
Available online at www.sciencedirect.com 

 

www.elsevier.com/locate/solener

Solar Energy 84 (2010) 2219–2229

 

A novel multi-model neuro-fuzzy-based MPPT for three-phase
grid-connected photovoltaic system

Aymen Chaouachi ⇑, Rashad M. Kamel, Ken Nagasaka

Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi,

Koganei-shi, Tokyo 184-8588, Japan

Received 8 March 2010; received in revised form 9 July 2010; accepted 13 August 2010
Available online 29 September 2010

Communicated by: Associate Editor Elias Stefanakos
Abstract

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV)
system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between
the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered
feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed
into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the
proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regard-
ing to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model
machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range
of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the
highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P&O) algorithm dispositive.
� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The Kyoto agreement on global reduction of greenhouse
gas emission has prompted interest on renewable energy
systems worldwide. Nowadays photovoltaic energy is one
of the most popular renewable sources since it is clean,
inexhaustible and requires little maintenance. However, it
still presents a vast area of competition comparing to con-
ventional energy resources due to its high cost and low effi-
ciency during energy conversion. Regarding to this, it is
necessary to optimize the performance of PV systems
through the operation of conversion systems to increase
the output efficiency of the overall system (Enrique et al.,
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2007; Chua and Chen, 2009). This approach is commonly
named as Maximum Power Point Tracking (MPPT), sev-
eral methods are referred in the bibliography: the P&O
method is the most commonly used in practice due to its
simplicity and ease of implementation (Enrique et al.,
2010), however, this algorithm can fail or oscillate around
the Maximum Power Point (MPP) under sudden sunlight
changes (Hohm and Ropp, 2003; Salas et al., 2006). Incre-
mental conductance is also commonly used as it can over-
come some aspects of the P&O algorithm instabilities.
Nevertheless this method involves current and voltage dif-
ferentiation which requires a relatively complex decision
making process and therefore needs more complex calcula-
tion capacity and memory (Esram and Chapman, 2007).
More recently, Artificial Neural Network (ANN) tech-
niques are being employed for photovoltaic applications,
mainly because of their symbolic reasoning, flexibility
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Nomenclature

Photovoltaic parameters superscripted with “M” refers to a
PV module while those superscripted with “C”
are referring to a solar cell and each parameter un-
der scripted with “o” refers to standard conditions

e electron charge, e = 1.602 � 1019 (C)
Id diode current (A)
I0 reverse saturation current (A)
Isc short-circuit current (A)
IM

sco
short-circuit current under standard conditions
(A)

V M
OCo

open voltage under standard conditions (V)
VT thermal voltage in the semiconductor (V)

P M
maxo

power under standard conditions (W)
NS cells in series in a module
NP parallel branches in a module
NM modules in series in an array
NB parallel branches in an array
Ta ambient temperature (�C)
Tc cell temperature (�C)
Ga irradiance (W/m2)
Rs series resistance (Q)
g diode ideality factor
K Boltzmann constant, if = 1.381 � 10�23 (J/K)
FF Fill Factor
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and explanation capabilities that are useful to deal with
strong nonlinearities and complex systems (Mellit and Kal-
ogirou, 2008). Mummadi et al. proposed an ANN-based
identification of the optimal operating point for a DC
motor supplied by PV generator (Veerachary and Yadaiah,
2000). Theodore et al. proposed a MPPT for solar vehicle
based on ANN reference voltage estimation (OCRAN
et al., 2005). Bahgat et al. proposed a neural network based
MPPT for a PV module supplying a DC motor that drives
an air fan (Bahgat et al., 2005). Preliminary results show
high MPPT efficiency for such methods (Hohm and Ropp,
2003). On the other hand, neural networks are still consid-
ered as unstable learning model regarding to the presence
of noisy sets, large training set, underfitting and overfitting
problems that causes a lack of generalization and trapping
on local minima solutions (Gao et al., 2005; Anguera et al.,
2007). Moreover, due to the high nonlinearity and close
dependence on weather conditions of PV generators, a neu-
ral network based model requires the use of a rich training
set covering a wide range of climatic conditions which leads
to a delicate generalization ability.

