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ABSTRACT 
 

Trust relationships occur naturally in many diverse 

contexts such as collaborative systems, e-commerce, 

interpersonal interactions, social networks, and semantic 

sensor web. As agents providing content and services 

become increasingly removed from the agents that 

consume them, the issue of robust trust inference and 

update becomes critical. There is a need to find online 

substitutes for traditional (direct or face-to-face) cues to 

derive measures of trust, and create efficient and robust 

systems for managing trust in order to support decision-

making. Unfortunately, there is neither a universal notion 

of trust that is applicable to all domains nor a clear 

explication of its semantics or computation in many 

situations. We motivate the trust problem, explain the 

relevant concepts, summarize research in modeling trust 

and gleaning trustworthiness, and discuss challenges 

confronting us. The goal is to provide a comprehensive 

broad overview of the trust landscape, with the nitty-

gritties of a handful of approaches. We also provide 

details of the theoretical underpinnings and comparative 

analysis of Bayesian approaches to binary and multi-

level trust, to automatically determine trustworthiness in 

a variety of   reputation systems including those used in 

sensor networks, e-commerce, and collaborative 

environments. Ultimately, we need to develop expressive 

trust networks that can be assigned objective semantics. 

 

KEYWORDS: trust vs. reputation, trust ontology, 

gleaning trustworthiness, trust metrics and models 

(propagation: chaining and aggregation), social and 

sensor networks, collaborative systems, trust system 

attacks, beta-PDF, Dirichlet distribution, binary and 

multi-level trust.   

 

 

1. INTRODUCTION 
 

Trust relationships occur naturally in many diverse 

contexts such as collaborative systems, e-commerce, 

social interactions, (semantic) social networks, mobile ad 

hoc networks (MANETs), distributed systems, decision-

support systems, and (semantic) sensor web. As the 

connections and interactions between humans and/or 

machines (collectively called agents) evolve, and as the 

agents providing content and services become 

increasingly removed from the agents that consume them, 

and as miscreants attempt to attack existing infrastructure, 

the issue of robust trust inference and update (collectively 

called trust management) becomes critical. There is no 

dearth of trust frameworks in the literature to represent 

and reason with trust information. However, use of these 

frameworks for trust computation in practice requires 

specification of how to glean (direct) trustworthiness 

values, determination of context-based trust thresholds, 

and justification of rules for (indirect/inferred) trust 

propagation (via chaining and aggregation), in the 

application context [1][2]. Even though trust is central to 

meaningful collaboration among machines, or among 

humans, or between machines and humans, there is 

neither a universal notion of trust that is applicable to all 

domains nor a clear explication of its semantics or 

computation in many situations. Furthermore, because 

Web, social networks and sensors often provide 

complementary and overlapping information about an 

activity or event that are critical for overall situational 

awareness, there is a unique need for developing an 

understanding of and techniques for managing trust that 

span all these information channels.  

 

Towards filling some of the gaps in automating trust 

inference, we studied several Bayesian approaches to 

trust that are broadly applicable to machine and social 

sensor networks, MANETs, recommender systems, 

collaborative environments, etc. Ironically, a large 

number of approaches that develop Bayesian basis for 

trust using Beta probability distribution function (Beta-



PDF) do not coincide when we look at the details. Our 

comparative analysis of several notable approaches to 

trust formation and evolution revealed that there are 

significant differences in the nature of trust information 

these frameworks represent, in the details of trust 

composition rules, and their overall robustness. 

Furthermore, there are a number of situations where 

binary trust is restrictive and graded trust level 

information (e.g., poor, fair, good, very good, excellent) 

is available. So we discuss the generalization to multi-

level trust and review several practical applications. We 

also discovered errors in an existing formalization of 

multi-level trust evolution, which we use to better 

motivate the mathematical basis for multi-level trust. 

Specifically, we summarize our findings and discuss 

formalization of multi-level trust based on Dirichlet 

distribution that generalizes Bayesian approaches to 

binary trust based on Beta-PDF and overcomes the 

capricious behavior of some of the existing Bayesian 

approaches to multi-level trust. To elucidate our approach, 

we present an algorithm for computing trust evolution on 

concrete examples that is intuitively satisfactory and that 

is robust with respect to well-known (trust system) 

attacks. The evaluation based on example traces obtained 

by experimenting with this algorithm seems more 

insightful than the traditional simulation studies that seem 

to confirm the obvious aggregate behavior. We also 

discuss existing works that apply Dirichlet distribution 

for formalizing multi-dimensional trust and for 

collaboration. 

 

The objectives of this work are: (i) to illustrate the nature 

of trust occurring in different domains to rationalize why 

there is no universal notion of trust; (ii) to explain the 

details of Bayesian approaches to binary and multi-

valued trust for automatic trust computation (that is, 

gleaning direct trust from first-hand interactions and then 

composing them to obtain indirect/inferred trust); (iii) to 

provide a comparative analysis and distributed trust 

computation algorithm for Bayesian approaches to trust 

in the context of sensor networks, to underscore the 

inherent complexity and subtlety involved in formalizing 

trust; and (iv) to provide a comprehensive discussion of 

attacks on trust systems. Specifically, this work 

constructively demonstrates that providing probabilistic 

basis to trust networks is still open to multiple 

interpretations, and substantiates how seemingly similar 

approaches differ from each other in non-trivial ways. 

For completeness, we recapitulate the fundamental 

concepts and terminology used in the trust literature, 

explaining their inter-relationships and distinctions. Our 

work complements several existing surveys on trust and 

reputation systems such as [3], [4], [5], [6], [7], [8], [9], 

[10], and [11]. Specifically, Marsh [3] presents an 

informal, qualitative analysis of the general notion of 

trust, and then develops a theory of computational trust. 

Unfortunately, the formalization is hard to apply in 

practice because of the difficulties in estimating 

numerical values for various parameters required by it. 

Grandison and Sloman [4] discuss trust classification and 

illustrate policy-based trust management in the context of 

sharing Internet resources and services. Artz and Gil [5] 

categorize published trust work abstractly under policy-

based trust, reputation-based trust, general models of trust, 

or as addressing trust in information sources. Josang et al. 

[6] explain various trust concepts and summarizes 

practical trust and reputation systems for e-commerce. 

Yu et al. [7] presents a survey of trust and reputation 

management systems in wireless communication. 

Golbeck et al. [12] and Golbeck [13] explore trust 

representation and reasoning in social networks, 

specifically, computation and application of binary and 

continuous trust ratings. In the context of sensor networks, 

Buchegger and Le Boudec [8] propose and analyze a 

message-level protocol (called CONFIDANT) that 

detects and isolates misbehaving sensor network nodes, 

in order to improve the robustness and the performance 

of dynamic network packet routing, while Momani and 

Challa [10] provide a broad survey of trust in network 

domain distinguishing between security and trust, and 

providing a description of attacks at the network and 

packet level. In contrast, we discuss fewer approaches but 

in more depth, and focus on attacks on the trust system. 

Hussain et al. [9] provide a short qualitative summary of 

four different approaches to trust that embody Bayesian 

networks, and point out their shared short comings. Our 

work is a more substantial analysis of the related 

approaches. The recently published work, Govindan and 

Mohapatra [11], is a comprehensive survey of trust 

computing methods and trust dynamics in MANETs. 

Specifically, it provides a broad coverage of trust 

literature and attacks as it relates to MANETs. However, 

our detailed comparative analysis of binary trust utilizing 

our trust ontology concepts in Section 5, the precise 

analysis of why Quercia et al.’s B-Trust approach to 

multi-valued trust is problematic, the detailed 

development of a satisfactory approach to multi-valued 

trust in Section 6, and the illustration of different trust 

application areas are complementary to Govindan and 

Mohapatra [11]. The current paper extends Thirunarayan 

and Anantharam [14] (which is a broad tutorial 

introduction to trust networks) with a comprehensive 

theory and implementation of multi-valued trust using 

Dirichlet distribution.  

 

The paper is organized as follows: In Section 2, we 

provide examples to motivate the trust problem. In 

Section 3, we elucidate characteristics of trust and 

explain related concepts. In Section 4, we discuss our 

trust ontology. In Section 5, we summarize trust research 

by showing illustrative examples of how to glean 

trustworthiness. These results may be adapted for 



different collaboration contexts. In Section 6, we further 

elaborate on the existing Bayesian Approaches to binary 

and multi-level trust, including using Dirichlet 

distribution, due to its practical importance and 

widespread use. We also discuss various applications.  In 

Section 7, we recapitulate our findings.   

 

2. MOTIVATION 
 

We present real-life examples to underscore the 

fundamental nature of trust problem. 

 

2.1. Trust in Multiple Domains 

 

Interpersonal Networks 
 

• With which neighbor should we leave our children over 

the weekend when we are required to be at the hospital? 

 

• Who should be named as a guardian for our children in 

our Will? 

 

Note that (i) there is uncertainty and incompleteness in 

our knowledge about the unraveling situation, (ii) there is 

not only an expectation of a good outcome but also 

concern about a bad outcome, and (iii) there is a need for 

immediate action. Furthermore, the threshold for trust in 

the second case is significantly higher than the threshold 

for the first case. 

  

Social Networks 

 

 
The first author received the above email purportedly 

from the collaborator. Is this a genuine request, or a trap? 

This doubt arose because, in the past, we have 

collaborated using only Google Docs, and TitanPad was 

unfamiliar, and there was an urgent need to edit the 

shared document. 

 

Similarly, one always has a nagging feeling about 

clicking on http://bit.ly-URL, or about relying on a 

product review (when only a few reviews are present). 

 

Sensor Networks 

 
Given a weather sensor network-based prediction of a 

potential tornado in the vicinity of a city, should we 

mobilize emergency response teams ahead of time? 

 
This really depends on how much trust we have in the 

reliability of sensor nodes and the collaborative nature of 

the task. 

 

When a van’s TCS (Traction Control System) indicator 

light comes on intermittently, is the indicator light faulty 

or the traction control system? Similarly, when a van’s 

Check Engine light comes on, is indicator light faulty or 

the transmission?  

 

This again depends on how various subsystem functions 

are monitored. In fact, in our van’s case, the TCS 

indicator light and the transmission were faulty. 

 

Summarizing Examples  
 

Trust/reputation systems provide mechanisms for soft 

security, in contrast with authentication and access 

control mechanisms that constitute hard security. In 

MANETs, trust enables dynamic determination of 

trustworthy routes, improving throughput and robustness 

against malicious nodes. Note that secure key 

distribution/authentication does not obviate the need for 

trust inference in case an attacker is able to subvert 

security mechanisms and somehow enter the network. In 

sensor networks, trust enables improving overall 

reliability and avoiding misbehaving nodes due to faults 

or transient vagaries of the environment. In cognitive 

radio networks, trust enables picking less noisy and less 

crowded channels. In e-Commerce, aggregated reputation 

promotes reward for honesty and penalty for deceit. In 

the context of Web, source trust can be crucial for result 

set ranking, data integration and conflict resolution. In 

collaborative environments, trust can be used to select, 

monitor and gauge suitability of a partner. Trust is also 

fundamental to interpersonal communication and social 

transactions.  

  

In the context of applications that involve both humans 

and sensors systems, it is crucial to have trustworthy 

aggregation of all data and control actions. For example, 

the 2002 Uberlingen mid-air collision
1
 occurred because 

the pilot of one of the planes trusted the human air traffic 

controller (who was ill-informed about the unfolding 

situation), instead of the electronic TCAS system (which 

was providing conflicting but correct course of action to 

avoid collision). See Investigation Report AZ001-1-2, 

German Federal Bureau of Aircraft Accidents 

Investigation, 2004. 

 

                                                 
1
 http://en.wikipedia.org/wiki/2002_Uberlingen_mid-air_collision  

(accessed 10/23/2012) 

–SUBJECT: [TitanPad] Amit Sheth invited you to 

an EtherPad document. 

–CONTENT: View it here:    

  http://knoesis.titanpad.com/200  

 

http://bit.ly-url/
http://en.wikipedia.org/wiki/2002_Uberlingen_mid-air_collision


2.2. Common Issues Related to Trust  
 

Trust inference is necessary for action in diverse 

situations, subject to uncertainty and potential for loss. In 

all the above examples and collaborative tasks, we have a 

Trustor who must choose whether and how much to trust 

a Trustee, an Action by which the trustor is choosing to 

be vulnerable to the trustee based on an assessment of 

trustee’s nature, and a Context in which the potential 

negative consequences of betrayal outweigh any 

perceived positive results [15]. Besides context, time also 

plays an important part in determining and updating trust 

due to the dynamic nature of interactions and behavior 

evolution. 

 

There are two sides to trust management: Trustor 

assesses trustee for dependability in a given context and 

then decides to act accordingly. On the other hand, 

trustee tries to come across in a positive light about its 

suitability, reliability, and quality of service. 

 

In general, we track trust in order to: (i)  

predict future behavior; (ii) incentivize “good” behavior 

and discourage “bad” behavior; and (iii) detect malicious 

entities. 

