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Locating emergency service facilities is a challenging problem. Planners do not know specifically where
emergencies will occur and, therefore, struggle to find a location that effectively ensures that the risk of
poor service to any specific emergency is minimized. In this paper, we study the problem where locations
of each demand point (emergency occurence) are random. Our objective is to minimize the expected
maximum rectilinear distance from the facility to the demand points. This problem has practical impor-
tance in public sector as it aims to minimize the expected maximum risk when locating an emergency
response facility. We start with a one dimensional problem and extend the results to the more complex
two dimensional case. We present some properties of the problem along with examples for special cases.
We propose a simulation approach to solving complex two dimensional cases and present simulation
results for general cases to illustrate the problem and provide insight into solutions. We show that the
simulation approach provides solutions very close to optimal for the linear case and suggest that it
may provide valuable insight into the location selection system.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction case where some of the parameters and/or variables are uncertain.
The location of emergency service facilities has received consid-
erable research attention given its societal importance. Improving
the decision process for locating these facilities could be extremely
valuable. These problems have historically been primarily mod-
elled as a minimax facility location problem. The objective in the
minimax format has been to locate a new facility such that the
maximum distance to the areas requiring emergency services is
minimized. The objective function is based on the objective that
even the farthest and/or the least important client should get a rea-
sonable level of service by attempting to sensure that any emer-
gency is addressed in a reasonable time. There have been a
number of different variations of the objective function applied
to the problem. Research has also addressed the location of an
emergency service facility on networks, on the plane, location on
the restricted plane and others. Another variation is the case where
demand points have different weights which can reflect different
risk (either frequency or severity of an emergency) or different pri-
ority for response.

We propose an approach that explicitly addresses the uncer-
tainty with respect to where an emergency will occur by minimiz-
ing the maximum risk through the minimization of expected
maximum distance to emergencies. Uncertainty is a real issue for
many facilities problems generally and for emergency facility loca-
tion problems specifically. There has been some research into the
ll rights reserved.
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It is clear that the specific location of a crisis requiring emergency
service cannot be known in advance. Explicitly accounting for that
uncertainty may improve the performance of a practical applica-
tion of a problem and, therefore, improve response outcomes when
a facility is located.

Consider a simple example of locating a fire hall which will
serve a number of residential neighborhoods and industrial and
commercial areas. In some cases there may be overlap between
neighborhoods and commercial areas. A fire or other emergency
could occur anywhere within these regions. In the context of the
model we introduce, the boundaries of the neighborhoods are
the parameters of the probability distribution of where the emer-
gency occurs in the neighborhood. We use a bivariate uniform
for our work. Weights may reflect both the severity of a potential
problem (higher risk industrial sites, for example) or the probabil-
ity of a potential problem which can vary due to factors such as
population density. This real life variability could be more robustly
addressed by incorporating uncertainty into the model. We pro-
pose an approach to this problem that minimizes the expected
maximum distance rather than minimizing the maximum ex-
pected distance. This distinction is important. Our approach mini-
mizes the expected worst case in terms of emergency service. This
minimizes the maximum risk. Previous approaches have consid-
ered the expected distances. This contribution provides an alterna-
tive approach to this real-life problem. This work is an extension of
the work of Carbone and Mehrez (1980) and Mehrez and Stulman
(1984). They introduce the simplest case in which a number of de-
mand points with equal weights occupy the same probabilistic
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location. We consider locating a server facility on the plane to serve
n demand regions or neighborhoods whose locations follow bivar-
iate uniform distributions. We want to locate this facility minimax
to this probabilistic demand points in the area to minimize the ex-
pected maximum distance.

The paper is laid out as follows. In Section 2, we provide an
overview of the literature into facility location problems that incor-
porate uncertainty. Then we define our minimization problem on
the line in Section 2.1. We explore two different cases of the prob-
lem and present detailed examples for illustration. The problem on
the line is already very difficult to solve analytically. Therefore, in
Section 3, we tackle the planar version of the problem using a sim-
ulation approach. The simulation approach, while not proven ana-
lytically optimal, provides excellent results. We also evaluate and
report approximate Expected Value of Perfect Information (EVPI)
values for different numbers. The EVPI approach gives us an upper
bound on the improvement we can make as we better understand
the risk in individual demand locations. Finally, Section 4 discusses
key conclusions and outlines a number of future research
directions.