This paper presents a new MPPT methodology based on
a more robust estimator consisting of multi-model machine
learning. The multi-model approach defines a set of three
models by means of fuzzy classification, each model con-
sists of a single ANN that emulates the behavior of the
PV generator for a specific climatic conditions, so-called
“class”. The proposed classifier consists of transparent
rules-based fuzzy classifier, such rules, unlike opaque or
uninterruptable classification is straight forwarded and
simple to understand. The multi-model approach aims to
decrease the process complexity of the system under wide
operating conditions frame, therefore the proposed estima-
tor offers a distinct improvement regarding to the general-
ization capability comparing to the single ANN estimator.
Moreover, the proposed neuro-fuzzy predictor can be suc-
cessfully implemented for a real time MPPT that can han-
dle rapid weather conditions variations while a P&O
algorithm approach and a historical meteorological data
based prediction, yet easier to implement but usually fail
in case of sudden weather conditions variation.

2. Overview of the grid-connected PV system

Fig. 1 shows the overall of the studied system, composed
of a 20 kW photovoltaic generator connected to the main
electric grid via two power electronics stages. The first stage
consists of a DC–DC converter that insures impedance
adaptation between the generator and the load by tracking
the reference voltage estimated by the neuro-fuzzy net-
work. While the second stage is composed of a DC bus
and a PQ inverter that injects the power generated by the
PV generator into the main grid, where the inverter is act-
ing as power controller ensuring a high power factor. In the
following subsections, all the components of the grid-con-
nected PV system are described in details.

2.1. Photovoltaic system

The studied grid-connected PV system comprises a
20 kW photovoltaic generator installed at the Engineering
Campus of the Tokyo University of Agriculture and Tech-
nology (Fig. 2). A dynamic simulation model of the photo-
voltaic system is designed under Matlab Simulink�

environment to analyze the behavior and the performances
of the proposed MPPT algorithm.

2.1.1. Simulation model of a PV generator

A simple equivalent circuit for a PV cell (Fig. 3a) con-
sists of a real diode associated to a parallel ideal current
source delivering a proportional current to the solar irradi-
ance, from where the following relations can be expressed
(Chaouachi et al., 2009):

I ¼ ISC � Id ð1Þ
where Id ¼ I0ðeeV d=gKT c � 1Þ ð2Þ
Therefore I ¼ ISC � I0ðeeV d=gKT c � 1Þ ð3Þ
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Fig. 1. Overview of the neuro-fuzzy MPPT grid-connected photovoltaic system.

Fig. 2. The studied photovoltaic field installed at Tokyo University of
Agriculture and Technology.
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To deal with the dynamic behavior of a PV generator,
some parallel leakage resistance Rp and a series resistance
Rs (associated to the resistance of the semiconductor)
should be included (Fig. 3a). However, for the proposed
simulation, taking into account both of series and parallel
resistances results in computational limitations subjected to
the implicit nonlinear nature of the simulation model.
Therefore, such approach is usually avoided in the photo-
voltaic systems bibliography. For the proposed simulation
model, the parallel resistance is neglected while the series
resistance Rs is considered which represents the internal
resistance and the connections between cells. The mathe-
I

Isc

Id
Rp

-

+

-

Load

PV

R

(a) (b)

Fig. 3. (a) PV generator model, (b) Equivalent circuit with added Rp parallel a
matical relations established afterwards describing the PV
generator model is expressed as following:

I ¼ ISC � I0 exp
eðV þ I � RsÞ

gKT c

� �
� 1

� �
ð4Þ

Considering the case of a photovoltaic generator module
(panel), composed of NP parallel branches, each including
NS solar cells associated in series, the current delivered by a
photovoltaic module under constant weather conditions
can be expressed as:

IM ¼ IM
sc 1� exp

V M � V M
oc þ RM

S � IM

NS � V C
T

� �� �
ð5Þ

The module current has an implicit expression depend-
ing on the following variables expressed in function of a
single cell parameters:
Short circuit current
+

