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In the eastern part of the Indian shield, late Paleozoic—Mesozoic sedimentary rocks of the Talchir Basin
lie precisely along a contact of Neoproterozoic age between granulites of the Eastern Ghats Mobile Belt
(EGMB) and amphibolite facies rocks of the Rengali Province. At present, the northern part of the basin
experiences periodic seismicity by reactivation of faults located both within the basin, and in the Rengali
Province to the north. Detailed gravity data collected across the basin show that Bouguer anomalies
decrease from the EGMB (~+15 mGal), through the basin (~—10 mGal), into the Rengali Province
(~—15 mGal). The data are consistent with the reportedly uncompensated nature of the EGMB, and
indicate that the crust below the Rengali Province has a cratonic gravity signature. The contact between
Rengali Province the two domains with distinct sub-surface structure, inferred from gravity data, coincides with the North
Talchir Basin Orissa Boundary Fault (NOBF) that defines the northern boundary of the Talchir Basin. Post-Gondwana
NOBF faults are also localized along the northern margin of the basin, and present-day seismic tremors also
Bouguer anomaly have epicenters close to the NOBF. This indicates that the NOBF was formed by reactivation of a Neo-
Seismicity proterozoic terrane boundary, and continues to be susceptible to seismic activity even at the present-day.
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1. Introduction

Continental shield domains are generally regarded as stable
segments of the Earth’s surface, having experienced little internal
strain since stabilization in the Precambrian time. This assumption
is based on a central tenet of plate tectonic theory, that lithospheric
plates are essentially rigid with deformation being confined to their
boundaries (Wilson, 1965; McKenzie and Parker, 1967; Morgan,
1968). Global tectonic maps of lithospheric plates (e.g. Morgan,
1968) show that plate boundaries only rarely pass through conti-
nental interiors, such as the Alps and the Himalayas; these special
domains represent the final stages of the convergence prior to the
suturing of two erstwhile distinct plates. However, recent advances
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in satellite geodesy and the occurrence of intraplate earthquakes
suggest that the assumption of plate rigidity may be an over-
simplification (e.g. Gordon, 1998). Increasing evidence from
various continental shield domains such as North America (e.g.
Calais et al.,, 2006), Arabia (e.g. Al-Heety, 2007) and South Africa
(e.g. Malservisi et al., 2013) indicates that stresses may accumulate
in continental plate interiors and lead to seismic activity in zones
that were generally assumed to be stable.

In India, recent seismic activity as evidenced by the Latur (1993),
Jabalpur (1997) and Bhuj (2001) earthquakes has given rise to
considerable uncertainty about the assumed stability of the Indian
shield. All the above earthquakes occurred in an intraplate setting,
and have generally been attributed to reactivation of basement
faults (Krishna Brahmam and Negi, 1973; Rajendran et al., 1996).
Interestingly, in most of these cases, the seismicity has been
focused on previously stabilized continental lithosphere that is now
capped either by volcanics or by sedimentary basins. Consequently,
it has become increasingly important to detect the nature and
geological affinity of the basement to the sedimentary successions
within the shield, in order to fully understand the orientation of the
faults that control seismicity in these intracratonic basins. The
Talchir Basin, in the eastern part of the Indian shield, is one such
intracratonic basin of Gondwana age that has till now been
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assumed to be located on stable continental crust. The basin is
particularly important on account of its major coalfield, which
covers an area of about 1800 km?. The coalfield has the highest
production (38.65 bt; GSI, 2004) in India, and caters to the need of
the railways, besides being instrumental in power generation.