 
2.3. Distinguishing Issues Related to Trust 

Networks 
 

We will use the term machine networks to lump together 

MANETs, sensor networks, cognitive radio networks, 

etc., social networks to lump together social media, social 

sensors/crowd-sourcing, e-commerce rating/review 

systems, recommender systems, collaborative 

environments, etc., and interpersonal networks to refer to 

people to people interactions. In interpersonal networks, 

trust is often subjective, while in machine networks, trust 

can be given an objective basis and approximated by 

trustworthiness. Social networks straddle these two 

extremes, so trust issues span the whole gamut as it 

applies to them. For example, a trustor may not know a 

trustee in a social sensing context (cf. Twitter), while a 

trustor may know trustee’s relative level of competence 

and honesty in other contexts (cf. Facebook). Here, we do 

not address the issue of trust in the context of the web of 

documents (HTML Web) and the web of data (Semantic 

Web). 

 

There is a large body of work proposing different trust 

frameworks for pervasive computational trust 

management that must be instantiated and customized for 

each specific application. In (Facebook-like) social 

networks and interpersonal networks, the justification for 

taking this framework-based approach is to accommodate 

subjectivity in dealing with uncertainty and varied 

context of use, due to differences in trustor’s experiences, 

intensions, trust thresholds (that depend  on risk tolerance 

and mitigating factors such as warranties and insurance), 

circle of recommenders, and alternative sources to satisfy 

the goal. Therefore, by its very nature, social interaction-

based interpersonal trust is not amenable to automatic 

trust assessment, even though manual analysis can be 

used to elucidate important factors that influence decision 

making. On the contrary, in machine networks and in 

social networks that require determination of 

trustworthiness entirely from the overt behavior of a 

trustee, we need to pursue formalization of trust metrics 

and inferences that take into account context-dependent 

trust thresholds. Interaction-based trust inference can 

allow identification of nodes that are faulty, misbehaving 

(due to environmental effects) or malicious in machine 

networks, and sources that are prejudiced, ignorant, or 

malicious in crowd-sourced social networks. 

 

3. TRUST-RELATED CONCEPTS 
 
We recapitulate well-known definitions of trust concepts 

and briefly discuss their interrelationships. 

 

3.1. Trust Definitions 
 

(Psychology slant) Trust in a person is a commitment to 

an action based on a belief that the future actions of that 

person will lead to good outcome [16]. 

 

(Probability slant) Trust (or, symmetrically, distrust) is a 

level of subjective probability with which an agent 

assesses that another agent will perform a particular 

action, both before and independently of such an action 

being monitored [17]. 

 

3.2. Trustworthiness Definition 
 
(Psychology Slant) Trustworthiness is a collection of 

qualities of an agent that leads them to be considered as 

deserving of trust from others (in one or more 

environments, under different conditions, and to different 

degrees) [15]. 

 

(Probability slant) Trustworthiness is the objective 

probability that the trustee performs a particular action on 

which the interests of the trustor depend. 

 

 3.3. Trust versus Trustworthiness 
 

Trust disposition depends on potentially quantified 

trustworthiness qualities and context-based trust 

threshold. For example, in the context of trusting 

strangers, people in the West will trust for lower levels of 

trustworthiness than people in the Gulf [18].  



 

Trustworthy system produces expected behavior and is 

not susceptible to subversion. In other words, 

trustworthiness is the assurance that a system will 

perform as expected for sustained collaboration despite 

environmental disruptions, human and operator errors, 

hostile attacks, and implementation errors.  

 

3.4. Trust versus Reputation and Security    
 

(Community-based) reputation is the community or 

public estimation of standing for merit, achievement, 

reliability, etc.
2
 Alternatively, reputation is the opinion 

(or a social evaluation) of a community toward a person, 

a group of people, or an organization on a certain 

criterion
3

. (Cf., Brand-value, PageRank [19], eBay 

profile, etc.) 

 

Reputation can be a basis for trust. However, they are 

different notions, as illustrated by Josang et al. [6].  

 

 

Trust is local and subjective; reputation is global and 

objective. Security refers to resistance to attacks (on the 

trust management system). 

 

Reputation is overloaded in that community-based 

reputation differs from temporal reputation-based 

process. The latter elicits trust for sustained good 

behavior over time. 

 

 

4. TRUST ONTOLOGY 

 
A trust network is a data structure that abstracts and 

formalizes information relevant to describing trust 

relationships. A trust inference algorithm computes 

trustworthiness information implicit in a trust network.  

 
Consider the following fragment of English involving 

trust information for delegating work or responsibility, 

and its abstract representation in the form of a trust 

network shown in Figure 1 [1]. 

 

• Alice (A) trusts Bob (B) for recommending good car 

mechanic. 

                                                 
2
 Dictionary.com 

3
 Wikipedia.com 

• Bob trusts Dick (D) to be a good car mechanic. 

• Charlie (C) does not trust Dick to be a good car 

mechanic. 

• Alice trusts Bob more than Charlie, for recommending 

good car mechanic. 

• Alice trusts Charlie more than Bob, for recommending 

good baby sitter.  

 

Formally, a trust network is a node-labeled, edge-labeled, 

in-edge ordered, directed graph data structure. In general, 

the semantics of trust can be captured by specifying the 

meaning of the trust network in terms of how “network 

elements and trust values” relate to or compose with each 

other using logic, probability theory, statistics, or path 

constraints. Inference algorithms are efficient graph-

based procedures for querying or determining trust 

values.   

 

In order to better understand trust concepts and relate 

various approaches to trust in the literature, we have 

developed a simple ontology of trust [20]. The trust 

ontology, as shown in Figure 2, is more a taxonomy than 

a formal semantic specification. However, we can specify 

the semantics of trust in a rigorous manner by 

formalizing trust inferences sanctioned by a trust network 

as shown later. Our goal here is to provide a unified 

vocabulary to abstract, compare and contrast different 

approaches. The trust ontology describes in more detail 

the primitive trust information (trust metric) carried by 

each edge label. Specifically, it captures the type, the 

value and the means to acquire the value for each edge. 

Trust inference algorithms (trust models) deal with how 

to compose primitive trust values associated with edges 

to obtain aggregated trust values over paths and 

subgraphs as discussed in Section 5.3. The trust 

relationship is a 6-tuple:(trustor, trust type, trust value, 

trust scope, trust process, trustee), where, trust type 

represents the nature of trust relationship, trust value 

quantifies the trustworthiness for comparison, trust 

scope   represents the applicable context for trust, and 

trust process represents the method by which the trust 

value is  created and maintained. See Figures 2 and 3 for 

details. 

 

Trust Type: Trust type specifies the nature of the trust 

relationship. There are two trust types, referral trust (trust 

in belief) and functional/non-functional trust (trust in 

performance). 

 Referral Trust (trust in belief) – Agent a1 has referral 

trust in agent a2 if a1 trusts a2’s ability to 

recommend another agent. 

 (Non-)Functional Trust (trust in performance) – 

Agent a1 has functional (dis)trust in agent a2 if a1 

(dis)trusts agent a2’s ability to perform an action. 

 

 

I trust you because of your good reputation. 

I trust you despite your bad reputation. 

Do you still trust Toyota brand? 



 
 

Figure 1: Example Trust Network 

 

Trust Value: Trust value quantifies trust. This can be 

achieved using star rating, numeric rating, or partial 

order. 

 

Traditionally, trust between users is modeled as a real 

number in [0,1] or [-1,1]. This facilitates trust 

computation, but is too fine-grained and imposes a total 

order. As stated by Guha et al. [21]: While continuous-

valued trusts are mathematically clean, from the 

standpoint of usability, most real-world systems will in 

fact use discrete values at which one user can rate 

another. For instance, users often rate other users (such 

as vendors and reviewers) using star ratings. Epinions, 

provides a qualitative way of adding other users to a trust 

circle. Epinions, Ebay, Amazon, Facebook, etc. all use 

small sets for (dis)trust/rating values. We have 

formalized trust in terms of partial orders (that 

emphasizes relative trust) [1].  

 

Trust Scope:  Trust scope captures the context for which 

the trust information is applicable. We usually trust 

different agents for different subject matter or activity. 

For example, from Figure 1, Alice trusts Bob within the 

scope of recommending a good car mechanic.   

 

Trust Process: Trust process specifies how trust values 

between pairs of agents are computed and is applicable to 

both primitive edges and composite paths.  

 Trust process for primitive edges (i.e. for functional 

and referral edges): 

o (Temporal) Reputation – Trust values are 

computed based on past behavior over time. 

o Policy – Trust values are computed based 

on explicitly stated constraints. 

o Evidence – Trust values are computed based 

on seeking and verifying evidence.  

o Provenance – Trust values are computed 

based on lineage information. 

 Trust process for composite edges (for admissible 

paths): 

o Trust values are determined via propagation 

(chaining and aggregation) specified as part 

of the trust model. 

 

 

 

Figure 2: Trust Ontology 

 

To provide a unified illustration of the trust processes 

consider hiring of a Search Engineer. A temporal 

reputation-based trust process is exemplified by the use 

of past job experience. A policy-based trust process can 

use scores on screening tests. An evidence-based trust 

process can use multiple interviews (phone, on-site, R&D 

team) for assessing the candidate’s merits. A provenance-

based trust process can consider the University from 

which the applicant graduated. 

 

According to Mayer et al. [22], trust is a function of a 

trustee's perceived trustworthiness and of the trustor's   

propensity to trust. The trustor's propensity/disposition to 

trust, which is their willingness to be vulnerable, is both 

scope/context dependent, and highly subjective. For 

instance, Paul English
4

 mentions four qualitative 

interpersonal trust dispositions:  (i) Suspicious still: 

"Don't ever trust anyone, even after they have done 

something nice."  (ii) Suspicious until: "Don't trust 

anyone until they prove themselves."  (iii) Trust until: 

"Trust people until they screw up." (iv) Trust still: "Trust 

people even after they make mistakes, sometimes even 

when they hurt you." 

 

                                                 
4
 http://paulenglish.com/trust.html (accessed 10/23/2012)   

http://paulenglish.com/trust.html


In the rest of the paper, we use this trust ontology to 

understand the abstract similarities and concrete 

differences among various approaches to trust, and to 

organize them. For illustrative purposes, consider the 

following examples. Trust type is at the core of 

comparing and contrasting approaches to trust in sensor 

networks as discussed in detail in Section 5.1.3, 

especially because different approaches represent and 

reason with functional and referral trusts differently. 

Trust values take various forms as shown in Section 5, 

and require different reasoning strategies. Social 

networks and ecommerce sites use totally ordered 

discrete trust values (e.g., Golbeck [13], Amazon product 

and seller ratings), while Thirunarayan [1] proposes an 

alternative generalization to partial orders. In sensor 

networks, a trust value usually ranges over the unit 

interval [0,1] (e.g., [23][24][25]), while Josang [26] 

proposes the alternative generalization as a triple of 

values, standing for (belief, disbelief, uncertain), 

summing up to 1. Trust scope can be used to abstract and 

unify a number of approaches. Josang et al. [6] can be 

viewed as motivating different trust scopes relevant to 

understanding trust in ecommerce recommender systems, 

while Winkler [27] can be viewed as motivating different 

trust scopes relevant to virtual environments. Trust 

processes allow relating reputation systems used by 

ecommerce sites and reputation systems for sensor 

networks. Specifically, ecommerce sites aggregate trust 

in a vendor from different agents, while, in sensor 

networks, trust is gleaned by interacting with a sensor 

node over a period of time. These two approaches are 

logically distinct ways of aggregating trust that can be 

unified under the notion of trust process and in fact 

formalized similarly. In what follows, we use and 

illustrate the trust ontology concepts to organize and 

analyze various approaches to trust in different 

application areas.    

 

5. GLEANING TRUSTWORTHINESS: 
ILLUSTRATING  APPLICATION DOMAINS  
 

We illustrate how to glean trustworthiness in different 

contexts. Direct trust, associated with trust edges, refers 

to trust determined using firsthand experiences (possibly 

over a period of time), while indirect trust, associated 

with trust paths, refers to trust determined using 

experiences of others via referrals [1][2]. Also note that, 

in spite of the distinctions articulated between trust, 

trustworthiness, and reputation in Section 3, we have 

deliberatively used the terms ‘trust’, ‘trustworthiness’ and 

‘reputation’ interchangeably. This is to conform to the 

conventional overloaded use of the terms in the literature 

whose various senses can be easily disambiguated from 

the context.   

 

Section 5.1 details how direct trust, both functional and 

referral, can be determined using a large number of 

observations through reputation-based process. Sections 

5.1.1 and 5.1.2 describe the role of Beta-PDF in 

formalizing trust. Section 5.1.3 describes the various 

attacks that can befall a trust system. In order to illustrate 

the subtleties involved in trust computations, Section 

5.1.4 shows how three seemingly similar approaches for 

the same problem, which are based on the same 

mathematical framework, can actually differ significantly 

in the trust inferences that they sanction. This 

underscores the difficulties in developing a universal 

notion of trust due to “clash of intuitions” even in a 

specific domain, and our analysis brings to fore the 

precise nature of differences.   