-

V

Load

s
+

-

I

Isc

V

Id

Load(c)

nd Rs series resistance (c) photovoltaic gener
IM
SC ¼ NP � IC

SC

Open circuit voltage
 V M

oc ¼ NS � V C
oc
Thermal voltage in the
semiconductor
V C
T ¼ mKT c=e
Equivalent serial resistance
of the module
RM
s ¼ RC

s � NP=NS
As the first step, under the assumption that all the PV cells
are identical, the fundamental simulation parameters for a
ator equivalent simple circuit.
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solar cell (in standard conditions) are expressed using the
module characteristics provided by the manufacturer’s cat-
alogue (Appendix A):

P C
maxo
¼

P M
maxo

N SN P
ð6Þ

V C
oco
¼

V M
oco

NS
ð7Þ

IC
sco
¼

IM
sco

NP
ð8Þ

Now, the instantaneous series resistance of a solar cell can
be expressed as:

RC
S ¼ 1� FF

P C
maxo

V C
oco IC

sco

0
@

1
A � V C

oco

IC
sco

ð9Þ

where FF is the Fill Factor and is given by:

FF ¼

V C
oco

V C
T o

� Ln
V C

oco
V C

T o

þ 0:72

� �� �
V C

oco
V C

T o

þ 1
ð10Þ

Operating condition parameters can be calculated for a
fixed voltage VM, temperature Ta and irradiance Ga using
the cell parameters in standard conditions. The short
circuit current is proportional to the irradiance and can
be expressed as:
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IC
SC ¼

IC
SCO

Gao

� Ga ð11Þ

The open circuit voltage of the cell is depending on the
nominal open circuit voltage and the actual weather condi-
tions which can be expressed using the following relation:

V C
oc ¼ V C

oco
þ 0:03 � ðT a þ 0:03 � Ga � T CoÞ ð12Þ

Now, the instantaneous current debited by a photovol-
taic module can be finally expressed for the fixed parame-
ters (VM, Ta, Ga):

IM ¼ N P � IC
SC 1� exp

V M � NSV C
oc þ IM RC

S
NS
NP

N SV C
T

 !" #
ð13Þ

Considering the case of a photovoltaic array that consists
in NB parallel branches, each containing NM modules asso-
ciated in series. For a VM applied voltage, the array current
is equal to I ¼

PNB
i¼1IM

i . If we assume that all the panels are
identical and under the same temperature and irradiance,
then the total current generated by the array can be ex-
pressed as following:

I ¼ N B � IM ð14Þ
2.1.2. Influence of temperature and irradiance on PV

operating

Fig. 4 shows the behavior of a photovoltaic panel
simulation in accordance to temperature and irradiance
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variations under respectively constant irradiance and tem-
perature. In fact, a PV generator connected to a load can
operate in a large margin of current and voltage depending
on weather conditions (Masters, 2004). Fig. 4 shows that
the open circuit voltage is increasing following a logarith-
mic relationship with the irradiance and decreasing slightly
as the cell temperature increases. On the other hand, the
short circuit current is linearly depending on the ambient
irradiance in direct proportion, while the open circuit volt-
age decrease slightly as the cell temperature increases.

Therefore, the maximum power that could be generated
by a PV system is slightly depending on the temperature
and irradiance variations: the maximum power increases
as the irradiance increases and vice versa, on the other
hand a PV generator performs better for low temperature
than raised one.

2.2. DC–DC boost converter

The operating point of a PV generator connected to a
load is the intersection of the load curve and the PV cur-
rent–voltage characteristics. In case of resistive load, the
load characteristic is a straight line with slop eðI ¼ 1

R V Þ,
while the power delivered to the load depends on the value
of the resistance only. It should be pointed out that if the
load R is equal to a certain optimal load Ropt, the PV gen-
erator delivers the maximum power (MP). However, if the
load R is noticeably larger or smaller than Ropt the PV gen-
erator operates respectively as constant voltage source or
constant current source.

To overcome this undesired effects on the PV power out-
put, an electrical tracking have to be achieved through a
power conditioning converter (DC–DC converter) inserted
between the load and the source to insure an impedance
adaptation by matching the load impedance with the vary-
ing PV source. In other words, the DC–DC boost converter
is used to maximize the energy transfer from the photovol-
taic generator to an electrical system by adjusting the PV
generator output voltage to a reference value (Vref) at
which the PV generator supplies the maximum power.