 

 

2. Previous research on facility location under uncertainty

2.1. Planar facility location problems under uncertainty

Planar facility location problems under uncertainty have been
studied under two categories. The first category deals with prob-
lems that contain random parameters which follow certain proba-
bilistic distributions. For example the weights attached to demand
points could be associated with a known probability distribution.
Various objective functions are considered. Facility layout prob-
lems with random parameters are also included in this area
although the research on this topic is limited. The second category,
on the other hand, deals with so called robust facility location
problems where distributions of the random parameters are un-
known. This type of parameters are either represented by interval
values or by parameter estimators. Objective functions are de-
signed in such a way that a minimal change (robustness) in the
objective function for a given change in the parameters is sought.
In Table 1 we provide the cited research on planar facility location
problems under uncertainty, classified by their main
characteristics.
Table 1
Planar facility location problems under uncertainty.

Uncertain parameter Underlying
distribution

Objective function

Demand weights Multivariate normal Expected minisum

Location of demand points Bivariate normal Expected minisum
Location of demand points Standard normal Min expected maximum
Demand weights Multivariate normal Expected minisum
Location of demand points Bivariate uniform Max expected minimum

Location of demand points Arbitrary Min expected maximum
Demand weights Triangular fuzzy Maximin aspiration level
Existence of demand points Binomial Min expected maximum
Demand weights Uniform Minimax probability with

threshold
Location of demand points Uniform Expected minimax
Product mix and product

demand
Discrete Expected minisum

Demand weights Unknown Minimax regret (Robust)
Demand weights and locations Unknown Minimax regret (Robust)
Demand weights Arbitrary Minimax probability with

threshold
Wesolowsky (1977a) was one of the earliest papers that consid-
ered a facility location problem under uncertainty. The author con-
sidered a problem of locating a facility on a line in the presence of n
demand points associated with probabilistic weights that follow
the multivariate normal distribution. The Weber objective was
considered. Because the problem is one-dimensional, the solution
method is the same for both rectangular and euclidean distances.
The probability of a facility being located on any point on the line
is found. As in the result of the Hakimi property for the p-median
problems, it is shown that only the locations at demand points
have nonzero probabilities for the optimal location of the facility.
The author also determined the EVPI (Expected Value of Perfect
Information) for the problem. EVPI is defined as the difference in
costs between the best location and the location found by using
the expected values of the weights. Later, Drezner and Wesolowsky
(1981) extended the work of Wesolowsky (1977a) by considering a
similar problem on the plane with p-norm distances. The property
found in Wesolowsky (1977a) is no longer valid for this general
case. Which means that any point on the plane may have nonzero
probability of a facility being located there.

In another study, Wesolowsky (1977b) proposed a solution to
the single facility location problem with rectangular distances in
which the locations of demand points have random coordinates that
follow a bivariate normal distribution. It is shown that the objective
function, which is the expected sum of the weighted rectilinear dis-
tances in x and y coordinates, is separable, and is thus not affected by
correlation of demand point coordinates. Because the objective
function is unimodal along each axis, the author proposed a rather
easy method in which one can take the derivative of the objective
function for each axis and apply an interval bisection method to find
the values of coordinates that make the derivative zero.

There is a number of facility location papers that are using the
minimax criterion. Carbone and Mehrez (1980) was the first that
studied the problem of minimizing the expected maximum
distances where the coordinates of the demand points (x1,x2,
. . . ,xn,y1,y2, . . . ,yn) are identical, pairwise independent, and nor-
mally distributed random variables with mean 0 and variance 1.
The authors showed that in this problem, the optimal location of
the single facility is at the (0,0) point. Later, for the same problem,
(Mehrez and Stulman, 1984) proposed a general statement that if
the distance distribution between any demand point and a facility
placed at coordinate (x,y) dominates the distribution of the
Distance
norm

Space Study

Rectilinear One
dimensional

Wesolowsky (1977a)

