swapped to produce
two new genomes. For parent selection the roulette wheel selec-
tion method was used (Goldberg, 1989), where the likelihood of
selection is proportionate to the fitness score given by the perfor-
mance criterion. After crossover and mutation, the individuals with
the lowest fitness scores were removed.

3.4. Model evaluation

Since GAs do not guarantee to find the global optimum, besides
the search for the fittest tourist allocations we also searched for the
least fit (i.e. worst) ones. This was achieved by minimizing, instead
of maximizing, the optimization goal. Then, for each genetic solu-
tion we analyzed the values of the performance criteria thus having
a comparative framework revealing how much the fittest solutions
are better than their nadir counterparts. We realized the same pro-
cedure to compare the detected tourist allocations with the existing
tourist sites. The degree of success (DS) of a solution with regard to
the performance criteria was estimated as

DS = xi

xhighest
(9)

for benefit criteria (i.e. the more the best; F2, F3, F4, F6, F7), and in
the form

DS = 1 − xi

xhighest
(10)

for cost criteria (i.e. the less the best; F1, F5, F9, F10, F11). The degree
of success of each genetic solution was then represented in the form
of a web-diagram.

4. Results

The optimized solution for the one-site-to-add scenario (Fig. 3a)
detected a location in the Eastern side of the SCI having a genetic
(cost–benefit) score equal to 0.24. This solution performs very well
(Table 1a) since it is placed where diversity in cover types is min-
imal (F1 = 1), the presence of threatened animal species is null
(F5 = 0) and the distance from relevant biodiversity elements is sat-
isfactory. In effect, this solution wholly satisfies five performance
criteria (F1, F2, F3, F5, F6) out of 10 (Fig. 4a), in the sense that it
assumes the fittest values that are allowed within the SCI with
regard to these criteria. Although it represents the best global solu-
tion, it is fairly weak from three points of view, i.e. F4, F9 and
F10. In effect, the selected site is not so far from locations of plant
species (F4 = 1190.26 m) and not so close to existing roads and/or
tourist sites (F9 = 2429.52 m) and to areas at elevated aesthetic value
(F10 = 2042.03 m). When compared to the nadir (least fit) solution
(cost–benefit score = 5.21) achieved by minimizing OF1 (Fig. 3e,
Table 1b), the optimized solution exhibits a substantial superior-

ity apart for criteria F9, F10 and F11. Although the nadir solution
is very unfavourable from an ecological point of view, it is not so
critical from a logistic and safety viewpoint.

The optimized solution for the two-sites-to-add scenario
(Fig. 3b) selected the same location as the previous scenario both
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ig. 3. The optimal solutions to the problem of adding 1 (a), 2 (b), 3 (c) and 4 (d) to
h) additional tourist sites.

ith a location in the southern side of the SCI. These couple of sites
ave a genetic (cost–benefit) score equal to 0.84. This solution per-
orms very well too (Table 1a), also because the second selected site
as a degree of success equal to 100% with regard to five factors (F1,
4, F5, F10, F11) out of 10 (Fig. 4b). Instead it is weak with regard to
riteria F2, F3 and, in particular, F9. This couple of sites fully satis-
es the criteria of both the horizontal (F8 = 7964.33 m) and vertical
sites to current ones, both with the worst case scenarios for 1 (e), 2 (f), 3 (g) and 4

(F12 = 313.02 m) distance. When compared to its nadir counterpart
(cost–benefit score = 9.98; Fig. 3f, Table 1b), the fittest solution evi-

dences undisputable advantages, in particular with regard to the
ecological factors. Instead, it is fairly worse concerning F9 and F11.