The proposed DC–DC converter includes two power
accumulation elements and thus two controllable variables
which are the Vpv voltage and the inductor current (iL), a
mathematical model describing the DC–DC converter
can be expressed in the following relation (Kamel et al.,
2009):

V m

idc

� �
¼ m

V DC

iL

� �
ð15Þ

where m = 1 � D and D is the duty cycle of the converter
switch expressed as:

D ¼ ton

T
¼ tonfs ð16Þ

where fs is the switching frequency of the converter switch,
ton the time which the switch is turned on during a complete
period T.

 

 

diL

t
¼ 1

Lpv
ðV m � V pvÞ �

Rpv

Lpv
ð17Þ

dV pv

dt
¼ 1

pv
ðiL � ipvÞ ð18Þ

The voltage control loop with the PV current compensa-
tion gives the reference current i�L that can be calculated
using Eq. (17):

i�L ¼ PIðV �pv � V pvÞ þ ipv ð19Þ

where V �pv is the reference voltage calculated by the neuro-
fuzzy logic controller (Fig. 1), PI is the parameters of the
proportional-integral controller

The optimal switching voltage is expressed using (18)
and (19):

V �m ¼ PIðV �pv � V pvÞ þ V pv þ
Rpv

Lpv
iL ð20Þ

The controller parameters are chosen to maintain con-
stant PV voltage and to minimize the current ripple. The
DC–DC converter command is obtained by the inversion
of Eq. (15), expressed as following:

m� ¼ V �m
V DC

ð21Þ

With optimal duty cycle D� ¼ 1� m�.
A DC link insures an energy balance between the power

generated by the PV generator and the power injected into
the network by charging or discharging the capacitor, that
oscillate between two levels depending on the actual cli-
matic conditions and the power injected.

2.3. PQ inverter

The inverter plays a vital role in grid-connected systems,
by interfacing the PV generator with the main utility power
system, the configuration of a basic inverter connected to a
PV generator is shown in Fig. 5.

The basic and minimum requirement of voltage source
inverter is to control the flow of active and reactive power
between the PV source and the main utility, the mathemat-
ical relations for P&Q magnitudes can be expressed as fol-
lowing in Eqs. (22) and (23) Lasseter et al., 2000:

P ¼ VE
wL

sinðdV � dEÞ ð22Þ

Q ¼ V 2

wL
� V

wL
cosðdV � dEÞ ð23Þ

As the main objective of the current work is to analyze
the MPPT proposed methodology during steady-state
operation, it would be of no advantage to consider the
details of inverter switching. Moreover, if such details are
considered, then extra efforts should be done to compen-
sate the undesired effects of the generated harmonics that
leads to more heavy computational simulations. Thus,
the proposed inverter is represented by its control function
while the fast transients related with the commutations of
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the switches are not considered, therefore the power
injected at the AC side does not include harmonics, losses
or delays. The inverter voltage is represented using the fol-
lowing three controlled sinusoidal voltage sources defined
as:

V a ¼
ffiffiffi
2
p

V � sinðwt þ dV Þ ð24Þ

V b ¼
ffiffiffi
2
p

V � sin wt þ dV �
2p
3

� �
ð25Þ

V c ¼
ffiffiffi
2
p

V � sin wt þ dV þ
2p
3

� �
ð26Þ

where the control variables are V and dv

The basic structure of PQ inverter controller is shown in
Fig. 6, two PI controllers would suffice to control the flow
of active and reactive power by generating the proper val-
ues of voltage (V) and angle (dv) based on the instanta-
neous value of voltage and current. The reference power
(Pref) in Fig. 6 represents the amount of active power pro-
duced by the photovoltaic generator interfaced to the main
utility through the inverter, while Qref represents the
amount of reactive power desired to be injected into or
absorbed from the main utility. In the present case, the
inverter is operating at unity power factor (Qref = 0) there-
fore no reactive power is exchanged and the total MP
extracted from the PV generator is injected to the grid.
ANN3

Temp

Irrd

Class 3 

Fig. 7. Architecture of the Neuro–fuzzy network.
3. Neuro-fuzzy maximum power point estimation

The neuro-fuzzy network consists of two stages; the first
one is a fuzzy-rule-based classifier while the second one is
Fig. 6. Basic structure of the in
composed of three multi-layered feed forwarded ANNs
(Fig. 7). The three ANNs have similar architecture, com-
posed of three layers: input, hidden and output layers.