The Talchir Basin and bounding Precambrian shield domains lie
within the state of Odisha (new name of Orissa) in eastern India. A
magnified view of the Indian seismic zonation map (IS: 1893 (Part-
1), 2002) reveals that a major part of this state lies in Zone II of the
seismic zonation map of India (Fig. 1). However, a vital strip that
includes the cities of Bhubaneswar, Cuttack, Angul, Talchir, Sam-
balpur, Dhenkanal and a part of Balasore district, is placed in Zone
Il (Fig. 1). This essentially means that the Talchir Basin is in the
same seismic zone as Latur, Ahmedabad and Jabalpur, and that the
basin with its thick sediment cover faces the threat of future
earthquakes. Indeed, recent tremors within the basin (see the
Seismotectonic Atlas of the Geological Survey of India, 2000;
Mohanty et al., 2009; Walling et al., 2009) suggest that faults in the
basement underlying the sediments are being periodically reac-
tivated. There is, however, some ambiguity about the nature of the
basement underlying the Talchir Basin, as it is located precisely on a
geological contact of Proterozoic age between the Eastern Ghats
Mobile Belt (EGMB) in the south and the Rengali Province in the
north (Fig. 2). The EGMB is cross-cut by numerous shear zones
(Mahalik, 1994; Sarkar et al., 2007; Chetty, 2010), while a number of
faults of varying age (265—133 Ma, Lisker and Fachmann, 2001)
have also been identified in the Rengali Province (Nash et al., 1996;
Crowe et al., 2003). A precise estimate of the seismic hazard asso-
ciated with the Talchir Basin can only be obtained by understanding
the geological affinity of the basement that dictates its structural
inheritance. Since the information required is necessarily in the
sub-surface, geophysical techniques need to be employed and
interpreted in conjunction with geological information. In this
study, we examined the gravity data across the basin in conjunction
with the available seismic information and the surface geology.
Similar techniques have in the past been employed for interpreting
the nature of the basement below the Narmada Basin (e.g. Verma
and Banerjee, 1992).

2. Broad geological set-up

The Talchir Basin is of Gondwana age, and represents a sub-
basin of the larger Mahanadi Basin. The basin has an E-W trend,
and lies between the Singhbhum craton and the EGMB. The core

zone of the Singhbum craton comprises a ca. 3.5 Ga supracrustal
succession (Mukhopadhyay et al., 2008; Acharyya et al., 2010a, b)
intruded by the multi-phase, 3.3—3.1 Ga Singhbum Granite (Tait
et al,, 2011; Mazumder et al., 2012 and references therein). The
southern continuation of the Singhbum craton is the low-grade
Malaygiri and Tikra Assemblage, and the amphibolite facies rocks
of the Rengali Province (Mahalik, 1994; Crowe et al., 2003). The
Rengali Province has been identified as a distinct terrane (Crowe
et al., 2003), following earlier lithological and structural charac-
terization (Mahalik, 1994, 1996; Dutta et al., 2010). The Eastern
Ghats Mobile Belt (EGMB) represents a complex assemblage of
polyphase deformed migmatitic gneisses that host a variety of
granulite facies metasedimentary and meta-igneous lithologies
(see a recent review by Gupta, 2012). The northern part of the
EGMB comprises different tectonic domains separated by regional
lineaments (Chetty and Murthy, 1994). The structural and litho-
logical character of this region is well documented (Halden et al.,
1982; Sarkar et al., 2007; Chetty, 2010). The WNW—ESE trending
North Orissa Boundary Fault (NOBF, Fig. 2) reportedly marks the
boundary between the Rengali Province in the north and the EGMB
in the south (Mahalik, 1994). The Talchir Basin is located along this
boundary zone; a segment of the NOBF, referred to as the Kerajang
Fault, defines the northern boundary of the basin.

The Talchir Basin is oriented parallel to the structural trend of
the northern EGMB, suggesting that its formation during the late
Paleozoic may has been accompanied by reactivation of the NOBF
and associated faults. Most workers visualize such a tectonic origin
for the basin (Mukhopadhayay et al., 1984; Dasgupta, 2006). Nash
et al. (1996) have proposed that the Mahanadi Basin was formed
as a result of strike-slip motion during the evolution of the NOBF
(Fig. 2). Available geochronological data (Lisker and Fachmann,
2001) support the rift-related formation of the basin, possibly
within a half-graben structure (the Mahanadi Graben). At present,
the basin structure is truncated by the Kerajang Fault in the north.