The optimized solution for the three-sites-to-add scenario
(Fig. 3c) detected the same solutions as the previous scenarios while
adding a new site in the south-eastern portion of the SCI. This set
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Table 1
Scores of the fittest (a) and least fit (b) solutions with regard to the employed criteria (F1, . . ., F12).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

(a) Fittest scenarios
1 additional site 1 8229.21 4715.81 1190.26 0 3857.98 2416.11 2429.52 2042.03 1.470

2 additional sites 1 8229.21 4715.81 1190.26 0 3857.98 2416.11 7964.33 2429.52 2042.03 1.470 313.02
1 2969.40 3198.82 2981.44 0 2632.75 2854.79 2921.62 14.76 1.076

3 additional sites 1 8229.21 4715.81 1190.26 0 3857.98 2416.11 5439.07 2429.52 2042.03 1.470 241.07
1 2969.40 3198.82 2981.44 0 2632.75 2854.79 2921.62 14.76 1.076
1 6183.57 2683.34 1061.71 0 1850.96 3022.50 2791.55 2743.85 1.207

4 additional sites 1 8229.21 4715.81 1190.26 0 3857.98 2416.11 4901.35 2429.52 2042.03 1.470 202.13
1 2969.40 3198.82 2981.44 0 2632.75 2854.79 2921.62 14.76 1.076
1 6183.57 2683.34 1061.71 0 1850.96 3022.50 2791.55 2743.85 1.207
1 1969.14 2049.07 2051.40 0 1853.96 2315.91 1942.06 301.21 1.078

(b) Least fit scenarios
1 additional site 4 782.51 337.69 338.58 8 196.32 1057.38 0.00 616.47 1.014

2 additional sites 4 782.51 337.69 338.58 8 196.32 1057.38 2581.52 0.00 616.47 1.014 291.27
3 333.69 768.82 393.83 8 108.08 829.54 390.59 1541.27 1.160

3 additional sites 4 782.51 337.69 338.58 8 196.32 1057.38 3004.97 0.00 616.47 1.014 194.05
3 333.69 768.82 393.83 8 108.08 829.54 390.59 1541.27 1.160
3 627.32 738.08 352.34 8 155.32 702.38 385.05 602.41 1.296

196.3
108.0
155.3
85.5
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4 additional sites 4 782.51 337.69 338.58 8
3 333.69 768.82 393.83 8
3 627.32 738.08 352.34 8
3 322.32 421.27 429.82 8

f sites scored a genetic (cost–benefit) score of 1.09. Although it
epresents the best global solution, the third site is weak from
hree points of view (criteria F4, F9, F10; Fig. 4c) while it is opti-

al concerning four criteria (F1, F5, F7 and F11). When compared

o the least fit solution (cost–benefit score = 14.19; Fig. 3g; Table 1b),
he fittest solution evidences considerable advantages in partic-
lar with regard to the ecological factors, while it is fairly worse
oncerning F9 and F11.

ig. 4. Web-diagrams showing the degree of success of each of the four genetic solutions w
lacement of new tourist sites within the study area.
2 1057.38 3308.69 0.00 616.47 1.014 195.15
8 829.54 390.59 1541.27 1.160
2 702.38 385.05 602.41 1.296
7 1411.11 501.17 176.29 1.066

The optimized solution for the four-sites-to-add scenario (fit-
ness score = 1.36; Fig. 3d) adds a further site in the central portion
of the SCI. This new site is performant with regard to four criteria
(F1, F5, F10 and F11; Table 1a; Fig. 4d) while it is weak referring

to criteria F2 and F9. In a comparison with its nadir (cost–benefit
score = 18.79; Fig. 3h; Table 1b), the fittest solution is considerably
better although it is again fairly worse concerning criteria F9 and
F11.

ith regard to the performance factors (F1, . . ., F11) chosen to evaluate the optimized
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Table 2
Scores of the current tourist sites (ID1, ID2, . . ., ID9) with regard to the employed criteria (F1, F2, . . ., F11).