3.1. Fuzzy rules-based classification

Classification task consists of assigning a class Cj from a
predefined class set C = {C1, C2, . . . , CM} to an object
belonging to a certain feature space x e SN, so the problem
comes to find a mapping defined as (Kuncheva, 2000):

D : SN ! C

A fuzzy rule-based classification system is composed of
fuzzy reasoning method (FRM) and a Knowledge Base
(KB) consisting in rule base (RB) and data base that
verter PQ control scheme.
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describes the semantic of the fuzzy subsets associated to
linguistic labels on the if-then part of the rules. Basing on
the KB, the FRM determines a label class for admissible
patterns as shown in Fig. 8 (Cordon and Jesus, 1999).

Let us consider a rule base R = {R1, R2, . . . , RL} and rj

rules in R, the RBs are generated based on fuzzy rules with
a class in the consequent according to the following
structure:

Rk if a1 is Lk
1 and . . . aN then O is Cj ð27Þ

where a1, . . . , ,aN is the outstanding selected features for
the classification task, Lk

1; . . . ; Lk
N is the linguistic labels to

discretize the continuous domain of the variables, O is
the class Cj to which the pattern belongs.

3.1.1. Fuzzy reasoning method

A fuzzy reasoning method is an inference procedure that
derives conclusions from a set of if-then rules and a pattern,
such methodology aims to improve the generalization
capability of a classification system (Kuncheva, 2000).
While each rule rj in R generates a class Cj related to a pat-
tern P t ¼ ðpt

1; . . . pt
N Þ, the FRM considers the rule with the

highest combination between the matching degree of the
pattern with the if-then part and the certainty degree for
the classes. In fact, for each class Cj, the association degree
of the pattern with the class Oj can be expressed as
following:

Oj ¼ maxk2LRkðP tÞ ð28Þ

where Rk(Pt) is the strength of activation (matching rule)
associated to the kth rule, obtained by applying a t-norm
to the degree of satisfaction of the inputs patterns to the
clause (a1 is Lk

1):

RkðP tÞ ¼ T ðlk
L1
ðpt

1Þ; . . . ; lk
LN
ðpt

N ÞÞ ð29Þ

Finally the classification for the pattern Et is the class Ch

such expressed in:

Oh ¼ maxj¼1;...;M Oj ð30Þ

This approach can be graphically represented by Fig. 9.

3.1.2. Fuzzy controller design

The fuzzy rule-based classifier was build and designed
under the Matlab Fuzzy Logic Toolbox and lately exported
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Fig. 8. Fuzzy rule-based classification system.
into Simulink environment as a part of the neuro-fuzzy net-
work and the whole simulation system.
3.1.2.1. Membership functions. A membership function is a
curve that defines how each point in the input or output
space is mapped to a membership value between 0 and 1.
Fig. 10a and b shows the temperature and irradiance mem-
bership functions in trapezoidal shape. The temperature
membership function is sorted into three categories labeled
as: hot, warm and cold, while the irradiance membership
function is sorted into three categories labeled as sunny,
normal and cloudy.

The output of the fuzzy system is the class associated to
the inputs pattern. Fig. 10c shows the output membership
function in triangular shape, sorted into three categories:
class1, class2 and class3.
3.1.2.2. Fuzzy rules. The influence of climatic conditions on
the model or behavior of a PV generator can be interpreted
through linguistic conditional statements that describe the
correlation between the climatic conditions and the PV
operating behavior. Indeed, if-then statement based trans-
parent rules, similar to those used in fuzzy control (Lee,
1990) are established based on human expertise on the
influence of weather conditions on PV systems operating
characteristics that are summarized in Table 1.