 

Section 5.2 details how direct trust is determined using a 

policy-based process. For illustrative purposes, we cite 

several informal examples from Grandison and Sloman 

[4] and sketch automatic approaches used to glean 

trustworthiness of a Wikipedia article and a Web site. 

 

Section 5.3 discusses how direct functional/referral trust 

among interacting users can be composed to infer indirect 

trust among users that have not interacted so far (and so 

lack firsthand experience). Our summary abstracts from a 

large number of trust propagation frameworks available 

in the literature. 

 

 
 

Figure 3: Example illustrating trust ontology 

 

5.1 Direct Trust: Reputation-based Process  
 

Direct trust can be inferred from a large number of 

observations made in two orthogonal ways: over a period 

of time or by several agents. Quantitative values for 

referral and functional trust in MANETs and sensor 

networks can be obtained using temporal reputation-

based process. Both qualitative and quantitative 

information for referral and functional trust in product 



rating systems can be obtained using community 

reputation-based process. We now motivate and discuss 

the Bayesian approach to formalizing reputation-based 

process that is in wide use.  

 

5.1.1. Desiderata for Trustworthiness Computation 

Function 

 

Initialization Problem:  How do we get initial trust value? 

Update Problem: How do we reflect the observed 

behavior in the current value dynamically? 

Trusting Trust Issue: How do we mirror 

uncertainty        in our estimates as a function of 

observations?   

Efficiency Problem: How do we store and update values 

efficiently? 

 

5.1.2. Beta Probability Density Function (PDF) 

 

Beta-PDF provides a satisfactory mathematical 

foundation for reputation-based systems. Specifically, it 

formalizes prediction of trustworthiness probability from 

a sequence of binary events. We briefly review Beta-PDF, 

its role and benefits, below.  

 
Let x be the probability of a binary event. If the prior 

distribution of x is uniform, then the Beta-PDF gives 

posterior distribution of x after observing -1 

occurrences of event with probability x and -1 

occurrences of the complementary event with probability 

(1-x). 

 
 

 

 

 
Figure 4: Beta-PDF(=10;=10) and Beta-

PDF(=25,=5) 

 

Specifically, let a (potentially unfair) coin have 

probability x of coming up with heads, and probability 

(1-x) of coming up with tail. Suppose we perform (r + s) 

coin tosses and the coin turns up with heads r times and 

with tails s times. Then the Beta-PDF
5
 with parameters 

(r+1, s+1) provides the best estimate of the distribution of 

the probability x given these observations. Figure 4 

depicts two example Beta-PDFs – one for (r,s) = (9,9) 

and another for (r,s) = (24,4). 

   
In general, dynamic trustworthiness of a sensor or a 

vendor can be characterized using Beta-PDF Beta(,) 

gleaned from total number of correct (supportive)  r = (-

1) and total number of erroneous (opposing) s = (-1) 

observations so far, and the overall trustworthiness 

(reputation) can be equated to its mean: /(+). The 

Beta-PDF is intuitively satisfactory, mathematically 

precise, and computationally tractable, for formalizing 

direct trust from a collection of observations. 

Specifically, it addresses all our requirements as follows: 

 

Initialization Problem:  It assumes that all probability 

values are equally likely. 

Update Problem: It updates (, ) by incrementing  for 

every correct (supportive) observation and  for every 

erroneous (opposing) observation. 

Trusting Trust
6
 Issue: It peaks at the mean. The variance 

diminishes with the number of observations.   

Efficiency Problem: It stores/updates only two numbers.   

 

We have developed an application to determine trust in 

weather sensor data and inferences based on them using 

the Mesowest
7

 Weather Dataset for ~800 stations 

collected for a blizzard during 4/1-6/03. We used quality 

flags (OK, CAUTION, SUSPECT) associated with 

observations from a sensor station over time to derive 

reputation of a sensor by applying Beta-PDF [28]. The 

demo located at [29] is a visualization of the trust 

evolution. 

 

5.1.3. Comparative Analysis of Bayesian Approaches 

to Binary Trust 

 

We discuss details of several Bayesian approaches to 

binary trust based on Beta-PDF derived from experience
8
 

sequences and evaluate their robustness with respect to 

                                                 
5
 http://en.wikipedia.org/wiki/Beta_distribution (accessed 10/23/2012) 

6
 Ken Thompson’s Turing Award lecture titled “Reflections on 

Trusting Trust” 
7
 http://mesowest.utah.edu/index.html (accessed 10/23/2012) 

8
 The term experience is used for equivalent terms such as action, event, 

observation, interaction, service, utility, satisfaction-level etc. Similarly,   
the term success and failure are used for good and bad respectively. 

http://en.wikipedia.org/wiki/Beta_distribution
http://mesowest.utah.edu/index.html


the following well-known security attacks. These 

approaches can potentially be adapted to determine the 

trustworthiness of a collaborating partner using a 

centralized or distributed system. This discussion is 

meant to clarify their similarities and differences. 

 

a. Ballot-stuffing attack: Majority of the recommenders 

collude to unfairly promote the trustworthiness of an 

undeserving trustee. 

 

b. Bad-mouthing attack: Majority of the recommenders 

collude to unfairly denigrate the trustworthiness of a 

victim.   

 

c. Newcomer and Sybil attacks: In newcomer attack, a 

malicious trustee creates new identity to avoid detection 

by a trust system that tracks history of interactions. In 

Sybil attack, a malicious trustee creates multiple fake 

identities to exert undue adverse influence. 

 

d. Sleeper and On-Off attacks: A malicious trustee 

acquires high reputation/trust by behaving well for long 

durations and then behaving bad intermittently.  The 

sleeper attack is also called betrayal attack, and on-off 

attack is also called inconsistency attack. 

 

e. Conflicting behavior attack: In conflicting behavior 

attack, the attacker uses “divide and conquer” strategy by 

providing conflicting recommendations on a trustee to 

multiple trustworthy sources. When a victim seeks 

recommendations from these trustworthy sources, which 

faithfully transmit the attacker’s views, the victim ends 

up getting conflicting recommendations on the trustee, 

thereby causing it to incorrectly reduce its trust in a 

subset of trustworthy sources (recommenders). This 

hampers the overall “morale”. 

 

Denko-Sun’s Approach for MANETs [24]: Direct 

(functional
9
) trust in a trustee by a trustor is based on the 

number of success experiences s and number of failure 

experiences f witnessed by the trustor, and indirect 

(referral
10

) trust via recommendations from nodes 1 

through k is based on the total number of success 

experiences s
r
 and total number of failure experiences f

r
 

reported by the recommenders. Cumulative trust is 

obtained by summing both direct and indirect counts as 

follows: 

  (s + s
r
 + 1) / (s + s

r
 + 1) + (f + f

r 
+ 1)  

where 



k

i

r

i

r ss
1

and 



k

i

r

i

r
ff

1
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10
 Referral trust a.k.a. trust in belief 

Each node maintains, for each peer (and for the implicit 

context of packet forwarding), these numbers. In practice, 

to improve security, it separates direct experiences from 

recommendations (which are indirect experiences), and 

separates recommendations from different recommenders 

even though the recommender identity is ignored.   As a 

result, it can weight direct experiences more heavily than 

recommendations and drop extreme recommendations, to 

improve robustness. This approach can overcome ballot-

stuffing and bad-mouthing attacks if malicious 

recommenders are a minority. It cannot deal with sleeper 

and on-off attacks, Sybil and newcomer attacks, and 

conflicting behavior attacks because it does not track 

recommender identity. 

Ganeriwal et al.’s Approach for Sensor Networks [23]: 

Recall that the (,) parameters associated with the Beta-

PDF can be obtained from success experiences s and 

failure experiences f as (,) = (s+1,f+1).  (sj
new

,fj
new

)-

values to compute trust of trustor i in trustee j are 

obtained by combining (a) the direct experiences (sj,fj) by 

trustor i with trustee j, and (ii) the indirect experiences 

(sj
k
,fj

k
)  by node k with trustee j weighted by (sk,fk), the 

direct experiences by trustor i with node k, using 

chaining/discounting rule given in [34] as shown below.   

sj
new

 = sj  + (2*sk*sj
k
) / ([(fk+2)+(sj

k
+fj

k
+2)] + 2*sk) 

fj
new

 = fj  + (2*sk*fj
k
) / ([(fk+2)+(sj

k
+fj

k
+2)] + 2*sk) 

Note that, while computing indirect trust, this rule 

modulates the contribution of a recommendation in 

proportion to the trustworthiness of the recommender. In 

contrast, Denko and Sun [24] ignores recommender 

identity completely. 

In Ganeriwal et al. [23], each trustor maintains, for each 

trustee (and for all experiences combined, irrespective of 

the context), the (s,f)-values. The approach does not 

distinguish between functional and referral trust (and 

hence, does not maintain separate context-indexed 

counts). However, it does modify recommendations from 

a node using the trust in the recommender as shown 

above.  As a result, this approach can overcome ballot-

stuffing and bad-mouthing attacks as proved in [23]. By 

decaying/forgetting these counts over time (using a 

multiplicative factor d
(t-t0)

, where 0<d<1 and t0 is the start 

time), it can be made robust to sleeper and on-off attacks. 

However, it cannot deal with Sybil and newcomer 

attacks, and conflicting behavior attack.  In contrast with 

Denko and Sun [24], Ganeriwal et al. [23] approach does 

not distinguish between different contexts (including 

functional and referral trust) and derives indirect trust by 

chaining a pair of edges using the discounting rule of 

Josang and Ismail’s Beta reputation system. 

Sun et al.’s Approach for MANETs [24]: Each trustor 

maintains, for each trustee that it has experience with, 

two separate direct trust: functional (for packet 



forwarding) and referral (for recommendations). In the 

absence of direct functional trust information in a trustee, 

it computes cumulative indirect functional trust by 

pooling multiple recommendations for the trustee, via 

paths obtained by chaining referral edges followed by a 

functional link. Sun et al. [24] makes at least four novel 

contributions among others: (i) It uses an information 

theoretic formulation to devise a non-linear map of trust 

probability in [0,1] to a trust value in [-1,+1], thereby 

amplifying the effect of changes to trust probability on 

the trust value at the extremes. (ii) It provides axioms for 

trust models and trust composition rules that satisfy these 

axioms, as explained in Section 5.3.3 and Figures 10, 11 

and 12. Effectively, it learns a local trust network 

dynamically and reasons over it using chaining and 

aggregation rules, which makes it more general than the 

approaches in [23] [24] discussed earlier. Unfortunately, 

Sun et al. [24] does not unambiguously specify the details 

of trust computation for arbitrary networks. Furthermore, 

we observe that top-down view of trust propagation is 

non-local (that is, meaning of a node is not entirely 

determined by the meanings of their immediate 

neighbors). (iii) It provides algorithmic details of their 

implementation for MANETs and an experimental 

simulation of it [24]. (iv) It analyzes various attacks on 

trust networks in depth and evaluates robustness of their 

approach to these attacks. Specifically, it overcomes 

ballot-stuffing, bad-mouthing, sleeper and on-off attacks, 

but not Sybil and newcomer attacks (which requires key-

based infrastructure to overcome), and conflicting 

behavior attack (which is susceptible to recommender 

trust vulnerability).   

In general, to deal with Sybil attacks, an orthogonal 

mechanism to generate and verify Security Tokens
11

 for 

authentication is necessary. 

5.1.4. Illustration using a Minimal Example 

 

In order to shed light on the qualitative and quantitative 

differences in the Bayesian approaches to trust discussed 

so far, we consider a simple trust network shown in 

Figure 5 that involves two functional edges (one between 

A and B labeled F(5,10) and another between B and C 

labeled F(25,5)) and one referral edge (between A and B 

labeled R(12,2)), where the pair of numbers  refers to the 

number of success experiences and the number of failure 

experiences respectively. As explained later, this example 

is adequate to surface the differences in the expressive 

power of the aforementioned approaches. 
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Figure 5: A generic, minimal trust network to compare 

and contrast different Bayesian approaches to binary trust 

Denko-Sun’s Approach [24]:  This approach was 

proposed for the specific context of MANETs. A node 

infers functional trust in another node by aggregating its 

direct experiences and the direct experiences of its 

neighbors. For computing functional trust of A in B, we 

consider the direct edge F(5,10) obtaining the trust value 

as ((5+1)/(5+1+10+1)) = 0.35. For the purpose of 

inferring functional trust of A in C, we consider the 

composite edge F(5+25,10+5) obtaining the trust value as 

((30+1)/(30+1+15+1)) = 0.66. 

Ganeriwal et al.’s Approach [23]:  In this approach, the 

context and type of interaction is not explicitly 

represented; only the total number of success experiences 

and the total number of failure experiences are retained.  