Rectilinear Planar Wesolowsky (1977b)
Rectilinear Planar Carbone and Mehrez (1980)
p-norm Planar Drezner and Wesolowsky (1981)
Rectilinear One

dimensional
Mehrez et al. (1983)

Arbitrary Planar Mehrez and Stulman (1984)
Euclidean Planar Bhattacharya and Tiwari (1994)
Euclidean Planar Berman et al. (2003a)
Euclidean Planar Berman et al. (2003b)

Euclidean Planar Foul (2006)
Euclidean Planar layout Benjafaar and Sheikhzadeh

(2000)
Rectilinear Planar Carrizosa and Nickel (2003)
Rectilinear Planar Averbakh and Bereg (2005)
Arbitrary Planar Pelegrin et al. (2008)
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distance between the same point and the facility placed at any
other feasible coordinate, then (x,y) will be the dominating point
hence provides an optimal solution to the problem. A necessary
and sufficient condition for distribution F(x) to dominate distribu-
tion G(x) is that F(x) 6 G(x) for all x. Only certain types of problems
can be solved using this method under stringent assumptions, and
actual values of objective functions may require extensive calcula-
tions. Berman, Drezner, and Wesolowsky (2003a) approached the
same expected maximum objective from a different perspective.
In their model, the problem is designed to minimize the expected
maximum distances where for each demand point, there is a prob-
ability associated with its existence. In their words, the discussed
model aims for minimizing expected ‘undesirability’. The model
also separates itself from the minimax model by using expectation
to balance ‘damage equity’ (using information from all demand
points in the optimum solution).

Berman, Wang, Drezner, and Wesolowsky (2003b) studied
extensively a probabilistic version of the weighted minimax loca-
tion problem on the plane where the weights of the demand points
are uniformly distributed. The objective of their problem is to min-
imize the probability that the maximum distance to all demand
points is greater than or equal to some pre-specified threshold va-
lue T. The authors proved that the problem is convex for certain
parameters of the uniform distributions therefore it can be solved
using standard optimization methods.

Foul (2006) studied a similar problem where the demand points
have probabilistic locations that follow a bivariate uniform distri-
bution. The best location for a facility is determined under the
objective such that the maximum expected weighted distance to
all probabilistic demand points is minimized.

And lately, Pelegrin, Fernandez, and Toth (2008) argued that the
1-center problem on the plane with probabilistic weights has only
been studied for a number of specific probability distributions and
distance measures. The authors proposed a general framework
where weights are associated with arbitrary probability distribu-
tions and distances are measured by any distance norm. Two objec-
tive functions are evaluated. The first maximizes the covering
probability for all demand points within a given threshold, while
the second satisfies a minimum allowed coverage probability. Two
algorithms that provide global optimal solutions are tested with dif-
ferent values of parameters and both found to be highly efficient.

Mehrez, Sinuanystern, and Stulman (1983) analyzed the prob-
lem of locating a facility on a line, in the presence of n hazardous
points that have probabilistic locations. The objective is to maxi-
mize the expected minimum distance from these hazardous
points. The authors showed that even for n = 2, acquiring an analyt-
ical result is cumbersome, therefore suggested a simulation model
for solving the problem.

As a different approach to handle uncertainty, Bhattacharya and
Tiwari (1994) presented a cost minimization model to locate mul-
tiple facilities on the plane where the cost per unit distances are
not known precisely. Uncertainty in the cost is handled through
the use of fuzzy numbers. The fuzzy model is tranformed into a
crisp model by generating some aspiration levels (goals) by using
different levels of the fuzzy numbers. A suitable solution is deter-
mined through finding a compromise solution which maximizes
the minimum aspiration level.

When it comes to the probabilistic facility layout problems, the
research is very limited. One of the important papers published in
this area is Benjafaar and Sheikhzadeh (2000). The authors pro-
posed a model for the design of plant layouts under uncertainty.
It is argued in the paper that in manufacturing environments where
product variety is high, using functional layouts causes inefficiency.
Thus there is a need for probabilistic models that make the process
more flexible and more efficient. The authors presented a probabi-
listic layout model for the design of plant layouts which considers

 

 

random product mix and product demand. Demand for each prod-
uct is represented by a finite discrete distribution where demands
can be correlated or independent from each other. It is also consid-
ered that there might be a duplicate or duplicates of the same
department in the same facility which is not possible in a job shop
layout. Based on a combination of different products and demands,
a set of scenarios with a probability of occurrence is considered. The
authors used a heuristic approach first to find a minimum cost flow
allocation between departments in a fixed layout, then to find a
minimum cost layout with fixed flow allocation.