3. Seismicity of the region

Enhanced seismicity has recently been reported in some parts of
the eastern Indian Precambrian shield. Fault plane solutions
(Chandra, 1977) for three moderate size (ML: 5.3—5.5) earthquakes
(Midnapur, 1964) revealed a strike-slip mechanism along a
preferred ENE—WSW trending fault plane, and were interpreted to
be associated with N—S directed tectonic stress. In the context of
the present study, moderate size earthquakes have also been
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Figure 1. Map showing the seismic zones of Odisha (OSDMA, 2002).
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Figure 2. Geology of the Mahanadi Basin with the tectonic framework and the recorded earthquakes (BC: Bhandara Craton; NOBF: North Orissa Boundary Fault; EGMB: Eastern
Ghats Mobile Belt; EGBF: Eastern Ghats Boundary Fault; RSZ: Ranipather Shear Zone; SC: Singhbhum Craton) (Modified after Lisker and Fachmann, 2001).

reported from the Bonaigarh—Talchir area, located along the EGMB
— Singhbhum craton contact zone. An earthquake of magnitude ML
5.0 rocked Bonaigarh on Mar. 27, 1995 (Fig. 3a) causing moderate
damage in the area. Another earthquake of magnitude ML 4.8
occurred in the same area after about three months, on June 22,
1995. The area has experienced two or more earthquakes of ML 5.2
in the past, in 1958 and 1962, respectively. These four earthquakes
occurred within a 50 km radius and are located in the vicinity of the
Rengali Province. The 71 m high Rengali Dam over the Brahmani
River is located just north of the NOBF. Two earthquakes of mag-
nitudes ML 4.4 and 4.1, occurred in January 1986, while one
earthquake, of magnitude ML 4.3, occurred to the south of the NOBF
in 1993, within the Talchir Basin. These two groups of earthquakes,
one to the north and the other to the south of the Rengali Dam,
originated from two different geological domains. Their spatial
proximity makes the area, bound by latitudes N21°—22° and

longitudes E84.5°—85.5°, vulnerable to earthquake-related hazard
(De et al., 1998).

A temporary micro earthquake (MEQ) network of four stations
was established by the Geological Survey of India (GSI) from
January to mid-May, 1997, in the Bonaigarh—Talchir area (Fig. 3).
During this period, 26 earthquakes were recorded with an S—P
interval of about 20 s. Of these, 14 earthquakes are well located. The
maximum seismic activity is observed to the south of the Rengali
Dam, within the Talchir Basin. The epicenters are clustered at the
junction of the ENE—WSW trending NOBF and the Brahmani River
(Fig. 3b). The survey has thus delineated a seismically active zone
20 km south of the Rengali Dam (De et al., 1998). It may be noted
that three earthquakes, of magnitudes ML 4.1—4.4, occurred in this
zone within a span of 10 years. No focal mechanism solution could
be obtained for these earthquakes due to meager data. However, a
vertical cross section in a direction orthogonal to the trend of the
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Figure 3. Map showing (a) the isoseismal map of Bonaigarh earthquake of 27th March,
1995 and (b) the micro earthquake (MEQ) network in and around Bonaigarh, Orissa
(GSI, 2000).

NOBF shows that the hypocenters are clustered on either side of the
NOBEF, indicating that a segment of this fault is active at present. The
junction of the NOBF and the Brahmani River possibly represents an
asperity, with the earthquakes resulting from the accumulation of
strain generated by present-day plate movements. Detection of
such asperity zones within the shield is useful for microzonation
and hazard mitigation (De et al., 1998). Fig. 2 shows the seismicity
of the region, with earthquake magnitudes ranging from 3.0 to 5.2.
The earthquake epicenters were obtained from the United States
Geological Survey catalog (http://neic.usgs.gov/neis/epic/epic_rect/
html). The list of earthquakes in the region is shown in Table 1.

4. Gravity studies

A preliminary idea of the nature of the gravity variations with
geology across the region can be obtained from the regional Gravity
Map of India (GSI-NGRI, 2006; Sundaram et al., 2006). It shows a
regionally decreasing trend in the Bouguer gravity anomaly from
the south (within the EGMB) to the north of the Talchir Basin (i.e.,
into the Singbhum craton) (Fig. 4).