For the purposes of inferring trust of A in B, we consider 

two direct edges F(5,10) and R(12,2) to obtain the 

cumulative edge (5+12,10+2). This yields the net trust 

value as ((5+12+1)/(5+12+1+10+2+1)) = 0.58. For the 

purposes of inferring trust of A in C, we need to chain the 

direct trust T(5+12,10+2) with direct trust T(25,5) using 

Josang-Ismail discounting rule obtaining the effective 

number of success and failure experiences as T(s,f), 

where 

s = 0 + (2*17*25) / ([(12+2) + (25+5+2)] + 2*17) = 10.625 

f = 0 + (2*17*5) / ([(12+2) + (25+5+2)] + 2*17) = 2.125 

The net trust value of A in C is 

(10.625+1)/(10.625+1+2.125+1)  =  0.79. 

Sun et al.’s Approach [24]:  This approach represents 

both functional and referral trust edges faithfully though 

it maps probability p in [0,1] to trust value in [-1,+1] 

using the following mapping: 

T(trustee : trustor, action) =  

 if  0.5 <= p   

     then   1 – H(p)   /* 0.5 <= p <= 1 */ 

     else   H(p) – 1  /* 0 <= p <= 0.5 */ 

 where     H(p) = – p log2(p) – (1 – p) log2(1 – p) 

http://en.wikipedia.org/wiki/Security_token


 
Figure 6: Uncertainty as a function of probability 

 

This mapping provides an information theoretic 

interpretation of trustworthiness probability. Specifically, 

the probability values 0 and 1 imply certainty, while 0.5 

implies absolute uncertainty. See Figure 6. This non-

linear mapping amplifies the effect of changes to trust 

probability on the trust value at the extremes. That is, a 

change in probability near 0.5 has less effect on trust 

value than the same change near 0 or 1. 

To determine functional trust of A in C, we need to chain 

the referral trust of A in B with functional trust of B in C, 

by multiplying their trust values.  The referral trust 

probability of A in B is ((12+1)/(12+1+2+1)) =  0.81 and 

the functional trust probability of B in C is 

((25+1)/(25+1+5+1)) = 0.81. Hence, the information-

theoretic trust of A in B is 0.3 and that of B in C is 0.3 

(obtained using the above mapping of trust probability in 

[0,1] to information-theoretic trust value in [-1,+1]). 

Furthermore, the composite trust of A in C is 0.3*0.3 = 

0.09 (obtained using the product rule). See Table 1 for a 

comparative summary, which shows that differences can 

arise in the absence of expressive trust networks and an 

objective theory of trust. 

Table 1. Comparison of functional trust values  

(from A to C in Figure 5) 

 Denko-Sun’s 

Approach 

(prob. [0,1]) 

Ganeriwal et 

al.’s 

Approach 

(prob. [0,1]) 

Sun et al.’s 

Approach 

(inf. th.[-

1,1]) 

Functional 

trust value 

from A to C 

0.66 0.79 0.09 

 

 

 

 

5.2. Direct Trust: Policy-based Process 
 

Grandison and Sloman [4] provides several informal 

examples of policy-based trust. Similarly, we routinely 

use training programs and certifications as the basis for 

inferring policy-based trust.  

 

A general approach to trust assessment uses (i) domain 

dependent qualities for determining trustworthiness based 

on content (data) and on external cues (metadata), and (ii) 

domain independent mapping to trust values or levels 

through quantification and classification [30]. 

 

For example, trustworthiness of Wikipedia articles can be 

assessed based on domain dependent content-based 

quality factors such as references to peer-reviewed 

publications, proportion of paragraphs with citation, and 

article size, and metadata-based credibility factors such 

as author connectivity, edit pattern and development 

history, revision count, proportion of reverted edits 

(including normal reversals and those due to vandalism), 

mean time between edits, and mean edit length. 

Trustworthiness can be quantified in a domain 

independent way using dispersion degree score that 

captures the extent of deviation from the mean. For 

evaluation metric, normalized discounted cumulative 

gain (NDCG) can be used to compare ranking based on 

trust levels (determined from trustworthiness scores) to 

gold standard classification. 

 

Another example is the estimation of a website’s 

trustworthiness based on the criticality of data exchanged 

with it. Specifically, each of the following pieces of 

information carries with it different level of sensitivity: 

email address, username and password, phone number, 

home address, date of birth, social security number, etc.  

Intuitively, a piece of data is critical if it is exchanged 

with a small number of highly trusted sites [31]. 

 

 

5.3. Indirect Trust: Variety of Trust Metrics and 

Models 
 

Trust between a pair of users/collaborators can be 

gleaned on the basis of their similarity, where similarity 

can be quantified in a number of ways such as using 

average difference in ratings, overall correlation of 

ratings, and correlation on extremes [32]. In fact, 

collaborative filtering uses similarity measures (such as 

profile-based, item-ratings based, item-category based) 

between a user and others to predict item-ratings by the 

user. This approach is items-agnostic and scales well over 

time with large number of items. However, it suffers 

from (i) data sparsity problem when a small number of 

items are common between users, (ii) cold start user 



problem when a user has rated only a small number of 

items, and (iii) copy-profile vulnerability where an 

attacker can create a targeted-user-like profile to 

manipulate recommendations. 

 

Trust-aware Recommender Systems (TaRS) use 

explicit/direct trust between users to predict 

implicit/indirect trust between users through chaining 

[33]. TaRS overcomes limitations of collaborative 

filtering because trust propagation improves coverage, a 

single trust edge from a new user can enable a user to 

inherit several “parental” recommendations, and fake 

identities are not trusted by an active user. 

 

5.3.1. Trust Propagation Frameworks 

 

There are a host of approaches in the literature that 

present trust management frameworks and formalize trust 

propagation along chained paths, trust aggregation from 

multiple sources, and overriding 

[1][34][21][35][36][16][26][36][37][38]. However, in the 

absence of an objective semantics of trust, it is very 

difficult to evaluate various approaches to trust for 

validity.  This is made worse by the lack of transparent 

examples of trust computations that show all the 

consequences of a specified approach. In a number of 

situations, it is possible to reverse engineer framework 

parameters to reflect any desirable semantics of a trust 

network, making the comparison of frameworks even 

harder.  

  

5.3.2. Trust Propagation Algorithms 

 

Broadly speaking, trust propagation algorithms work on 

DAGs extracted from potentially cyclic trust networks 

and fall into two categories: top-down and bottom-up. In 

top-down approach, trust value for a source in a target is 

predicted by aggregating trust values in the target 

inherited from source’s “trusted” parents weighted with 

trust value in the corresponding parent [2]. In bottom-up 

approach, trust value for a source in a target is predicted 

by aggregating trust scores in target inherited from 

target’s “trusted” neighbors weighted with trust value in 

 
(a) Same Interpretation       (b)  Different Interpretation 

Figure 7: Comparative analysis example: top-down vs. 

bottom-up  

 

the corresponding neighbor [38]. For instance, the two 

approaches cited above interpret Figure 7(a) similarly 

with q trusting s. On the other hand, they interpret Figure 

7(b) differently with the top-down approach being 

ambiguous about q trusting s, while the bottom-up 

approach concludes that q distrusts s.  

  

Figure 8 illustrates the TidalTrust algorithm where the 

trust computation is top-down and uses weighted 

averages. Specifically, T(E,Sink) = T(C,Sink) = 2, 

T(B,Sink) = (3*2+6*5)/(3+6) = 4, and T(Source,Sink) 

=(4*4+2*7)/(4+2)=5. 

 

 
Figure 8: TidalTrust Trust Computation Example 

 

 

 

 
Figure 9: Cyclic Trust Network 

 

Figure 9 shows a well-founded cyclic trust network and 

binary trust conclusions. 

 

5.3.3. Trust Propagation Rules: Axioms for Trust 

Models 

 

As explained in Section 5.1.3, Sun et al. [34] describes an 

interesting approach to trust computation by first 

providing an axiomatic basis for trust models and then 

providing concrete rules for combining trust values as 

reproduced below. 

 

Rule 1: Concatenation propagation does not increase trust. 
For example, to satisfy Rule 1, one can use T(A1,C1) = R1 

* T2 if R1 > 0 and T2 > 0. 

 
Figure 10: Illustration for Rule 1 - Chaining Trust 

 

Rule 2: Multipath propagation does not reduce trust. For 

example, to satisfy Rule 2, one can combine the trust 



values on the two paths as T(A2,C2)  = 

( R1(R1*T2)+R1(R1*T2) )  / (R1 +  R1), where the 

italicized values refer to the upper path and boldface 

values refer to the lower path in case one wants to 

consider different trust values. 

 
Figure 11: Illustration for Rule 2 - Aggregating Trust 

 

Rule 3: Trust based on multiple referrals from a single 

source should not be higher than that from independent 

sources. That is, T(A1,C1) <= T(A2,C2). 

 
Figure 12: Illustration for Rule 3 - Propagating Trust 

 

 
Unfortunately, the axioms have limited applicability and 

do not unambiguously specify trust computation over an 

arbitrary trust network. 

 

Beta-reputation system [39] chains opinions o1 and o2 

(where opinion oi has three components [belief bi, 

disbelief di, uncertainty ui]) to obtain discounted opinion 

o3 as b3 = b1 * b2, d3 = b1 * d2, and u3 = d1 + u1 + b1 * u2. 

 

6. A BAYESIAN APPROACH TO MULTI-
LEVEL TRUST 
 
Section 6 develops a Bayesian approach to multi-valued 

trust based on Dirichlet distribution. Section 6.1 

motivates the need for formal underpinnings by showing 

the downside of an ad hoc approach to multi-valued trust. 

Section 6.2 then provides the relevant Bayesian theory 

(Section 6.2.1), the data structures used (Section 6.2.2) 

and the details of a robust trust computation algorithm 

(Sections 6.2.3 and 6.2.4) by adapting the B-Trust 

approach of Quercia et al. [40]. For clarity, Sections 6.2.5 

illustrates the multi-valued trust inference algorithm on 

concrete examples, and Section 6.3 analyzes its 

robustness to well-known attacks. Section 6.4 succinctly 

depicts a comparative analysis of different approaches to 

multi-level trust, while Section 6.5 discusses the practical 

applications of multi-level trust. Section 6.6 covers 

application of trust to collaborative environments. 

 

Quercia et al. [40] generalizes binary trust metric used so 

far to K-level discrete trust metric, where K refers to the 

number of trust /experience levels.  This work is 

exemplary in the way it develops the entire approach, 

providing details of local data structures employed, trust 

formation, trust evolution, evaluation of security, and 

experimental simulation. Unfortunately, we discovered 

that the default initialization (that rightly captures 

complete ignorance of initial trust probability) and the 

given Bayesian trust evolution rules, which seem 

satisfactory when considered in isolation, destructively 

interfere with each other when used together. As a result, 

the trust probability vector remains fixed (incorrectly) in 

response to any experience sequence. The fundamental 

problem can be traced to the fact that traditional Bayes’ 

rule computes a conditional probability on the basis of 

already provided two prior probabilities and one 

conditional probability, while in Quercia et al. [40], we 

are also required to dynamically learn the latter 

conditional probability. Unless and until we find a 

satisfactory interpretation of an experience level in terms 

of its effect on trust distribution, and account for an 

experience level directly in terms of trust distribution, we 

will not have an acceptable/defensible model of trust.  

After developing several ad hoc fixes, we discovered that 

founding multi-level trust metric evolution on Dirichlet 

distribution
12

, a significant departure from the way 

Bayes’ rule is used in Quercia et al. [40], yielded an 

approach that preserved its strengths, while 

simultaneously overcoming its limitations as discussed 

below. We also review other approaches to formalizing 

multi-level trust using Dirichlet distribution including 

applications to MANETs, e-commerce and collaborative 

environments. 

6.1. Illustrating Limitations of B-Trust 

Approach using Examples 

We recapitulate just enough details of Quercia et al. [40] 

not only to illustrate its capricious behavior but also to 

provide a roadmap for how to describe a trust framework 

and its implementation. Specifically, we focus on 

functional trust and skip referral trust, whose 

computation also exhibits similar behavior. 

For a K-level trust metric, each node maintains locally a 

K-length Direct Trust Vector and a K x K Direct 

Experience Matrix, to store information about trust level 

probabilities and experience level counts respectively, for 

computing direct (functional) trust between a pair of 

peers for each context using Bayes’ Rule, as described 

below: 

Direct Trust Vector dtv:  Peers × Contexts × Peers →                        

   Probability-VectorK 
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That is, dtv(x,c,y) = (d1,d2,…,dK) where di = Probability 

that x has direct trust at level i in y in context c. (By 

definition, d1 + … + dK = 1.) 

Direct Experience Matrix dem:  Peers × Contexts × 

Peers →    Count-MatrixKxK  

That is, dem(x,c,y) = ((ec11,…,ec1K),…,(ecK1,…,ecKK)) 

where ecij = Count of x’s experience at level j with y on 

the basis of direct trust at level i in context c.    

To reflect complete ignorance via uniform distribution, 

we set the probability vector to (1/K,…,1/K) making all 

trust levels equally likely to start with, and we set all the 

elements of the matrix dem to the same value for 

uniformity (where the initial magnitude determines the 

duration of persistence of the bootstrapping phase and is 

irrelevant for the problem we wish to discuss). 