Robust models are used when uncertainty can not be defined by
known probability distributions. Robust facility location problems
differ from probabilistic location problems where the latter have
uncertainty associated with some distribution functions with
known parameters, but the former have uncertainty associated
with no known distribution functions hence no known parameters.
Because decisions are made in the presence of unknown parame-
ters, and estimation of parameters need to be used, the researchers,
in general, aim to find a minimax regret location in order to mini-
mize the maximum loss. Research in the area is recent and mostly
on the discrete facility location problems.

Carrizosa and Nickel (2003) considered the robust planar facil-
ity location problem when uncertainty is high in demand weights
and only estimations of the weights are provided. The authors de-
fined the robustness of the new facility location as the minimum
increase in the weights needed to exceed a given threshold on cost.
The objective is then to find a location that maximizes the robust-
ness to get the most robust location.

In the case of rectilinear distances and uncertain weights and
coordinates of demand points, the planar minimax regret location
problems for both median and centre objectives are investigated
recently by Averbakh and Bereg (2005). The authors proposed
polynomial algorithms for 1-median and 1-centre problems. For
a state-of-the-art literature review of facility location problems
in general or under uncertainty, the reader is referred to ReVelle
and Eiselt (2005) or Snyder (2006), respectively.

3. The problem on the line

We first consider the problem on the line. The problem can be
represented as;

VðxÞ ¼ min
x

E max
16j6n
fwjjXj � xjg

� �
ð1Þ

where Xj,j = 1, . . . ,n is a uniformly distributed random variable with
parameters (aj,bj) and wj is the weight for demand point j where
wj > 0. Clearly, since Xj is a random variable, wjjXj � xj will also be
a random variable. Let fZj

ðzÞ be the probability distribution function
(pdf) and FZj

ðzÞ be the cumulative distribution function (cdf) of
Zj = wjjXj � xj. fZj

ðzÞ will be one of the followings depending upon
the value of x.

If x < aj, fZj
ðzÞ is uniformly distributed with parameters

(wj(aj � x), wj(bj � x)). Then,

FZj
ðzÞ ¼

0; z < wjðaj � xÞ
z�wjðaj�xÞ
wjðbj�ajÞ

; wjðaj � xÞ 6 z 6 wjðbj � xÞ
1; z > wjðbj � xÞ

8>><
>>:

9>>=
>>;

ð2Þ

If x > bj, fZj
ðzÞ is uniformly distributed with parameters (wj(x � bj),

wj(x � aj)). Then,

FZj
ðzÞ ¼

0; z < wjðx� bjÞ
z�wjðx�bjÞ
wjðbj�ajÞ

; wjðx� bjÞ 6 z 6 wjðx� ajÞ
1; z > wjðx� ajÞ

8>><
>>:

9>>=
>>;

ð3Þ
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If aj 6 x 6 bj then,

FZj
ðzÞ ¼ PðwjjXj � xj 6 zÞ ¼

min bj � x; z
wj

� �
þmin x� aj;

z
wj

� �
bj � aj

ð4Þ

which can also be represented as;

FZj
ðzÞ ¼

2z
wjðbj�ajÞ

; z < wj minfbj � x; x� ajg
zþminfbj�x;x�ajg

wjðbj�ajÞ
; wj minfbj � x; x� ajg 6 z 6 wj maxfbj � x; x� ajg

1; z > wj maxfbj � x; x� ajg

8>><
>>:

9>>=
>>;
ð5Þ

Therefore,

fZj
ðzÞ ¼

2
wjðbj�ajÞ

; z<wj minfbj� x;x�ajg
1

wjðbj�ajÞ
; wj minfbj� x;x�ajg6 z6wj maxfbj� x;x�ajg

0; z>wj maxfbj� x;x�ajg

8>><
>>:

9>>=
>>;
ð6Þ

which is a general distribution with a histogram that looks like a
combination of two uniform distributions. Without loss of general-
ity, we call this distribution as ‘two-bin uniform distribution’.