Table 1

The earthquakes recorded in the Mahanadi Basin.
Year Month Day Latitude (°) Longitude (°) M Source
1963 5 8 21.70 86.00 mb: 5.2 GSI (2000)
1979 8 5 22.10 86.00 mb: 4.7 ISC
1982 10 14 20.39 84.42 mb: 4.7 ISC
1986 1 19 20.93 84.90 mb: 4.4 USGS
1986 3 17 22.87 85.16 mb: 4.3 GSI (2000)
1993 5 16 23.14 86.83 mb: 4.5 GSI (2000)
1993 11 1 21.00 85.10 mb: 4.3 GSI (2000)
1995 3 27 21.66 84.59 mb: 5.0 ISC
1995 6 21 21.76 85.29 mb: 4.5 ISC
1993 11 1 21.00 85.10 mb: 4.3 GSI (2000)
1996 9 25 22.00 84.00 mb: 4.2 ISC
1998 5 22 22.13 84.91 mb: 4.8 ISC
2001 6 12 22.24 83.92 mb: 4.7 ISC
2003 7 30 21.80 84.30 M;:34 ISC

(USGS: United States Geological Survey; ISC: International Seismological Centre;
GSI: Geological Survey India).

For a better correlation of the variation of gravity values with
geology across the Talchir Basin, gravity stations were established
during the present study using a W. Sodin gravimeter. Three gravity
field campaigns were conducted during December, 2006,
December, 2007 and December, 2008, along transects oriented
N—S across the Talchir Basin. The base station established by the
National Geophysical Research Institute, Hyderabad (Qureshy et al.,
1973), in the PWD Guest House within Angul town (20°49'49” N,
85°06’05" E) was used in the survey. Hand-held Global Positioning
Systems (GPS) were used for locating stations that were subse-
quently plotted onto Survey of India topographic sheets. The
observed Bouguer anomaly map of the area, based on about 270
gravity stations with a 5 mGal contour interval, is shown in Fig. 5.
The map is characterized by the presence of many gravity highs and
lows. The highs are prominent in the southern and western part,
mostly over the EGMB, while the lows prevail over the northern
part. This map was superposed on the lithological map of the re-
gion, and shows extremely interesting correlation with the surface
geology (Fig. 5). It can be seen that the Bouguer anomaly ranges
from +20 to 0 mGal in the southwestern part of the area, within the
EGMB, through about —5 to —20 mGal over the Gondwana sedi-
ments, to even lower values of 0 to —30 mGal over the Rengali
Province, in the extreme northeast of the surveyed area (Fig. 5).
Importantly, the Bouguer gravity anomalies appear to decrease
systematically and continuously through the Talchir Basin,
although the exposed sedimentary rocks within the basin definitely
have lower densities than the metamorphic rocks exposed in the
Rengali Province. Unlike the drop in gravity across the
EGMB—Talchir Basin contact, there is no corresponding increase
across the northern flank of the basin, into the Rengali Province.
Thus, the Kerajang Fault, the segment of the NOBF that defines the
northern margin of the Talchir Basin, is not characterized by a
change in gravity values. It can be concluded that the meta-
morphites of the Rengali Province and the EGMB are underlain by
crust of fundamentally different density configurations.

5. Discussion

Assessing the geological affinity of the basement below the
Talchir Basin requires knowledge of some geophysical character-
istics of the terranes on either side of the basin, i.e., of the EGMB
and/or the Rengali Province. Systematic geophysical characteriza-
tion of the Rengali Province is as yet unavailable, but larger-scale
studies on the gravity anomalies over the Indian shield (Verma
and Subrahmanyam, 1984; Murthy and Raval, 2000) suggest pre-
dominantly negative Bouguer gravity anomalies over the cratonic
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domains. In contrast, the granulite terrane of the EGMB is charac-
terized by positive Bouguer gravity anomalies, with sharp jumps in
gravity values across the geological boundaries with the craton
(Verma and Subrahmanyam, 1984; Subrahmanyam and Verma,
1986; Murthy and Raval, 2000; Singh and Mishra, 2002). This has
generally been ascribed to the presence of higher density crust
below the EGMB compared to the craton, which is also correlatable
with the higher density granulitic lithologies presently exposed at
the EGMB surface. The sudden change in gravity from high to low
coincides with the geological contact between the mobile belt and
the craton, and has been used in the past to interpret the existence
of fossil plate boundaries (Gibb and Thomas, 1976). In an insightful
review encompassing gravity data, seismicity and geology, Krishna
Brahmam (1993) suggested that several geological terrane bound-
aries in southern India could represent paleo-suture zones. Sub-
sequently, paired gravity anomalies (i.e. high and low) across
Proterozoic terrane boundaries in other parts of the Indian shield

have also been interpreted as signatures of Proterozoic collision
zones (Mishra et al., 2002; Mishra and Vijaya Kumar, 2005).