Tourist site F1 F2 F3 F4 F5 F6 F9 F10 F11

ID1 2 2168.13 1546.22 0 8 691.12 0 512.87 1.032
ID2 3 1025.32 293.55 0 8 397.66 0 575.78 1.114
ID3 1 540.91 54.55 122.98 8 98.42 93.95 87.21 1.037
ID4 3 5.25 387.04 252.14 8 0 18.78 0 1.002
ID5 3 4.75 405.56 124.89 8 0 6.56 1266.15 1.003
ID6 1 389.03 415.05 280.5 6 157.41 264.45 917.43 1.019
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D7 1 1654.71 2317.91 795.3
D8 3 4769.22 1509.38 1043.5
D9 2 5722.56 2380.41 235.1

The comparison of the genetic optimized allocations with exist-
ng tourist sites (Fig. 1) reveals, as awaited, that the latter show
erformances that are halfway between the fittest and the least fit
enetic solutions (Table 2). ID1 and ID2 are weak with regard to cri-
eria F1, F4 and F5, while they perform well concerning logistic and
afety criteria F9, F10 and F11. ID3 has its weakness due to criteria
3, F5 and F6, but again it performs well with regard to safety and
ogistic criteria. ID4 and ID5 perform in an unfit manner, in partic-
lar due to criteria F1, F5 and F6. On the other hand, they privilege
riteria F9, F10 and F11. On the contrary, ID7 and ID9 behave in a very
atisfactory manner except for the criterion F10, finally ID6 and ID8
ave intermediate performances. As a result, five existing tourist
ites behave similar to the least fit solutions, two to the fittest ones
nd two are intermediate.

. Discussion

Making human activities sustainable is not an easy task, in par-
icular within protected areas where biodiversity is densely present
verywhere. Instead, a satisfactory balance between nature and
uman activities might bear great effects for biodiversity preserva-
ion (Cocks and Ive, 1996; Westphal and Possingham, 2003). Rarely
here is a single, dominant management objective, more often there
re multiple, highly contrasting objectives requiring a foremost
rade-off, in the form of a “win–win” solution that satisfy human
eeds while maintaining ecological functions. Hence, a matter of
ptimization arises and proper methodological tools are required.

Our paper first provides a model for an interactive, multivari-
te optimization of protected areas through the minimization of
weighted cost–benefit function involving many different view-

oints. Through a four-step method (i.e. choice of relevant criteria,
ranslation into GIS terms, genetic optimization, model evaluation),
e have formalized the problem of the allocation of tourist infras-

ructures as a mathematical optimization procedure. In accordance
ith local actors, due to the assigned weights of importance we

earched for ecologically oriented scenarios through which the pri-
rity was on the conservation of habitats, plant and animal species.
t should be noted that, from an optimization point of view, the
mportance is on the ratio between weights of importance and not
n their absolute values. The explicit mathematical formulation of
onservation planning goals led to greater objectivity and trans-
arency in the solutions. Furthermore, the outlined method is easily
xportable to any other areas where, if needed, it may be modulated
n case further criteria are considered relevant. In particular, we are
ware that our framework may be refined by incorporating the eco-
omic viewpoint (Drechsler et al., 2006), since conservation does
ot exist in an ideal world, detached of socio-economic aspects (e.g.
ifferent costs for tourist site building on the basis of the proper-

ies of the selected site). In accordance with local administrators, we
ill consider such aspect as funds for site realization will be avail-

ble, by following the same procedure, i.e. definition of clear and
uantifiable criteria to be translated into GIS terms and integrated
nto the optimization procedure.
0 1236.73 0 1368.15 1.119
5 1078.61 918.38 1351.65 1.412
1 1845.36 0 1388.85 1.088

It should be noted that the proposed methodology may be
applied also to protected areas having no previous tourist sites. This
can be simply achieved by leaving out the criterion F7 (distance
from existent tourist sites). In addition, since the proposed model
allows for the quantification of fitness scores of existing tourist
sites, we detected five tourist locations with elevated impacts on the
existing biodiversity. These sites are not consistent with nature pro-
tection objectives and might be replaced in the future by optimized
sites planned through the model we devised here.

Following our approach, we detected four optimized scenarios
where fittest tourist allocations resulted to be close to the limits of
the SCI. This is due to the fact the central portion of the SCI favours
logistic and safety criteria and, at the same time, it disadvantages
the ecological criteria due to its higher density of biodiversity. In
fact, the least fit solutions were placed by GAs in the middle of the
study area. Fittest and least fit solutions were located very far apart,
being this an additional proof that the SCI is spatially clustered with
regard to the performance criteria employed in the optimization
process. Existing tourist sites are similar to least fit solution, since
they favour logistic and safety criteria rather than ecological ones.
Two tourist sites (ID7 and ID9) are exceptions, due to their location
far from the centre of the SCI.