Trust Update:  According to Quercia et al. [40], the direct 

experience matrix is changed in response to new 

experiences, and the direct trust vector is recomputed to 

reflect these changes.  The probabilities are updated by 

applying Bayes’ rule, where DE refers to the current level 

of direct experience of x while interacting with y, with 

current trust level of DT in context c: 

p(DE(x,c,y) = j, DT(x,c,y) = i) 

=       p(DE(x,c,y) = j | DT(x,c,y) = i) * p(DT(x,c,y) = i) 

=       p(DT(x,c,y) = i | DE(x,c,y) = j) * p(DE(x,c,y) = j) 

Renaming p(DT(x,c,y) = i) as prior-prob-for-xcy-i 

and p(DT(x,c,y) = i | DE(x,c,y) = j) as posterior-prob-

for-xcy-i, the equation can be rearranged as a Bayesian 

inference/update rule:  

p(DE(x,c,y) = j | DT(x,c,y) = i) *  prior-prob-for-xcy-i   =    

 posterior-prob-for-xcy-i * p(DE(x,c,y) = j) 

 

posterior-prob-for-xcy-i  =  prior-prob-for-xcy-i  * 

 [ p(DE(x,c,y) = j | DT(x,c,y) = i)  /  p(DE(x,c,y) = j) ] 

 

The quantity posterior-prob-for-xcy-i corresponds 

to the inferred probability that the direct trust of x in y is 

at level i subsequent to the direct experience at level j.  

The exact computation of the various probabilities 

can be expressed in terms of the counts [39]. Note that 

the probability p(DE(x,c,y) = j | DT(x,c,y) = i) is 

determined by row i of the count-matrix dem, and the 

probability p(DE(x,c,y) = j) is determined as a prior 

probability weighted summation of each row’s 

contribution. 

)ec/(ec   =   i) = y)c,DT(x, | j = y)c,p(DE(x,
1

iij 


K

n

n

 
  j) = y)c,p(DE(x, 

 

∑  

 

   

  (  (     )    |  (     )   ) 

where,   dtv(x,c,y) = (d1,d2,…,dK) and 

dem(x,c,y) = ((ec11,…,ec1K),…,(ecK1,…,ecKK)) 

 

Experience Update: In response to x’s direct experience 

with y at level j, each entry in column j of dem is updated 

as follows: for i in [1,K]: ecij = ecij + dtvi. (Equivalently, 

ec[i,j] = ec[i,j] + dtv[j].) The rationale seems to be that 

because only trust probability distribution (as opposed to 

exact direct trust level) is available, we can distribute the 

1-unit of direct experience at level j among column j 

entries in proportion to the trust distribution, as a way to 

assimilate new experience. Unfortunately, for the given 

row-symmetric initializations (that is, 

dtv(x,c,y)=(1/K,…1/K) and dem=((1,…1),…,(1,…,1)), or 

for all i: di = 1/K and for all i,j: ecij = 1) and the proposed 

row-symmetric updates, the Bayesian inference leaves 

direct trust vector value unaltered irrespective of the 

level of experience. For example, for K = 4 and initial 

trust vector dtv=(0.25,0.25,0.25,0.25), all experience 

level sequences [1,1,1], [1,4,1,4], [1, 1, 4, 4, 4, 4, 1, 1, 1], 

[2,3,2,3], etc. leave the trust vector unchanged
13

 at 

(0.25,0.25,0.25,0.25), which is intuitively unsatisfactory. 

In other words, the nature of experience sequence has no 

impact on the trust level, which defeats the original 

purpose of trust evolution. The root cause of this 

unacceptable behavior is the fact that Bayesian inference 

is founded on existing background knowledge 

summarized in terms of two prior probabilities and one 

conditional probability, while, in the approach at hand, 

we are acquiring background knowledge from scratch as 

we go along. Our ad hoc fixes to the experience update 

issue allows us to evolve trust probability vector in ways 

that reflect experience faithfully qualitatively (e.g., poor 

quality (low-level) experience leads to distrust (low-level 

trust)), but these fixes do not pass muster when its 

quantitative behavior is scrutinized. Instead, we 

discovered that evolution of multi-level trust metric in 

response to multi-level experience can be formalized 

satisfactorily by rectifying the Bayesian foundation to be 

used as described below. 
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 This result can be argued purely on the basis of symmetry and 

induction as opposed to performing numerical calculations. 



6.2. An Approach to Multi-level Trust 

Metric Evolution Based on Dirichlet 

Distribution    
Josang and Haller [41] were the first to formalize and 

analyze a theory of multi-valued trust by generalizing 

binary trust metric [39][23][24][24] to K-level trust 

metric using Dirichlet Distribution
14

 [42]. This approach 

evolves multi-valued trust in an intuitively satisfactory 

manner in response to experience sequences. K refers to 

the number of trust/experience levels.  For example, 

Amazon’s 5-star trust metric can be interpreted as 

signifying (very untrustworthy, untrustworthy, neutral, 

trustworthy, very trustworthy) or (very dissatisfied, 

dissatisfied, neutral, satisfied, very satisfied). The 

approach developed here formalizes a distributed, robust, 

lightweight, computational trust that takes into account 

context, subjectivity, and time, by adapting Quercia et al. 

[40]. Below we describe Dirichlet Distribution that serves 

as the mathematical foundation for multi-level trust (with 

emphasis on informal exposition of its formalization and 

applicability), local data structures employed for trust 

representation and reasoning, trust formation and 

evolution, and evaluation of its security. We also provide 

concrete examples of trust evolution rather than 

performing experimental simulation because the former 

provides greater insight into how trust evolves in 

response to an experience sequence, beyond mere sanity 

check on aggregate behavior that experimental 

simulations provide. As an aside, note that the entire 

development also provides a realistic (and pedagogically 

significant) illustration of the benefits of reusing a well-

developed mathematical theory as opposed to inventing a 

novel approach that may have lurking idiosyncratic 

behavior. 

6.2.1. Dirichlet PDF 

Dirichlet PDF provides a satisfactory mathematical 

foundation for reputation-based systems that use multi-

level trust metric. Let x = (x1,. . ., xK), where each xi is 

the probability that the trust is at level i, for a K-level 

trust metric. By definition, (x1 + . . . + xK = 1). For 

example, if Amazon 5-star rating system has 50 people 

giving 5-stars, 20 people giving 4-stars, 5 people giving 

3-stars, 5 people giving 2-stars, and 20 people giving 1-

star, then the 5-level trust metric probability vector is 

(0.5,0.2,0.05,0.05,0.2). The probability of an experience 

sequence e1,...,em, to occur (where an experience at level 

e is a realization of trust at level e, that is, the result of 

the implicit trust at level e and leads to an explicit trust at 

level e) is (xe1* . . . * xem).  The total probability of 

experience-level sequences, with c1 counts of level 1 

experience, …, cK  count of level K experience, is:  
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 http://en.wikipedia.org/wiki/Dirichlet_distribution  (accessed 

10/23/2012) 
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The i’s = ci – 1 are the associated Dirichlet distribution 

parameters. The first term corresponds to the probability 

associated with a single experience sequence satisfying 

the counts constraint, and the second term corresponds to 

the number of distinct experience sequences that satisfy 

the counts constraint (= total number of sequences / total 

number of duplicates). 

The Dirichlet distribution, which is the PDF for x = (x1,. . 

., xK) given parameters , is as follows (where, 

the -function generalizes the factorial function  for more 

general treatment): 
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Note that, for parameters (1,…,K) where each i – 1 

corresponds to the count of experiences at level i, the 

ratio (f(x1,…xK-1) / f(y1,…yK-1)) gives the relative 

likelihood of  (x1,…xK)  and  (y1,…yK) describing the true 

state of affairs. [Note that because (xK = 1 - (x1,…,xK-1) ), 

the plot of PDF in a K-dimensional space yields a (K-1) 

dimensional surface;  specifically a (K-1) simplex, which 

is generalizes a line (K=2), a triangle (K=3), and a 

tetrahedron (K=4) to K-dimensions .] 

If the prior distribution of x is uniform, then the Dirichlet 

family of distribution shown below gives posterior 

distribution of x after i-1 occurrences of level i 

experience with probability xi, for each i in [1, K]:

).,...;,...( 111 KKxxf 
 

In general, a posteriori PDF can be computed from a 

priori PDF to show that the shape (relative magnitudes of 

the various point probability densities) of the Dirichlet 

PDF is preserved by the outcomes conforming to 

multinomial distribution as follows (where un-

subscripted letters c, x, , etc. stand for vectors and the + 

operation stands for vector addition): 
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In Bayesian statistics, this property is captured by the 

statement:  The Dirichlet distribution is a conjugate prior 

for the multinomial distribution. This important property 

permits an efficient way to update the estimated 

distribution as a result of a new experience by just 

incrementing the corresponding parameter, without 

altering the structure/shape of the distribution. If the prior 

distribution is different from the Dirichlet distribution, 

then it will be conceptually hard to comprehend and 

computationally inefficient to compute the posterior 

distribution, in general. The fact that uniform distribution 

captures initial ignorance, and is a special case of the 

Dirichlet distribution, makes it a satisfactory starting 

point. 

Figure 13 shows a visualization of Dirichlet distribution 

using six combinations of (1,2,3) (K=3) via projection 

[43]. The three diagrams in the top row represent 

symmetric, uniform distributions concentrated at 

(1/3,1/3,1/3) to varying degree. The variation in the color 

signifies that as we go from left to right, our confidence 

in the estimated (trust) probabilities is increasing because 

we have more samples (experiences) to back them up. 

The first two diagrams in the bottom row show 

asymmetric situations with concentration points being 

skewed to the dimensions with higher proportion of 

samples. The third diagram in the bottom row cannot be 

realized in our application, even though the formal 

machinery can deal with fractional 's. 

The distribution of dynamic trustworthiness of a node can 

be characterized using Dirichlet-PDF() gleaned 

from total number of experiences (i-1) at level i, for all i 

in [1,K]. The best estimate for the overall trustworthiness 

(reputation) is the mean vector , and the 

best estimate for our confidence in individual mean is its 

variance as shown below: 

;     Mean(xi) = i/0 ; 

Variance(xi)  =  [i*(0-i)] / [0
2
(0+1)] 

 

 

Figure 13: Visualization of Dirichlet distribution: Six 

Examples  

 

6.2.2. Local Data Structures 

We describe the data structures that each trustor holds to 

store relevant information to compute direct (functional) 

and indirect (referral) trust in a trustee. (Note that trustor 

and trustee are of the same type Peers.) 

(1) Each trustor maintains locally, for each trustee and 

each context, a Direct Trust Vector, which is a 

probability vector of length K.  

Direct Trust Vector dtv:  Peers × Contexts × Peers →                        

   Probability-VectorK 

That is, dtv(px,c,py) = (d1,d2,…,dK) where di = 

Probability that trustor px has direct trust at level i in 

trustee py in context c. (As expected, d1 + … + dK = 1.) 

(2) Each trustor maintains locally, for each trustee and 

each context, a Direct Experience Vector, which is a 

count vector of length K.  

Direct Experience Vector (dev):  Peers × Contexts × 

Peers →    Count-VectorK 

That is, dev(px,c,py) = (ec1,…,ecK) where eci = Count of 

trustor px’s direct experience at level i with trustee py in 

context c.    

 (3) Each trustor maintains locally, for each trustee and 

each context, a Recommended Trust Vector, which is a 

probability vector of length K.  

Recommended Trust Vector (rtv): Peers × Contexts × 

Peers →     Probability-

VectorK 

That is, rtv(px,c,py) = (r1,r2,…,rK) where ri = Probability 

that trustor px has recommended trust at level i in trustee 

py in context c. (As expected, r1 + … + rK = 1.) 

(4) Each trustor maintains locally, for each trustee and 

each context, a Sent Recommendation Vector, which is a 

count vector of length K.  
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Sent Recommendation Vector (srv):  Peers × Contexts × 

Peers → Count-VectorK 

That is, srv(px,c,py) = (sr1,…,srK)  where sri = Count of 

trustor px’s received recommendations at level i in 

trustee py in context c.  Note that the identity of a 

recommender is lost in the process of aggregating counts. 

(5) Initialization: To reflect complete ignorance via 

uniform distribution, we set the probability vectors dtv 

and rtv to (1/K,…,1/K), and the elements of the count 

vectors dev and srv to (0,…,0). 

6.2.3. Trust Formation 

The overall trust vector can be obtained as a weighted 

combination of direct trust vector and recommended trust 

vector. The weight can be determined in terms of (i) 

confidence value, which is the variance of the vector 

elements from its mean, depicting intrinsic uncertainty 

(di – 1/K) 
2
/(K-1) and (ii) relative preference for direct 

experience over recommendations.  The former 

component is objective, while the latter component is 

subjective.  The trust decision required for action also 

depends on context-based trust threshold that takes into 

account subjective risk tolerance and mitigating 

warranties. 