Fig. 11 shows the clustering output of the fuzzy classifier
as a function of output power, the training data set was
split into three classes each one is used for the training pro-
cess of its appropriate ANN. Unlike conventional crisp
classification, the proposed fuzzy classifier presents several
patterns with similar power level that are classified into dis-
similar classes as they belongs to different weather condi-
tions (temperature, irradiance).
3.2. Multi-layred perceptron neural network

Multi-layered perceptrons neural network (MLPNN)
has been applied successfully to solve some difficult and
diverse problems based on a preliminary supervised train-
ing with error back propagation algorithm using an error
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Table 1
Fuzzy rules assignment.
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Fig. 11. Clustering of the input patterns (training data).

Table 2
Neural networks training parameters.

ANN1 ANN2 ANN3 Single ANN

Hidden neurons 11 14 11 16
Learning rate 0.1 0.1 0.1 0.2
Momentum 0.3 0.3 0.3 0.35
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correction learning rule. Basically, error back learning con-
sists in two pass through the different layers of the network,
a forward pass and backward pass. In the forward pass, an
activity pattern (input vector) is applied to the sensory
nodes of the network, its effect propagates through the net-
work layer by layer to produce an output as actual
response. During the backward pass synaptic weights are
adjusted in accordance to an error correction-rule. The
error signal (subtracted from a desired value) is then prop-
agated backward through the network against the direction
of the synaptic connections (Haykin, 1999; Hornik et al.,
1989).

To evaluate the performance of the proposed neuro-
fuzzy network comparing to a conventional neural network
based MPPT method, a single ANN estimator was devel-
oped besides the three ANN’s (ANN1, ANN2 and
ANN3) constituting the neuro-fuzzy learning machine.
The networks inputs are temperature and irradiance while
the output is the optimal reference voltage.

The training data base was recorded during the year
2008 for the training and testing process the original set
was split into three subsets: training set (70%), validation
set (15%) used during the training process for early stop-
ping to avoid overfitting problems and testing set (15%)
to evaluate the generalization performance of the devel-
oped ANNs. To improve the training convergence perfor-
mances, mean 0 and standard deviation 1 based across
channel normalization (Chaouachi et al., 2010) was used
for the input training set rescaling, basing on the following
relation:

Si ¼
xi �meanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðxi�meanÞ2

N�1

r ð31Þ

where

mean ¼
PN

i�1xi

N

xi the raw input variable X in the ith training case, Si the
standardized value corresponding to xi, N the number of
training case

The target data set was linearly normalized in order to
force the network values to be within the range of output
activation functions using upper (Ymax) and lower bounds
(Ymin) for the values:

Zi ¼
Y i � ðY max � Y minÞ=2

ðY max � Y minÞ=2
ð32Þ

where Yi the raw target variable Y for the ith training case.
Zi the standardized value corresponding to Yi.

The backpropagation momentum algorithm was used
for the training process of the developed networks, the
framework of the ANN’s was set out basing on trial and
error approach (Table 2). In fact, the networks were
trained up to the stopping validation point while their
parameters were continuously changed until no significant
error performance decrease is observed. It should be
noticed that a single hidden layer was sufficient for the pro-
posed task, as adding a second hidden layer did not
improve the training performances.
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4. Simulation results

Several performance criteria are reported in the ANN
literature as: the training time, the modeling time and the
prediction error. In the present study, as the training pro-
cess is in offline mode, the first two criteria are not consid-
ered to be relevant. Thereby, the estimation performances
of the neuro-fuzzy network and the single ANN will be
evaluated only in term of estimation error defined as the
difference between the experimental and the estimated val-
ues based on statistical approach. In fact the mean absolute
error (MAE), was applied as statistical error test criteria.
On the other hand, the performance of the proposed esti-
mator was compared with the experimental algorithm
(P&O) and the conventional ANN estimator regarding to
the maximum power extracted during a whole day.