An important question in this work is the reason for using GAs
instead of easier suitability mapping methods through which site
location problems are reasonably tackled using multicriteria deci-
sion methods (Voogd, 1983). These methods have been recently
used to solve a wide variety of multifaceted problems, such as site
prioritization for protected areas or waste management, planning
of forest and agricultural resources management, and also for the
assessment of environmental impacts (Wood and Dragicevic, 2007).
Unfortunately, this approach is not feasible when generating a net-
work of candidate sites where the spatial relationships between
sites (criteria F8, F12 and C5) are critical and each site cannot be
considered in isolation. This goal requires a complex interplay in
the form of a dynamical simulation where candidate sites are inter-
actively evaluated. An alternative approach might lie on brute-force
search or exhaustive search (Menon, 2004), i.e. a trivial but very
general problem-solving technique that consists of systematically
enumerating all possible candidates for the solution and checking
whether each candidate satisfies the problem statement. Brute-
force search is simple to implement, and will always find a solution
if it exists. However, its cost is proportional to the number of can-
didate solutions, which, in many practical problems, tends to grow
very quickly as the size of the problem increases. For example, in this
study we dealt with 6000 candidate solutions (pixels), hence 6000n

different combinations should be assessed to identify the best solu-
tion for n new sites to add. The problem would be computationally
hard, and as such there are no known efficient polynomial-time

algorithms that can solve this problem exactly (Cormen et al., 1990).

Although it was outside the scope of this paper, the proposed
methodology may be employed to model optimized tourist paths
as well. This may be achieved by minimizing the cost–benefit func-
tion for a number of genetically simulated paths passing through
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he pixels in which the study area was divided in. This goal may
lso be reached by making use of least-cost modelling (Ferrarini
t al., 2008), a methodologically easier and computationally less
emanding approach if compared to GAs. However least-cost mod-
lling is not able to take into account planning of both suitable paths
nd infrastructures in a new reserve, neither a network of candidate
outes where spatial relations exist among paths. This goal requires
As for a complex simulation in a holistic perspective.

The optimized selection of tourist locations resembles the prob-
em of reserve network design (Noss, 2003; Williams et al., 2004).
y the way, the model proposed in this work is very different

rom the previous worldwide reserve network algorithms like, for
nstance, Marxan (Possingham et al., 2000) and ResNet (Sarkar et
l., 2002). First, our model does not rely on the critical assump-
ion commonly made by reserve selection algorithms, that selection
nits are independent of each other. As depicted above, in our model
patial relations between sites are critical and each site is not con-
idered in isolation. Secondly, the proposed model is extremely
exible, thus allowing the introduction of whatever criterion is
eeded. Instead, commonly used reserve selection algorithms (e.g.
arxan and ResNet) are rigid, in that they provide a pre-determined

et of criteria. Thirdly, our model incorporates not only biotic crite-
ia but also abiotic ones, for instance referring to safety and logistics.
n addition, since GAs are blind (i.e. they are not cognizant of when
t reaches an optimal solution) there is no guarantee that a global

aximum is reached. Therefore, to evaluate the validity of this
pproach, it is imperative to demonstrate that such models do actu-

 
 

 

lly converge to the appropriate solution. This is why our model
sed a simple but effective answer to the problem, based on the
omparison of the discovered fittest solutions with nadir solutions
nd with existing tourist sites. This gave us a quantitative assess-
ent of how satisfactory the detected optimized solutions are. In