6.2.4 Trust Evolution 

The direct trust vector should be updated for each new 

experience, and similarly, the recommended trust vector 

should be updated for each newly received 

recommendation. Because Dirichlet distribution is the 

conjugate prior of the multinomial distribution, we just 

maintain the counts of the direct experience and sent 

recommendations, and compute most likely estimate of 

direct trust probabilities and recommended trust 

probabilities respectively as shown. (For brevity, we 

focus only on computing direct trust. Computation of 

recommended trust is similar.) 

Simple Scheme (Bag-based): 

For a new experience at level i,  

 dev(px,c,py) = (ec1,…,ecK) is updated to  

 dev
new

(px,c,py) = (ec1,…, eci+1,…,ecK) 

and the corresponding dtv(px,c,py) is updated to  

dtv
new

(px,c,py) = (d1,d2,…,dK) 

where di = eci+1 / (ec1 + … + eck+1) and 

           dj = ecj / (ec1 + … + eck+1)  

           for each j in [1,K]  and j =/= i. 

 

To improve the robustness of the trust management 

system, (i) the trust is aged by attenuating the counts with 

time to reduce the effect of past experiences, and (ii) the 

trust is skewed using differential weighting of counts, to 

penalize low-level 
15

 experience (cf. failure) much more 

                                                 
15

 Low-level (resp. high-level) experience is synonymous 

with low-quality (resp. high-level) experience. 

than reward complementary high-level experience (cf. 

success). 

Robust Scheme (Timed and Skewed Decay): 

To incorporate differential aging of experience counts (to 

incorporate long term memory for low-level experience 

and short term memory for high-level experience),   we 

can use a decay vector (1,…,K), where 1 >= 1 >= … 

>= K > 0, and the modified update rules: 

 

For a new experience at level i,  

 dev(px,c,py) = (ec1,…,ecK) is updated to  

 dev
new

(px,c,py) = (ec1,…, eci  +,…,ecK). 

For every clock tick (with context-based delay),  

 dev(px,c,py) = (ec1,…,ecK) is updated to  

 dev
new

(px,c,py) = (1*ec1,…,K*ecK) 

 

For every clock unit and for every new experience,  

 dtv(px,c,py) is updated to  

dtv
new

(px,c,py) = (d1,d2,…,dK) 

where di = eci / (ec1 + … + eck)  

         for each i in [1,K]. 

 

(Subtlety: In our Python script that computes trust using 

robust scheme (not shown here), the counts saturate at 1 

rather than monotonically diminish to 0 with time, to 

reflect ignorance after long periods of inactivity.) 

6.2.5. Evolution of Trust Distribution for Various 

Experience Sequences  

In order to provide better insight into how the direct trust 

distribution vector evolves, we present final direct trust 

vectors for different experience sequences in Table 2, and 

trace evolution of trust distribution vector for a specific 

experience sequence in Table 3. We then highlight 

notable characteristics of this approach.  

Table 2: Trust Distribution Vector for Different 

Experience Sequences with K= 4 [1,…,4] and initial 

value (0.25,0.25,0.25,0.25)   

 

Experience 

Sequence 

Final Trust  

Distribution  

(Simple Scheme) 

Final Trust 

Distribution  

(Robust Scheme) 

[1,1,1] (0.57,0.14,0.14,0.14) (0.55,0.15,0.15,0.15) 

[1,4,1,4] (0.38,0.12,0.12,0.38) (0.42,0.14,0.14,0.29) 

[1, 1, 4, 4, 4, 

4, 1, 1] 
(0.42,0.08,0.08,0.42) 

(0.5,0.1,0.1,0.3) 

[1, 1, 4, 4, 4, 

4, 1, 1, 1] 
(0.53,0.07,0.07,0.33) 

(0.64,0.1,0.1,0.17) 

[2,3,2,3] (0.12,0.38,0.38,0.12) (0.16,0.4,0.3,0.14) 

 



Table 3: Evolution of Trust Distribution for Experience 

Sequence (1,1,1,K,K,K,K,1,1,1) 

 

Exper-

ience 

Sequence 

Value 

Trust Distribution 

Trace  

(Simple Scheme) 

Trust Distribution 

Trace  

(Robust Scheme) 

 (0.25,0.25,0.25,0.25) (0.25,0.25,0.25,0.25) 

1 (0.4,0.2,0.2,0.2) (0.4,0.2,0.2,0.2) 

1 (0.5,0.17,0.17,0.17) (0.53,0.165,0.155,0.15) 

1 (0.57,0.14,0.14,0.14) (0.55,0.15,0.15,0.15) 

K (0.5,0.125,0.125,0.25) (0.5,0.13,0.12,0.25) 

K (0.44,0.11,0.11,0.33) (0.46,0.13,0.13,0.28) 

K (0.4,0.1,0.1,0.4) (0.42,0.12,0.11,0.35) 

K (0.36,0.1,0.1,0.45) (0.37,0.12,0.12,0.38) 

1 (0.42,0.08,0.08,0.41) (0.47,0.11,0.11,0.31) 

1 (0.46,0.08,0.08,0.38) (0.53,0.11,0.11,0.24) 

1 (0.5,0.07,0.07,0.35) (0.6,0.1,0.1,0.2) 

1 (0.53,0.07,0.07,0.33) (0.65,0.1,0.1,0.14) 

K (0.5,0.06,0.06,0.37) (0.6,0.1,0.1,0.2) 

1 (0.53,0.06,0.06,0.35) (0.64,0.1,0.1,0.17) 

 

 

Figure 14: Evolution of Trust Distribution for simple 

scheme 

 

Figure 15: Evolution of Trust Distribution for robust 

scheme 

Figures 14 and 15 depict trust evolution for simple and 

robust scheme respectively for the experience sequence 

shown in Table 3. 

6.3. Analysis and Security 
We analyze the characteristics and the robustness of the 

Dirichlet distribution-based multi-level trust management 

approach.   

(1) Symmetry: The formalization is symmetric with 

respect to each trust level. For example, for K = 4, the 

final trust distribution for the experience sequences 

culminating in (1,4,1,4) and (3,2,3,2) is 

(0.375,0.375,0.125,0.125) and (0.125,0.375,0.375,0.125), 

respectively, which captures similar trust distribution 

pattern. Note that the experience levels are faithfully 

“preserved” in the updated trust distribution, rather than 

smeared across trust levels. That is, complementary 

extreme behavior (credulous interpretation) is treated as 

different from ignorance (skeptical interpretation).     

(2) Effect of order of experience: The Simple Scheme is 

sensitive to the counts of various experience levels but it 

cannot distinguish their permutation, while the Robust 

Scheme is sensitive to the order of experiences and is 

dynamic. Specifically, the recent experience levels have 

more pronounced effect on the current trust level than 

prior experience levels. However, to control the rate or 

extent of memory decay beyond initialization requires 

context- and application-based tuning.  

(3) Differential aging of trust: The Robust Scheme ages 

the trust distribution by decaying counts associated with 

different levels of trust differently in response to clock 

ticks. This enables one to have longer memory for 

“failures” compared to “successes”, and more 

“successes” are needed to offset “failures”. To move the 

trust distribution closer to (1/K,…,1/K) due to long 

inaction, the experience count saturates to 1 over time.  

(4) Security issues: We analyze robustness of the 

proposed approach to various attacks. 



a. Ballot-stuffing attack: If a majority of the 

recommenders collude to promote a trustee that provides 

low-level experience, it can be countered only through 

more reliable direct experience that gets reflected as low-

level direct trust. Unfortunately, the low-level experience 

will be forgotten over a period of time. This is reasonable 

if the low-level experience is a result of transient 

phenomenon or occasional misbehavior, but is not ideal 

to deal with more persistent fault or malicious behavior. 

b. Bad-mouthing attack: If a majority of the 

recommenders collude to avoid a trustee that can provide 

high-level experience, it can be countered only if a trustor 

seeks direct experience with the victim trustee in spite of 

low trust and discovers a contradiction. This situation 

may be forcibly realized when trusted nodes are 

unavailable for interaction. 

c. Sybil and Newcomer attacks: The trust framework does 

not assist in preventing these attacks. Instead, their 

mitigation requires a separate authentication 

infrastructure.   

d. Sleeper and on-off attacks: The trust framework is 

well-suited to prevent these attacks as illustrated by the 

Robust Scheme, although it does require manual control 

over the memory window and selective weighting of 

different experience levels as a function of time and 

application, as shown above.  

e. Conflicting behavior attack: Recall that, in conflicting 

behavior attack, the attacker uses “divide and conquer” 

strategy and provides conflicting recommendations on a 

trustee to multiple trustworthy sources. When a victim 

seeks recommendations from these trustworthy sources, 

which faithfully transmit the attacker’s views, the victim 

ends up getting conflicting recommendations on the 

trustee, thereby causing it to incorrectly reduce its trust in 

a subset of trustworthy recommenders. The given trust 

framework does not track trust in each recommender 

separately (but instead, it lumps them all together). So 

ironically, because of this limitation, conflicting behavior 

attack does not have the intended effect of reducing trust 

in the intermediaries. The attack does degenerate to bad-

mouthing attack however.   

(5) Tracing vs. Experimental Simulation: We avoid 

performing any experimental simulation because it does 

not provide any new insight beyond sanity check. This is 

because if the simulation framework is set-up in such a 

way that low-trust nodes provide low throughput, and 

experiment always selects highest-trust nodes or nodes 

with a probability that is proportional to their trust value, 

to communicate, the overall performance is bound to 

improve. Instead, we have tried to trace and visualize the 

evolution of multi-level trust on diverse concrete 

examples, to get a better insight into its behavior. 

 

6.4. Comparative Analysis Tabular 

Summary 
 

The proposed multi-valued trust inference algorithm and 

its high-level relationship to several binary trust inference 

algorithms are summarized in Table 4.  In what follows, 

we recapitulate important characteristics of these 

approaches which also accounts for their robustness to 

various attacks as discussed in Section 5.1.3 and 6.3.   

 

In Denko and Sun [24], functional trust is aggregated 

using information from immediate neighbors and once 

removed nodes reachable through referral edges. It 

ignores recommender identity completely. As such, it 

cannot be as robust w.r.t attacks as the other approaches 

because it is unable to filter out referrals from just the 

malicious nodes. In Ganeriwal et al. [23], no distinction 

is made between functional and referral trust, and trust 

scope is not explicit. Thus, the computed trust and 

robustness to attacks are based on coarse-grain, 

cumulative trust, which is appropriate only in a single 

trust scope. Sun et al. [24] maintains separate functional 

and referral trust, and provides an axiomatic basis for 

their trust model (that is, for trust propagation via 

chaining and aggregation), which is robust w.r.t. attacks. 

Unfortunately, the axioms have limited applicability and 

do not unambiguously specify trust computation over an 

arbitrary trust network (a la others including Josang and 

Ismail [39], Thirunarayan et al. [1], Golbeck and Hendler 

[16], etc). Quercia et al. [40] generalize binary trust to 

multi-valued trust and separate functional and referral 

trust for different trust scopes. Unfortunately, the 

Bayesian formulation does not evolve the primitive trust 

values in a satisfactory manner. Our approach to multi-

valued trust, discussed in Section 6.2, improves upon 

Quercia et al. [40] by providing a satisfactory 

probabilistic basis for trust computation and evolution 

founded on Dirichlet distribution, and with  acceptable 

robustness characteristics as discussed in Section 6.3.   

 

Table 4: Comparative Analysis of various approaches to 

binary and multi-level trust 
 

APPROACH/ 

METRIC 

Trust Type / 

Context 

Trust Model  

/ 

Foundation 

Robustness 

to Attacks 

D[24] /  

Binary 

Functional  / 

One 

Trivial 

chaining / 

Beta-PDF 

Limited 

Ballot-

stuffing; 

Bad-

mouthing 

G[23] /  

Binary 

Functional / 

Indistinguishable 

Josang-

Ismail 

discounting 

/ 

Ballot-

stuffing; 

Bad-

mouthing; 



Beta-PDF Sleeper 

and On-off 

S[25] /  

Binary 

Functional + 

Referral            / 

One 

Limited 

chaining 

and 

aggregation 

/ 

Beta-PDF 

Ballot-

stuffing; 

Bad-

mouthing; 

Sleeper 

and On-off 

Q[40] /  

Multi-level 

Functional + 

Referral / 

Multiple 

 No  / 

Bayesian  

Ad Hoc 

Ballot-

stuffing; 

Bad-

mouthing; 

Sleeper 

and On-

off; Sybil 

Ours /  

 Multi-level 

Functional + 

Referral / 

Multiple 

No  / 

Dirichlet-

PDF 

Ballot-

stuffing; 

Bad-

mouthing; 

Sleeper 

and On-

off; 

Conflicting 

behavior 

 

6.5. Other Applications of Trust Based on 

Dirichlet Distribution 

The pioneering work of Josang and Haller [41] uses the 

Dirichlet distribution analyzed above as the basis for 

multi-level reputation system for e-commerce.  Their 

paper also presents: (i) A counterintuitive consequence of 

using uniform distribution as a prior on the rate of 

assimilation of experience sequence if the number of 

levels is very large (e.g., 100 similar experiences for an 

100-level trust metric leads to an expected probability of 

only ½ for the corresponding trust level rather than a 

substantially higher value); (ii) A better visualization of 

the results; (iii) Simple special cases that permit closed 

form solution for expected trust in the presence of trust 

decay over time; (iv) Different representations of 

reputation score; and (v) A potential practical application 

of multi-level trust to browsers by introducing a toolbar 

for rating Web pages by clients and for displaying 

recommendation summaries for subsequent use by other 

clients, similarly to the star-ratings (and reviews) 

provided on e-commerce web sites such as Amazon.com. 