We illustrate this distribution using following example. Con-
sider a demand point with a unit weight located on a line whose
location follows a uniform distribution with the parameters
U(2,5). For a given x = 4, the expected value for the two-bin uni-
form distribution (See Fig. 1) will be;

EZ1 ½Z� ¼
Z 1

0

2
3

zdzþ
Z 2

1

1
3

zdz ¼ 5
6

ð7Þ

This is also equal to the expected maximum distance for a given x,
because we consider only a single demand point. If there is more
than one point, we need to first find its cdf and then pdf in order
to find the expected value of the maximum distribution. Let Fmax(z)
be the cdf for the maximum distribution. Assuming that the distri-
butions of Xj’s are independent, we can write the following;

FmaxðzÞ ¼ PðMax 6 zÞ ¼ PðZ1 6 z; Z2 6 z; . . . ; Zn 6 zÞ

¼
Yn

j¼1

PðwjjXj � xj 6 zÞ ð8Þ

and then the pdf will be:

fmaxðzÞ ¼
@

@z
FmaxðzÞ ð9Þ

 

 

Fig. 1. Probability density function of Z1 for a given x.
3.1. Case 1: Demand points location distributed uniformly over same
range and weights equal 1

If there are n demand points located on a line with uniformly
distributed x-coordinates with the same parameters Xj � U(a,b)
and wj = 1, j = 1, . . . ,n, then the optimal x = x⁄ value for minimizing
the expected maximum weighted distance will be in the range
a 6 x 6 b. And we can write the cdf and pdf of the maximum distri-
bution as;

FMaxðzÞ ¼
minðb� x; zÞ þminðx� a; zÞð Þn

ðb� aÞn
ð10Þ

When x < (b � a)/2 then b � x > x � a which means that the pdf for
the maximum distribution will be;

fMaxðzÞ ¼

n2nzn�1

ðb�aÞn ; z < x� a

nðx�aþzÞn�1

ðb�aÞn ; x� a 6 z 6 b� x

0; z > b� x

8>><
>>:

9>>=
>>;

ð11Þ

Otherwise;

fMaxðzÞ ¼

n2nzn�1

ðb�aÞn ; z < b� x

nðb�xþzÞn�1

ðb�aÞn ; b� x 6 z 6 x� a

0; z > x� a

8>><
>>:

9>>=
>>;

ð12Þ

And then the Expected Value of this maximum distribution will be
as follows.

EMax½Z� ¼
2nðx�aÞnþ1þð�ðnþ1ÞxþaþbnÞðb�aÞn

ðnþ1Þðb�aÞn ; x < ðb� aÞ=2

2nðb�xÞnþ1þððnþ1Þx�an�bÞðb�aÞn
ðnþ1Þðb�aÞn ; x P ðb� aÞ=2

8<
:

9=
; ð13Þ

We need to find the x that minimizes this expected value. The fol-
lowing lemma will help finding the x.

Lemma 1. The Expected Value function is a piecewise non-linear
convex function of x when the underlying distribution is uniform and
a < x < b. Also the function has a minimum (not necessarily unique) at
(b � a)/2.
Fig. 2. Expected maximum function with n = 5 and n = 1000.
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2X

Fig. 3. Partitioning of x-axis.
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Proof. When a 6 x 6 (b � a)/2, EMax[Z] is a non-increasing function
of x. And when (b � a)/2 6 x 6 b, EMax[Z] is a non-decreasing func-
tion of x. Therefore, there exists a minimum at their intersection
where x⁄ = (b � a)/2. Also the second derivatives for the functions
are positive in this range which proves that the function is
convex. h

We demonstrate this result by considering another example
with 5 demand points located on a line with random x coordinates
following a uniform distribution with the same parameters U(2,5)
and wj = 1. Then the expected value function will take following
form as in the Fig. 2. If we increase the number of demand points
to 1000 then the piecewise nonlinear function of x for the expected
value of maximum distance gets a form close to a piecewise linear
function with the same minimizer x⁄.