Fig. 12a and b respectively shows the reference voltage
estimation by the neuro-fuzzy network and a single ANN
comparing to the experimental data for an unsteady
weather conditions during a cloudy day. We can see that
the proposed machine learning achieved the most accurate
estimation. Moreover, for the total testing process mean
absolute error for the neuro-fuzzy estimator is 0.139 while
the single ANN estimator’s error is equal to 2.496. In fact,
the complex nature of the PV generator and its nonlinear
behavior versus the atmospheric changes involves the use
of a large training data base to cover most of eventual
weather conditions that leads to classification degradation
and loss in the generalization performance caused by over-
fitting problem. Nevertheless, the proposed neuro-fuzzy
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machine learning can overcome these limitations through a
better definition of the model complexity based on the
fuzzy classification.

Fig. 12c presents the simulation output of the PV system
(extracted power) during 1 day using the neuro-fuzzy net-
work and the single ANN comparing to the measured
experimental data (P&O). It can be seen that the neuro-
fuzzy MPPT methodology accomplished better perfor-
mances then the single ANN or the P&O’s algorithm that
can fail to track the MPP or oscillates around it under rap-
idly changing climatic conditions. In fact, the proposed
neuro-fuzzy-based method achieved the highest power effi-
ciency with 6.85% of extra generated power comparing to
the single ANN and 2.73% comparing to the experimental
dispositive using the P&O algorithm.

In order to validate the stability performances of the
proposed MPPT based neuro-fuzzy estimator, we pro-
ceeded to observe the tracking of the MP during the grid
connection operation. Fig. 13a shows the tracking of the
reference voltage estimated by the neuro-fuzzy machine
learning after a weather condition step change (irradiance
650 ? 500 kW/m2; temperature 26.5 ? 24.5 �C) basing on
experimental measures. In fact, the neuro-fuzzy network
supplies a new value of reference voltage, tracked through
the DC–DC stage so that the overall system can keep
operating under optimal conditions, that is to say that
the power injected into the main utility is equal to the
MP Fig. 13b throughout the steady-state next to the
climatic disturbance. Fig. 13c shows the variation of the
current generated by the PV array after the climatic per-
turbation basing on the new set point of the system opti-
mal operation meanwhile the RMS voltage keep stable
(Fig. 13d).

Fig. 14 shows the current injected into the main grid and
the grid side voltage before and after the weather condi-
tions step change. As it can be seen, the voltage and current
are in phase which means that the MP extracted from the
PV array can pass into the main grid as the whole system
operates at unity power factor (Qref = 0) with no reactive
power exchange. The peak occurring approximately at
0.016 s is due to the dynamic state during the initialization
of the system (DC–DC converter, DC bus, inverter. . .).
After reaching the steady-state (0.02 s) such peak will not
occur even during sudden weather condition changes like
the one occurring at 0.07 s.

5. Conclusions

In this paper a new MPPT methodology was applied to
a grid-connected photovoltaic system based on a pro-
posed neuro-fuzzy estimator. The whole system was sim-
ulated under Matlab Simulink� environment. In this
study, the developed neuro-fuzzy network consists of
two stages; the first one is a fuzzy rule-based classifier,
the second one is composed of three multi-layered feed
forwarded ANNs trained offline using experimental data
from a real PV system installed at the engineering campus
of Tokyo University of Agriculture and Technology. The
proposed neuro-fuzzy estimator showed the ability to
faithfully emulate the dynamic and nonlinear behavior
of a photovoltaic generator under a large wide of climatic
conditions. In fact the multi-model aspect of the proposed
machine learning confer it a distinct generalization ability
comparing to a conventional single ANN-based MPP pre-
dictor. Maximum power operation was achieved by track-
ing the reference voltage estimated by the neuro-fuzzy
network through a DC–DC converter. The whole grid-
connected system performance was tested during a cloudy
day with several rapid irradiance variations. The simula-
tion results showed that the proposed system perfor-
mances was not degraded, as the MPPT dispositive was
able to track the reference voltage insuring an optimal
operating condition under any rapid changing meteoric
conditions.
Appendix A. PV module specification
Manufacturer
 SHARP
 Maximum power
 120 W

Type
 NE-LO1A
 V OCo
 30.90 V

Maximum

voltage

600 V
 IOCo
 4.17 A
Weight
 12.50 Kg
 Vpm
 26.70 V
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