This approach to ranking based on explicit client ratings 

has been called critical surfer model in contrast with 

random surfer model based on hyperlinks and intentional 

surfer model based on actual visits [41].  

Yang and Cemerlic [44] discusses the application of 

Dirichlet reputation to sharing resources among unknown 

peers in a collaborative environment, to minimize risk in 

usage control. Each requestor is evaluated for its 

suitability as a collaborator on the basis of directly 

observed behavior and (possibly discounted) peer 

recommendations (shared regularly among neighbors). 

The Dirichlet distribution is used to characterize multiple 

dimensions of an interaction such as being friendly, 

selfish, malicious, etc. The paper does not however 

explicitly specify deviation test or decision thresholds for 

multi-valued trust metric or choice of window-size for 

dealing with varying trustworthiness.  

Reece et al. [45] proposes a probabilistic approach to 

computational trust for multi-dimensional contracts with 

correlated dimensions (e.g., timeliness, quality of service, 

quantity, etc.) The work demonstrates that taking into 

account correlation among different dimensions gives 

superior trust estimates and makes it robust with respect 

to rumors
16

.  Specifically, tracking provenance of 

recommendation and separating recommendations as 

private and shared can avoid double counting in 

decentralized reputation systems. These ideas can also be 

applied to other frameworks such as Thirunarayan et al. 

[1].  

Fung et al. [46] adapts Dirichlet-based trust management 

to collaborative host-based intrusion detection networks 

(HIDN) (i) to detect intrusions such as worms, viruses, 

denial-of-service attacks, malicious logins, etc., (ii) to 

detect malicious/compromised nodes, and (iii) to improve 

security. For this purpose: 

(a) It segregates HIDN nodes into two lists: probation
17

 

list and acquaintance list, to ensure that 

recommendations are sought only from (mature) 

nodes with some track record. It length limits these 

lists using trust value and associated confidence for 

scalability reasons. 

(b) It uses both intrusion consultations 

(recommendations) and (novel) test messages to 

assess trustworthiness. The latter messages are 

“bogus” requests of known type used as gold 

standard to assess trustworthiness of a response, and 

effectively, the responder. 

(c) It uses Dirichlet-based multi-level trust model with 

forgetting factor, where the experience level is 

determined by discretizing satisfaction feedback 

computed from expected answer, received answer, 

and for a test message, its difficulty level. 

(d) It secures the trust system against well-known 

attacks. Security against Sybil attack requires 

additional authentication mechanism, while 

probation list and forgetting factor improves 

robustness against newcomer attack and betrayal 
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(sleeper) attack respectively. Dynamic test message 

rate secures against collusion (bad-mouthing) and 

inconsistency (on-off) attacks. Specifically, test 

message rate is increased when a node starts 

behaving dishonestly or has higher trust uncertainty. 

6.6 Additional Sample Applications of Trust 

in Collaborative Environments 

Grid and P2P computing systems enable sharing of 

computing resources. Traditional techniques to secure 

these systems include sandboxing, encryption, and other 

access control and authentication mechanisms. As 

discussed in Azzedin and Maheswaran [47], trust 

information can be incorporated into these systems to 

specify consumer preferences and requirements regarding 

resources and their producers for an application, yielding 

trust-aware resource management systems. Scheduling 

algorithms in such systems face additional load balancing 

challenges to deal with trust constraints. Azzedin and 

Maheswaran [48] evaluates a trust model for P2P systems 

that (i) supports multi-level contextual trust, (ii) 

distinguishes direct/functional and indirect/referral trust, 

(iii) captures dynamism through temporal decay, and (iv) 

successfully detects “bad” domains. Azzedin and Ridha 

[49] investigate “honesty checking schemes” for 

detecting bogus recommendations and assessing 

recommenders. This is analogous to detecting bad-

mouthing and ballot-stuffing attacks. They also consider 

recommenders that are inconsistent, that is, change their 

recommendation strategy. This is analogous to detecting 

sleeper and on-off attacks.  

 

Bessis et al. [50] and Brown et al. [51] propose a trust-

based cooperative grid  communities  using self-

led critical friend model. Functional trust in a node is 

obtained by taking the average of the product of 

functional trust in the node from a  common neighbor 

with the latter’s referral trust. The trust is decayed by 

specifying half-life. Critical friends of a node are 

neighbors that have a trust score higher than a context-

determined threshold. These are used to grow critical 

friends’ community for resource sharing and job 

scheduling. 

 

Trust is crucial for collaboration in pervasive 

environments [52] where an agent may encounter other 

agents in a distributed and possibly hostile environment. 

In Ajayi et al. [53], the access control policy in a 

distributed environment is a function of inter-

organizational trust. Specifically, the Dynamic Trust 

Negotiation (DTN) model supports dynamic allocation of 

security policies in collaborative environments. With 

increased growth of Virtual Organizations (VO) as a 

result of geographically fragmented, networked and 

independent organizations, resources such as IT and 

humans are shared by these organizations [54]. Trust 

plays an important role in assessing risks and choosing 

best collaborators. Trust has been a focus of research on 

virtual collaboration in distributed teams, e-commerce, e-

learning, and telemedicine. Interpersonal trust is also 

critical for cooperation among teams of scientists, 

technologists, engineers, and managers.  
 

Winkler et al. [27] present taxonomy of trust indicators 

(analogous to trust scope in Section 4) relevant to 

reputation of VO. Specifically, they formalize a Bayesian 

networks approach to reputation for trust indicator 

aggregation and trust update with temporal decay. 

 

There is contemporary interest in gleaning interpersonal 

trust from physical, linguistic, and behavioral features 

available through interactions, and influencing 

trustworthiness by manipulating/adapting external 

presentation and perception [15]. For example, van’t 

Wout and Sanfey [55] illustrates the effect of facial social 

cues on perceived trustworthiness and eventually on 

strategic decision making, while Wang and Emurian [56] 

explores characteristics that influence online trust 

formation, and applies that for the design of trust-

inducing features of e-commerce Websites. The study of 

cross-cultural differences in trustworthiness qualities and 

trust thresholds to better understand what aspects 

improve influence and what aspects flag manipulation is 

gaining importance is today’s well-connected world. 

 

The research challenges and directions outlined above are 

applicable to distributed collaborative systems because 

the collaborators that provide content and services are 

often remote from end-users and partners, and trust 

inference is essential for basing decisions in the absence 

of direct knowledge about each other.  

 
Rotter [57] defines interpersonal trust as expectancy held 

by an individual or a group that the word, promise, verbal 

or written statement of another individual or group can be 

relied on. He explores what personal traits, such as 

religious beliefs, age, need, and gullibility, can be used to 

predict trustworthiness, and how trust and knowledge of 

deception-related situations can influence specific 

behaviors in a given situation.    Yakovleva et al. [58] 

investigates interpersonal trust in various dyadic 

relationships such as virtual dyads vs co-located dyads, 

sheds light on the reciprocal influences of trust and 

empirically shows characteristics that determine 

trustworthiness (such as ability, integrity, and 

benevolence). It also shows that initial trust may vary for 

individuals based on propensity to trust, and in 

collaborative environments, reciprocal effects influence 

trust in dyadic relationships. 

   



McKnight et al. [59] discuss multidimensional nature of 

trust in e-commerce. For instance, they distinguish trust 

in a vendor to deliver on commitments, from trust in 

vendor's ethical use of consumer data, to trust in Internet 

communication being secure. (Our ontology tries to 

accommodate such distinctions using trust scope.)  It also 

explains and illustrates, in detail,  the nature of initial 

trust in an unfamiliar trustee, factors that influence trust 

formation such as characteristics of a trustee (such as 

competence and integrity) and trustor's  disposition  to 

trust  (such as faith in humanity and benevolence). 

 

Deception is the betrayal of trust, and ironically, trust 

makes us prone to deception. Knowing what features are 

used to glean trustworthiness can also assist in avoiding 

detection while deceiving. Deception is an important 

issue in the context of e-commerce, both from the buyer's 

perspective (caveat emptor) and from the seller's 

perspective (caveat venditor/mercator). According to 

Castelfranchi and Tan [60], in hybrid situations where 

artificial agents interact with human agents, it is   

important that artificial agents can reason about the 

trustworthiness and deceptive actions of their human 

counter parts. In fact, agents in virtual communities are 

and will be designed and trained to deceive, and people 

will be deceived by and will deceive artificial agents. 

Lappas [61] regards writing fake reviews as a form of 

attack on reputation-based system and provides an 

attacker's perspective on creating authentic-looking and 

impactful reviews (that can harm or boost an item's 

reputation as desired). Lappas [61] formalizes and 

evaluates impact and authenticity of a review (the latter 

in terms of the three factors -- stealth (which is the ability 

to blend in), coherence (which refers to the consistency 

between numeric/star-rating and the textual description) 

and readability (measured using Flesh-Reading Ease 

formula)).  Anantharam et al. [62] discusses a scalable 

and adaptive machine learning approach to detect 

topically anomalous tweets that propagate self-serving 

content using trending topics. 

 

7. CONCLUSIONS 
 

In this work, we have provided simple examples to 

motivate practical trust issues, explained salient features 

that characterize trust and distinguished it from related 

concepts such as trustworthiness, reputation, security, 

belief, etc. We have also discussed our trust ontology to 

situate different approaches in the literature, and showed 

illustrative examples of gleaning trustworthiness. Finally, 

we touched upon some research challenges for modeling 

trust and inferring trustworthiness in the context of 

interpersonal, sensor and social networks, and 

collaborative systems.  

 

Due to the practical significance of Bayesian approaches 

to automatic trust prediction, we have presented a 

comparative analysis of various approaches to gleaning 

trustworthiness in machine networks (including ad hoc 

mobile networks, sensor networks, etc.) and their 

robustness to well-known attacks. We have focused on 

different trust metrics and types (functional vs. referral), 

data structures to represent trust networks and related 

trust information, Beta-PDF and Dirichlet distribution for 

direct trust computation, trust models for trust 

propagation and evolution in response to different 

behaviors. We expect comparative analysis to spur 

development of expressive trust networks that make 

explicit various choices or their resolutions objectively. 

Ultimately, the holy grail of trust research is to develop 

expressive trust frameworks that have both 

declarative/axiomatic and computational specification, 

and to devise methodologies for instantiating them for 

practical use, by justifying automatic 

trust/trustworthiness inference in terms of application-

oriented semantics of trust.   

 

ACKNOWLEDGEMENT 

 
We thank the reviewers for their insightful suggestions 

that have improved the organization and presentation of 

our work. 

 

REFERENCES  
 

[1] K. Thirunarayan, D. K. Althuru, C. A. Henson, and A. P. 

Sheth, “A Local Qualitative Approach to Referral and 

Functional Trust”, The 4th Indian International 

Conference on Artificial Intelligence (IICAI-09), pp. 574-

588, December 2009. 

[2] K. Thirunarayan and R. Verma. “A Framework for Trust 

and Distrust Networks”, Web 2.0 Trust Workshop 

(W2Trust), June 2008. 

[3] S. P. Marsh, “Formalising Trust as a Computational 

Concept”, Ph.D. Dissertation, University of Stirling, 

1994. 

 

[4] T. Grandison, and M. Sloman: “A Survey of Trust in 

Internet Applications”, IEEE Communications Surveys 

and Tutorials 3(4), pp. 2-16, 2000. 

 

[5] D. Artz, and Y. Gil: “A Survey of Trust in Computer 

Science and the Semantic Web”, J. Web Semantics. 5(2), 

pp. 58-71, 2007. 

 

[6] A. Jøsang, R. Ismail, and C. Boyd. “A Survey of Trust 

and Reputation Systems for Online Service Provision. 

Decision Support Systems”, 43(2), pp. 618-644, 2007. 

 

[7] H. Yu, Z. Shen, C. Miao, C. Leung, and D. Niyato.  “A 

Survey of Trust and Reputation Management Systems in 



Wireless Communications”, Proceedings of the IEEE 98: 

10, pp. 1755-1772, 2010. 

 

[8] Sonja Buchegger, Jean Yves Le Boudec, “Performance 

Analysis of the CONFIDANT Protocol: Cooperation of 

nodes-fairness in dynamic ad-hoc networks”, Proceedings 

of the 3rd ACM International Symposium on Mobile Ad 

Hoc Network and Computing (MobiHOC 2002), 

Lausanne, Switzerland, pp. 226-236, June 2002. 