 

 

3.2. Case 2: Demand points location distributed uniformly over
individual ranges and weights equal 1

We now assume now that the probabilistic demand points on
the line have equal weights but different location parameters. In
order to find an optimal point that minimizes the expected maxi-
mum distance, we make use of the property from the deterministic
minimax problem in the case that none of the extreme demand
points overlap with the other demand points. In other words, if
there exist extreme demand points that dominate the other de-
mand points, it is enough to consider only these demand points.
This is due to the fact that for the deterministic minimax problem,
when all demand point weights are equal to each other, we know
that only the extreme points play role in finding the minimax
point. This dominance result is proven by (Mehrez and Stulman,
1984) for general distributions. However, unfortunately, when
overlapping occurs, we cannot consider the non-overlapping ex-
treme parts as truncated extreme distributions that dominate
other demand points. Therefore, we need to determine the maxi-
mum distribution and its expected maximum distance function
of x for a given problem which is a tedious job even for a small
n. This expected maximum distance function overall in not convex
and, therefore, line search techniques will only provide a local opti-
mum value. We suggest a line partitioning procedure that divides
the x-axis into smaller ranges denoted by Xk, in which the distribu-
tion of each Zj will be the same hence the distribution of the max-
imum. In the worst case, the number of ranges is bounded by
O(2n(2n � 1)(n � 1)) = O(n3) where n is the number of demand
points.

As in the deterministic minimax location problem, optimal loca-
tion of the new facility will be in the convex hull (a line in this one
dimensional case) of the demand points. We illlustrate the solution
procedure in another example.

We now consider 2 demand points located on a line with ran-
dom x coordinates following a uniform distribution with the
parameters provided in Table 2. We want to find a point that min-
imizes the expected maximum distance to these two points.

In order to determine the distribution of each distance for a gi-
ven x value, we divide the x-axis into three main ranges divided by
dark lines as illustrated in the Fig. 3. For example, in the first range
(0 6 x < 2), fZ2 will follow the ‘two-bin distribution’ whereas fZ1 will
follow the uniform distribution. In order to find unique a FMax(z)
which does not change with the value of x, we need to further di-
Table 2
Parameters of the demand points.

j aj bj wj

1 2 8 1
2 0 4 1
vide this range into two sub-ranges (divided by light lines). Total
ranges add up to seven for this small example.

To illustrate the idea, let us consider the first range that con-
tains two sub-ranges X1, and X2. FZ1 and FZ2 for the first range
are as follows;

FZ1 ðzÞ ¼

z
3 ; z < ð2� xÞ
zþx�2

6 ; ð2� xÞ 6 z < ð8� xÞ
1; z P ð8� xÞ

8><
>:

9>=
>; ð14Þ
FZ2 ðzÞ ¼

z
2 ; z < ð4� xÞ
z�xþ4

4 ; ð4� xÞ 6 z 6 x

1; z P x

8><
>:

9>=
>; ð15Þ

Then the cdf for the maximum distribution will be,

FMaxðzÞ ¼ FZ1 ðzÞFZ2 ðzÞ: ð16Þ

To determine FMax(z) in this range, the functions x, (4 � x), (2 � x),
(8 � x) have to be sorted from the smallest to the largest when x
takes values between 0 and 2. Unfortunately, these functions do
not have the same ordering in the whole range 0 6 x 6 2 (See Fig. 4).

Therefore, we further divide this range into two as X1

(0 6 x < 1), and X2 (1 6 x < 2).
After finding the cdf of maximum distributions for each range,

we find the expected value for each range by,

E½Zmax�
x2Xk

¼
Z 1

0
z

@

@z
FmaxðzÞ

� �
dz ð17Þ

The calculation of expected values is an intensive process that is
done using Maple 10. Table 3 provides the expected values for the
all ranges.
Fig. 4. Comparison of break point functions.



Table 3
Expected maximum functions for example 3.

Range Expected maximum function

X1 5.05 � x
X2 5.00 � .83x � .17x2 + 0.056x3

X3 5.00 � .83x � .17x2 + 0.056x3

X4 6.50 � 2.33x + .33x2

X5 9.17 � 4.33x + .83x2 � 0.04x3

X6 10.05 � 5x + x2 � 0.056x3

X7 �1.94 + x

z

x

x
−8

x
−4

x
−2 x

Fig. 5. The Objective function for example 3.