In the Talchir Basin, the presence of low density Gondwana
sedimentary rocks (e.g. shales and sandstones) explains the
decrease in the gravity anomalies over the basin. Interestingly,
these values become increasingly negative into the crystalline
basement of the Rengali Province north of the basin. Indeed, the
systematic decrease in the gravity anomalies from south to north
within the Talchir Basin, into even more negative values over the
Rengali Province, indicates that a higher density basement un-
derlies the Talchir sediments. This basement is unlikely to
represent the Rengali Province, and is more likely to be consti-
tuted of the higher density granulitic crust of the EGMB. The
northern boundary of the Talchir Basin, represented by the Ker-
ajang Fault, must therefore also be coincident with the Protero-
zoic contact between the EGMB and the Rengali Province (Sarkar
et al,, 2007).
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The implications of this interpretation are significant in the light
of the tectonics of this region. The original contact between the
Rengali Province and the EGMB was clearly reactivated during the
late Paleozoic (formation of the Gondwana graben), and then again
in the Mesozoic (Lisker and Fachmann, 2001), when the present-
day Kerajang Fault truncated the Gondwana sediments. Indeed,
brittle faults are seen to have localized close to the boundary
domain, within the basin; these faults trend WNW—ESE and
contain fragments of sandstone clasts (Fig. 6) testifying to post-
Gondwana reactivation of the northern boundary domain. These
geological inferences indicate that this old terrane boundary has
been periodically reactivated throughout its history. Ominously,
parts of the area are clearly also susceptible to seismic activity at
present (Mohanty et al., 2009; Walling and Mohanty, 2009), indi-
cating that this highly industrialized and populated area remains
vulnerable to renewed seismicity. This activity is likely to occur by
reactivation of basement faults below the Talchir Basin, which

shows the highest present-day seismicity. The results of this study
suggest that WNW—ESE, and E—W oriented structures in the EGMB
basement (Sarkar et al., 2007) below the Talchir Basin are possible
sites of reactivation. In view of the havoc resulting from the Latur
and Jabalpur earthquakes, it is clear that more robust monitoring of
seismicity in the area is warranted in view of the findings in this
study.

A final point of discussion relates to the locations along which
intraplate seismicity appears to be focused. The Indian shield is
now accepted as being composed of several fragments (blocks)
amalgamated along what may be regarded as Precambrian suture
zones (e.g. Meert et al., 2010); these sutures have sometimes been
related to past supercontinent formation (e.g. Rogers and Santosh,
2002, 2003). Not all these sutures have been reactivated; for
instance, while this study demonstrates present-day seismicity
along the northern margin of the EGMB, the western contact of this
belt with the Bastar and Dharwar cratons is not known to be
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Figure 6. Field photograph of a fault rock containing clasts of Gondwana sandstone,
from WNW—ESE trending fault close to the northern margin of the Talchir Basin. The
coin diameter is 2.2 cm.

seismically active. We suggest that present-day seismicity is
essentially driven by far-field stresses related to the northward
movement of the Indian plate towards Eurasia, such that pre-
existing planes of weakness that are sympathetic to the orienta-
tion of this plate boundary are prone to reactivation. The
WNW-—ESE orientation of the NOBF is fortuitously aligned sub-
parallel to the Himalayan trend; indeed, the Narmada-rift
(Krishna Brahmam and Negi, 1973) shows a similar E-W align-
ment. The most devastating intraplate earthquake zone in India is
in Kutch, Gujarat, where seismicity on E-W trending faults (Biswas,
2005; Karanth and Gadhavi, 2007) has been tentatively linked to
the Himalayan orogeny (Thatcher, 2001). In contrast, the western
terrane boundary of the EGMB (Bhadra et al., 2004) is oriented
almost perpendicular to this trend, and is not remobilized. Thus,
while pre-existing crustal or lithospheric discontinuities can al-
ways act as potential zones of reactivation, triggering of movement
along these faults depends critically on the orientation of these
discontinuities with respect to the driving stresses. Integration of
plate vector movements with the orientation of basement faults,
therefore, may provide a first order estimate of the seismic po-
tential of intracontinental terrane boundaries.
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