 

[9] Hussain, F.K.; Chang, E.; Hussain, O.K. “State of the Art 

Review of the Existing Bayesian-Network Based 

Approaches to Trust and Reputation Computation”, 

Second International Conference on Internet Monitoring 

and Protection (ICIMP 2007),  4 pages, July 2007. 

 

[10] Mohammad Momani and Subhash Challa, “Survey of 

Trust Models in Different Network Domains”, 

International Journal of Ad hoc, Sensor & Ubiquitous 

Computing, September 2010, Volume 1, Number 3. 

 

[11] Kannan Govindan and Prasant Mohapatra, “Trust 

Computations and Trust Dynamics in Mobile Adhoc 

Networks: A Survey”, IEEE Communications Surveys 

and Tutorials, pp. 279-298, 2012. 

 

[12] J. Golbeck, B. Parsia, and J. A. Hendler: “Trust Networks 

on the Semantic Web”, Cooperative Information Agents 

VII,  pp. 238-249, 2003. 

 

[13] J. Golbeck: “Computing and Applying Trust in Web-

based Social Networks”, Ph.D. Dissertation, University 

of Maryland, 2003. 

 

[14] K. Thirunarayan and P. Anantharam, “Trust Networks: 

Interpersonal, Sensor, and Social,” In: Proceedings of 

2011 International Conference on Collaborative 

Technologies and Systems (CTS 2011), Philadelphia, 

Pennsylvania, USA, pp. 8 pages, May 23-27, 2011. 

 

[15] A. Russell, “TRUST Proposers’ Day Briefing IARPA-

BAA-10-03 Overview”, IARPA. 

[16] J. Golbeck, and J. Hendler, “Inferring binary trust 

relationships in Web-based social networks,” ACM 

Transactions on Internet Technology, pp. 497-529, Vol. 6, 

No. 4, 2006. 

[17] D. Gambetta, “Can We Trust Trust?,” In Trust: Making 

and Breaking Cooperative Relations (1988). 

[18] I. Bohnet, B. Herrmann, and R. Zeckhauser, “Trust and 

the Reference points for Trustworthiness in Gulf and 

Western Countries,” Vol. 125, No. 2, pp. 811-828, May 

2010. 

[19] S. Brin and L. Page, “The Anatomy of a Large-Scale 

Hypertextual Web Search Engine,” Computer Networks, 

Vol. 30, No. (1-7), pp. 107–117, 1998.  

[20] P. Anantharam, C. A. Henson, K. Thirunarayan, and A. P. 

Sheth, “Trust Model for Semantic Sensor and Social 

Networks: A Preliminary Report,” National Aerospace & 

Electronics Conference (NAECON), Dayton Ohio, July 

2010. 

[21] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, 

“Propagation of trust and distrust,” The 13th international 

Conference on World Wide Web (WWW '04), pp. 403-

412, 2004. 

[22] R. C. Mayer, J. H. Davis, and F. D. Schoorman, “An 

Integrative Model of Organizational Trust”. Academy of 

Management Review, 20,   pp. 709-734, 1995.  

 

[23] S. Ganeriwal, L. Balzano, and M. B Srivastava, 

“Reputation-based Framework for High Integrity Sensor 

Networks”, ACM Transactions on Sensor Networks 

(TOSN), Vol. 4, Issue. 3, pp. 1-37, June 2008. 

[24] M. K. Denko, and T, Sun: “Probabilistic Trust 

Management in Pervasive Computing”. EUC(2) 2008: 

610-615. 

 

[25] Y. Sun,   W. Yu,   Z. Han, and K.J.R Liu, “A Trust 

Evaluation Framework in Distributed Networks: 

Vulnerability Analysis and Defense Against Attacks”, In: 

Proceedings of IEEE INFOCOM ’06, Barcelona, Spain, 

Apr. 2006. 

[26] A. Jøsang. “Fission of Opinions in Subjective Logic”, 

The 12th International Conference on Information Fusion 

(FUSION 2009), Seattle, July 2009. 

 

[27] Till J. Winkler, Jochen Haller, Henner Gimpel, Christof 

Weinhardt, “Trust Indicator Modeling for a Reputation 

Service in Virtual Organizations”, ECIS 2007, pp. 1584-

1595. 

 

[28] C. Henson, K. Thirunarayan, A. Sheth. “An Ontological 

Approach to Focusing Attention and Enhancing Machine 

Perception on the Web”. Applied Ontology, vol. 6(4), pp. 

345-376, 2011. 

[29] “Trusted Perception Cycle” [Demo], Available: 

http://www.youtube.com/watch?v=lTxzghCjGgU  

(accessed 10/23/2012) 

[30] Sai T. Moturu and Huan Liu. “Quantifying the 

Trustworthiness of Social Media Content”, Distributed 

and Parallel Databases,Vol. 29, No. 3, pp. 239-260, 2011. 

[31] M. d'Aquin, S. Elahi, and E. Motta, “Semantic 

monitoring of personal web activity to support the 

management of trust and privacy,” SPOT 2010: 2nd 

Workshop on Trust and Privacy on the Social and 

Semantic Web, Heraklion, Greece, May 2010. 

[32] U. Kuter and J. Golbeck, “Semantic Web Service 

Composition in Social Environments,” 8th International 

Semantic Web Conference, ISWC 2009, Vol. 5823, pp. 

344-358, Chantilly, VA, USA, October 2009. 

[33] P. Massa and P. Avesani, “Trust-aware recommender 

systems”, ACM Conference on Recommender Systems 

http://www.youtube.com/watch?v=lTxzghCjGgU


(RecSys, 2007), pp. 17-24, 2007. 

[34] Y. L. Sun, W. Yu, Z. Han, and K. J. R. Liu, “Information 

Theoretic Framework of Trust Modeling and Evaluation 

for Ad Hoc Networks”, IEEE Journal on Selected Areas 

in Communications, Vol. 24, Issue 2, pp.  305-316, Feb 

2006.  

[35] M. Richardson, R. Agrawal and P. Domingos, “Trust 

Management for the Semantic Web”, The Second 

International Semantic Web Conference, pp. 351–368, 

2003. 

[36] P. Massa,and P. Avesani, “Controversial users demand 

local trust metrics: an experimental study on 

epinions.com community”, The 25th American 

Association for Artificial Intelligence Conference, pp. 

121-126, 2005. 

[37] U. Kuter and J. Golbeck, “SUNNY: A New Algorithm 

for Trust Inference in Social Networks Using 

Probabilistic Confidence Models”, The Twenty-Second 

AAAI Conference on Artificial Intelligence, pp. 1377-

1382, Vancouver, British Columbia, Canada, July 2007.  

[38] V. G. Bintzios and T. G. Papaioannou and G. D. 

Stamoulis, “An Effective Approach for Accurate 

Estimation of Trust of Distant Information Sources in the 

Semantic Web”, Second International Workshop on 

Security, Privacy and Trust in Pervasive and Ubiquitous 

Computing (SecPerU 2006), pp. 69-74, Lyon, France, 

June 2006. 

[39] A. Jøsang and R. Ismail, “The Beta Reputation System”, 

The 15th Bled Electronic Commerce Conference, Bled, 

Slovenia, June 2002. 

[40] D. Quercia, S. Hailes, and L. Capra, “B-Trust: Bayesian 

Trust Framework for Pervasive Computing”, In: Lecture 

Notes in Computer Science, 2006, vol. 3986, pp. 298- 

312. 

[41] A. Jøsang, and J. Haller, “Dirichlet Reputation Systems”, 

The 2nd International Conference on Availability, 

Reliability and Security (ARES 2007), pp. 112-119, 2007 

[42] B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction 

to the Dirichlet Distribution and Related Processes”, 

UWEE Tech Report UWEETR-2010-0006. 

[43] T. J. O'Donnell, and N. D. Goodman, and Andreas 

Stuhlmueller, and the Church Working Group, “Models 

with Unbounded Complexity”, Probabilistic Models of 

Cognition Tutorial. 

[44] L. Yang and A. Cemerlic, “Integrating Dirichlet 

reputation into usage control”, In Proceedings of the 5th 

Annual Workshop on Cyber Security and Information 

Intelligence Research: Cyber Security and Information 

Intelligence Challenges and Strategies (CSIIRW '09), 

Frederick Sheldon, Greg Peterson, Axel Krings, Robert 

Abercrombie, and Ali Mili (Eds.). ACM, New York, NY, 

USA, Article 62 , 4 pages, 2009. 

[45] S. Reece, A. Rogers, S. Roberts, and Nicholas R. 

Jennings, “Rumours and Reputation: Evaluating Multi-

dimensional Trust within a Decentralised Reputation 

System”, Proceedings of the 6th international joint 

conference on Autonomous agents and multiagent 

systems (AAMAS '07), Article 165, 8 pages, 2007. 

[46] C. J. Fung,   J. Zhang,   I. Aib, and R. Boutaba, 

“Dirichlet-Based Trust Management for Effective 

Collaborative Intrusion Detection Networks”, Computer 

Engineering, 8(2), 79-91, 2011. 

[47] F. Azzedin, and M. Maheswaran: “Integrating Trust into 

Grid Resource Management Systems”, ICPP 2002, pp. 

47-54, 2002. 

 

[48] F. Azzedin and M. Maheswaran: “Trust Modeling for 

Peer-to-Peer Based Computing Systems”, IPDPS 2003, 

10 pages, 2003. 

 

[49] F. Azzedin and A. Ridha: “Feedback Behavior and its 

Role in Trust Assessment for Peer-to-Peer Systems”, 

Telecommunication Systems 44(3-4), pp. 253-266, 2010. 

 

[50] N. Bessis, Y. Huang, P. Norrington, A.  Brown, P. 

Kuonen,  and B. Hirsbrunner, “Modelling of a Self-led 

Critical Friend Topology in Inter-cooperative Grid 

Communities”, International Journal of Simulation 

Modelling Practice and Theory, Elsevier,   Volume 19, 

Issue 1,   ISSN: 1569-190X, pp. 5-16, 2011. 

 

[51] A. Brown, P. Sant, N. Bessis, T. French and C. Maple, 

Modelling “Self-led Trust Value Management in Grid 

and Service Oriented Infrastructures: A Graph Theoretic 

Social Network Mediated Approach”, International 

Journal of Systems and Service Oriented Engineering, 

IGI, Volume 1, Issue 4, ISSN: 1947-3052, pp. 1-19, 

2010. 

 

[52] V. Cahill, B. Sh, E. Gray, N. Dimmock, A. Twigg, J. 

Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, C. 

Bryce, G. D. M. Serugendo, J.-marc Seigneur, M. 

Carbone, K. Krukow, C. Jensen, Y. Chen, and M. Nielsen, 

“Using Trust for Secure Collaboration in Uncertain 

Environments”, IEEE Pervasive Computing, Volume 2, 

pp. 52-61, 2003. 

 

[53] O. Ajayi, R. O. Sinnott, and A. Stell, “Trust Realisation 

in Multi-domain Collaborative Environments”, The 6th 

IEEEACIS International Conference on Computer and 

Information Science ICIS, pp. 906-911, July 2007.  

 

[54] K. Michel, L. Romain, B. Francois, and B. Abdelmalek, 

“A Trust-based Virtual Collaborative Environment”, 

Journal of Digital Information Management, Source 

Volume: 6 Source Issue: 5, Oct. 2008. 

 

[55] M. van ’t Wout,  and A. G. Sanfey, Friend or Foe: “The 

Effect of Implicit Trustworthiness Judgments in Social 

Decision-Making”. Cognition, 108, pp. 796-803, 2008. 

 

[56] Y. D. Wang, and H. H. Emurian, “An Overview of 



Online Trust: Concepts, Elements, and Implications”. 

Computers in Human Behavior, pp. 105-125, 2005. 

[57] J. B. Rotter, “Generalized Expectancies for Interpersonal 

Trust”, American Psychologist, 26, pp. 443-452, 1971. 

 

[58] M. Yakovleva, R. Reilly, and R. Werko. “Why do we 

Trust? Moving beyond Individual to Dyadic 

Perceptions”, Journal of Applied Psychology, 95, pp.  75-

91, 2010. 

 

[59] D. McKnight, V. Choudhury, and C. Kacmar, 

“Developing and Validating Trust Measures for E-

commerce: An Integrative Typology”, Information 

Systems Research, 13, pp. 334-359, 2002.  

 

[60] C. Castelfranchi and Y. H. Tan: “The Role of Trust and 

Deception in Virtual Societies, International Journal of 

Electronic Commerce”, Vol. 6, No. 3, pp. 55-70, 2002. 

 

[61] T. Lappas, “Fake Reviews: The Malicious Perspective”, 

In: Proceedings of 17th International Conference on 

Applications of Natural Language to Information 

Systems, pp. 23-34, June 2012.  

 

[62] P. Anantharam, K. Thirunarayan, and A. Sheth, “Topical 

Anomaly Detection for Twitter Stream”, In the 

Proceedings of ACM Web Science 2012, pp. 11-14, June 

2012. 

 

 

 

 

 

 

 

 

 

 

 