1 http://www.palisade.com/RISKoptimizer/.
2
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This piecewise nonlinear function has a unique minimum at
x⁄ = 3.5. The objective value at this point is 2.417. Fig. 5 illustrates
the expected value function where 0 6 x 6 8.

Now we consider the question of how much we would gain if
we follow this wait-and-see approach. That is, we wait to observe
the actual location of the demand points and then decide on the
facility location. That value lets us calculate EVPI which is the dif-
ference in the expected cost of the best location (ECBL) without
knowing the exact locations of the demand points minus the ex-
pected cost with perfect information (ECPI) about the location of
the demand points. Therefore,

EVPI ¼ ECBL� ECPI ð18Þ

where,

ECBL ¼min
x

E max
j
ðjx� xjjÞ

� �
; ð19Þ

and

ECPI ¼ E min
x

max
j
ðjx� xjjÞ

� �� �
: ð20Þ

Clearly, ECBL = 2.417 which is the objective value of the expected
maximum function. In order to find the value of ECPI we will use
the closed form expression given by Elzinga and Hearn (1972) for
the objective of the deterministic minimax location problem, S⁄:

S� ¼ max
16j6n

xj � min
16j6n

xj

� �
=2:

Then, we can write ECPI as,

ECPI ¼ E½S�� ¼ E max
16j6n

xj

� �
� E min

16j6n
xj

� �� �
=2:
The exact value of ECPI can not be easily found even for a small
number demand points since it involves in determining difference
of the expected values of the extreme (minimum and maximum)
distributions of a number of uniformly distributed random vari-
ables. For this small example, we have found it using Maple 10 as
(91/18 � 35/18)/2 = 1.55.

Therefore EVPI = 2.417 � 1.55 = 0.912.
4. An approach to the problem on the plane

It is clear that, even for a small number of demand points, there
are significant difficulties in finding a solution for the problem on
the line analytically. The problem on the plane will be significantly
more difficult. Therefore,we employ a simulation approach to find
a good solution for the problems on the plane. Our simulation ap-
proach is twofold. First, we used a limited version of MS Excel add-
in called RISKOptimizer1 developed by Palisade decision tools com-
pany to determine the optimal value of ECBL. RISKOptimizer has
been used to solve a variety of optimization problems in a wide
range of industries including financial institutions, airlines and man-
ufacturing companies. The tool combines the Monte Carlo simula-
tion techniques with genetic algorithm heuristic for approximate
optimization of mathematical models with random variables. It gen-
erates random values in adjustable cells for random variables, runs a
Monte Carlo simulation, and finds the combination of values that
provides the optimal simulation results. Second we determine the
value of ECPI through another Palisade tool @Risk.2 @Risk performs
risk analysis using Monte Carlo simulation by generating possible
outcomes on a spreadsheet and gives details about how likely they
are going to occur by providing confidence intervals (CI) on them.
The main difference between RISKOptimizer and @ Risk is that the
former contains an optimization process but the later is a straight
simulation which simply generates random values according to their
distribution parameters.

We first validated the performance of RISKOptimizer and @Risk
by comparing their results with the analytical results of Example 3.
A screenshot showing the model to find the ECBL using RISKOptim-
izer along with the model settings is shown in Fig. 6. Fig. 7 is a
screenshot providing the @Risk result to determine the ECPI.

It can be seen from the figures, the best value found for ECBL
(2.4178) is very close to the true value (2.417) as the difference
is almost zero. Also the best value found for ECPI (1.5541) is almost
the same as the true value (1.5555).

We can conclude that, for practical purposes, simulation ap-
proach for emergency facility location problems is a valid heuristic
method that does not require heavy computations and can provide
very good results. Therefore, we now can perform simulation runs
for larger size planar problems using RISKOptimizer and compare
their results with the wait and see approach done again by simula-
tion using @Risk. The distribution parameters given in Table 4 are
used to generate the demand point locations used in the computa-
tional work. We first generate random numbers ai, bi, ci, and di and
then use these random numbers to generate demand point loca-
tions (xi,yi). We also choose to have equal weights for the demand
points for the sake of simplicity, but this is not necessary and hav-
ing different demand weights does not affect the simulation ap-
proach at all.