Dir. 92/43/EEC

Aconitum variegatum subsp. paniculatum (Arcang.) Negodi
Androsace obtusifolia All.
Aquilegia vulgaris L.
Arnica montana L. V
Artemisia genipi Weber V
Astragalus depressus L.
Betula pubescens Ehrhart
Carex canescens L.
Carex davalliana J.E. Smith
Carex lepidocarpa Tausch
Carex panicea L.
Carex paupercula Michx.
Carex rostrata Stokes
Chamorchis alpina (L.) L.C.M. Richard
Cicerbita alpina (L.) Wallr.
Eriophorum vaginatum L.
Gentiana anysodonta Borbas
Goodyera repens (L.) R. Br.
Koeleria hirsuta Gaudin
Linnaea borealis L.
Lloydia serotina (L.) Reichenbach
Luzula luzulina (Vill.) Dalla Torre and Sarnth.
Lycopodium annotinum L. V
Lycopodium clavatum L. V
Moneses uniflora (L.) A. Gray
Papaver aurantiacum Loisel.
Poa chaixi Vill.
Polystichum aculeatum (L.) Roth
Potentilla frigida Villars
Ranunculus trichophyllus Chaix subsp. trichophyllus
Ribes petraeum Wulfen
Salix caesia Villars
Salix glaucosericea Floderus
Saussurea alpina (L.) DC. subsp. alpina
Saxifraga hostii subsp. rhaetica (Engl.) Braun-Blanq.
Sempervivum wulfenii Mert. and W.D.J. Koch
ling 220 (2009) 1138–1147 1145

the one-site-to-add scenario, the fittest solution had a cost–benefit
ratio about 20 times better than the least fit one (0.24 versus 5.21),
about 12 times in the two-sites-to-add scenario (0.84 versus 9.98),
13 times in the three-sites-to-add scenario (1.09 versus 14.19) and
14 times in the four-sites-to-add scenario (1.36 versus 18.79). For
interpretative purposes, the representation of the degree of success
of each genetic solution in the form of a web-diagram was useful
as well.

Our model has important implications for managers and
researchers seeking to minimize human impacts in wilderness
recreation areas with nature conservation goals. It is a step for-
ward towards systematically settling a satisfactory coexistence
between nature and human activities by dynamically solving mul-
tiple, nonlinear, highly contrasting objectives. Moreover, this work
may contribute to unify criteria and data coming from different bio-
logical and ecological sciences such as botany (criteria F4 and C3),
zoology (F5 and C3), ecosystem (F2, F3, C1 and C2) and landscape
(F1 and F10) ecology, following safety and logistic criteria as well,
to achieve an overall optimization of the humans-nature balance.
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Appendix A

List of threatened or rare plant species surveyed within the study
area over a period of 3 years. The last column relates to the number
of growing sites.

IT Red List IT 1020 Local list Locations

R 3
3

RR 1
85

2
R 1
R 3

13
4
1
5

13
1

R 4
R 6

7
R 2
R 1
R 2

LR Yes R 1
2

R 1
6

R 1
1
2

R 5
R 1
R 2

5

R 2
R 2
R 2
R 10
R 1
R 7
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G A A A A A A A A C + D
G C C B C B C D A B
L C C A A A D B B A
L C C B B B B A A C
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ppendix A (Continued )
Dir. 92/43/EEC IT Red List

parganium angustifolium Michaux
richophorum alpinum (L.) Pers.
rientalis europaea L. LR
oodsia alpina (Bolton) Gray

ir. 92/43/EEC stands for ‘Habitats’ Directive 92/43/EEC (V = Annex V).
T Red List stands for Italian Red List (LR = low risk).
T 1020 refers to Scoppola and Spampinato (2005).
ocal list refers to Parolo et al. (2005) (R = rare; RR = very rare).

ppendix B

nteraction between animal species and hosting habitats within the study area.
pecies Dir. 92/43/EEC Dir. 79/409/EEC EU habitat

3130 3220 4060 4

lectoris graeca Meisner I A A B B
quila chrysaetos L. I A A B B
ptesicus nilsonii Keyserling et Blasius IV C C B A
laucidium passerinum L. I A A A A
ypaetus barbatus L. I A A C B
agopus mutus L. I A A A B
epus timidus L. V A B C + D C
ipistrellus pipistrellus Schreber IV C C B A
etrao tetrix L. I A B C + D A
etrao urogallus L. I A A C + D A

: occasional habitat; B: regular habitat; C: preferred habitat for feeding; D: pre-
erred habitat for reproduction/nidification.
ign “+” means that two kinds of interaction between species and habitat have been
bserved.
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