The results of the analysis of the problem on the plane are pre-
sented in Table 5. It can be seen from Table 5 that there is a de-
crease in EVPI with the increase in the number of demand points.
It is also clear that in the case of an emergency facility, once the
specific location of a ‘demand’ is known, the demand has passed.
http://www.palisade.com/risk/.

http://www.palisade.com/RISKoptimizer/
http://www.palisade.com/risk/


Fig. 6. A Screenshot for RISKOptimizer for Finding ECBL.

Fig. 7. A screenshot for @Risk for finding ECPI.

Table 4
Parameters for demand points.

ai bi ci di xi yi wi

U(0,0.5) U(0.5,1) U(0,0.5) U(0.5,1) U(ai,bi) U(ci,di) 1
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Notwithstanding the political difficulty in waiting to see where
emergencies will occur, the wait and see approach is clearly not
practical. It may make more sense, in the context of this problem,
to consider the parameters of the uniform distribution as the
boundaries of neighborhoods to be served by the emergency facil-
ity rather than a distribution that a single emergency will be drawn
from. That approach moots the ‘wait and see’ approach as it really
only evaluates a single occurrence (one specific emergency) rather
than how best to minimize the risk for the specific neighborhood,
particularly as the neighborhoods are bigger and, as a result, the n
is smaller. This is highlighted in the larger gaps between the sim-
ulation solution and the wait and see solution when n is smaller.



Table 5
Simulation Results.

n Probabilistic
objective

Wait and see
objective

Approximate
EVPI

% Approximate
EVPI

5 0.512 0.391 0.121 30.95
10 0.537 0.455 0.082 18.02
15 0.613 0.531 0.082 15.44
20 0.621 0.546 0.075 13.74
25 0.629 0.554 0.075 13.54
30 0.647 0.571 0.076 13.31
35 0.656 0.581 0.075 12.91
40 0.669 0.595 0.074 12.44
45 0.681 0.61 0.071 11.64
50 0.682 0.616 0.066 10.71
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In this case, the simulation approach, in the absence of a manage-
able analytical approach could provide solutions with less risk.

5. Conclusions

We present a risk minimization model as an approach to facility
location under uncertainty. This could be implemented in such
applications as the location of emergency response facilities. We
first present the problem on the line generally and in some specific
cases and outline the characteristics of the problem and ap-
proaches to solving the problem. The problem is very difficult to
solve analytically except for the smallest cases on a line. The prob-
lem on the plane is, therefore, extremely difficult to solve analyti-
cally. We suggest a simulation approach to solving the problem on
the plane. We also evaluate the expected value of perfect informa-
tion by solving the problem after a ‘wait and see’ approach which
solves the problem once the exact location of the random points
are known. Once a single demand point is manifest, the next one
is most likely to be somewhere else. Given the nature of the prob-
lem on the plane, and that each emergency or demand point is not
known in advance, using the simulation approach which explicitly
allows for the emergency or demand to appear anywhere in the de-
fined ‘neighborhood’ will provide a better and lower risk solution
to the problem.

We believe there are a number of opportunities to extend this
research. It would be interesting to undertake one or more case
studies to evaluate other distributions for specific neighborhoods.
It could also be interest to evaluate a combination of neighbor-
hoods and specific demand points. As an example, a large high risk
industrial facility could be modeled as a fixed demand point with a
risk weight while a residential or lower risk commercial or indus-
trial neighborhood could be represented by a distribution. It may
also be interesting to treat the weights as a random variable. We
recall that the weights are a measure of the relative risk of
emergency within different neighborhoods. That relative risk could
reflect either the frequency or severity of the emergencies within a
neighborhood, both of which clearly could have some uncertainty.

This problem may also be well suited to either nonparametric
analysis or the application of fuzzy analysis. The nonparametric
analysis could provide for sensitivity analysis and a more robust
location decision given uncertainty relative to the specifics of the
risk associated with different neighborhoods. The application of
fuzzy parameters instead of random variables has the potential
to simplify the problem and allow for the consideration of exten-
sions such as constraints on the location of the facility (forbidden
regions).
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