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Abstract

Background: Organisms have evolved ways of regulating transcription to better adapt to varying environments.
Could the current functional genomics data and models support the possibility of engineering a genome with
completely rearranged gene organization while the cell maintains its behavior under environmental challenges?
How would we proceed to design a full nucleotide sequence for such genomes?

Results: As a first step towards answering such questions, recent work showed that it is possible to design
alternative transcriptomic models showing the same behavior under environmental variations than the wild-type
model. A second step would require providing evidence that it is possible to provide a nucleotide sequence for a
genome encoding such transcriptional model. We used computational design techniques to design a rewired
global transcriptional regulation of Escherichia coli, yet showing a similar transcriptomic response than the wild-type.
Afterwards, we “compiled” the transcriptional networks into nucleotide sequences to obtain the final genome
sequence. Our computational evolution procedure ensures that we can maintain the genotype-phenotype mapping
during the rewiring of the regulatory network. We found that it is theoretically possible to reorganize E. coli genome
into 86% fewer regulated operons. Such refactored genomes are constituted by operons that contain sets of genes
sharing around the 60% of their biological functions and, if evolved under highly variable environmental conditions,
have regulatory networks, which turn out to respond more than 20% faster to multiple external perturbations.

Conclusions: This work provides the first algorithm for producing a genome sequence encoding a rewired
transcriptional regulation with wild-type behavior under alternative environments.
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Background
The doors to new horizons in genome-scale synthetic
biology have been opened by the recent and rapid
development of technologies allowing the synthesis of
novel genomes and their introduction into hosts with
inactivated or deleted wild-type chromosomes [1,2]. The
de novo design of cells with synthetic genomes that are
viable in a well-defined environment might require only
the constitutive expression of the minimal set of genes
required for life [3]. This engineering approach, however,
has several drawbacks, including the absence of all
necessary blocks (e.g., genes, signaling cascades, etc.), the
absence of a good definition of the minimal set of genes
required, and a poor understanding of the pleiotropic

negative effects that these genes may have when put
together. In contrast, the re-engineering of an existing
genome to change its regulation network would not
require adding new genes to the genome but only their
rearrangement with respect to promoter sequences.
Previous work has considered the rearrangement of
genomic sequences. For example, Chan et al. (2005)
successfully modified the T7 genome to remove overlapping
translational frames [4]. This approach was inspired by
the engineering practice called refactoring, in which
the internal structure of an already existing system is
rearranged while its external function is maintained. Based
on the same refactoring principle, and considering cell
behavior as the “external function”, we have created a
system for the design of a novel genome sequence with
a refactored transcriptional regulatory network (TRN) that
maintains its original behavior.
We ask whether is it possible to design cells with the

same biochemical composition but different genetic

* Correspondence: Alfonso.Jaramillo@warwick.ac.uk
2School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry
CV4 7AL, UK
3Institute of Systems and Synthetic Biology, CNRS - Universite d'Evry Val
d'Essonne. Batiment Geneavenir 6, 5 rue Henri Desbruères, Evry Cedex 91030,
France
Full list of author information is available at the end of the article

© 2013 Carrera and Jaramillo; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Carrera and Jaramillo BMC Systems Biology 2013, 7:108
http://www.biomedcentral.com/1752-0509/7/108

mailto:Alfonso.Jaramillo@warwick.ac.uk
http://creativecommons.org/licenses/by/2.0


information stored in the DNA. Because of our limitations
in predicting phenotype from a genome, we restrict
ourselves to the problem of rewiring transcriptional
regulatory network to generate the same phenotype
that the wild-type cell already has. Given the large
number of gene regulations, it is not evident that such
simplified question could be answered even based on
theoretical considerations. Although the ultimate answer
lies in the experimental verification, the development
of a genomic-scale model showing the desired behavior
is a necessary condition for such enterprise. In the con-
text of synthetic biology [5], the design of an organism
that can respond in a directed way to variations in its
environment has been a particularly interesting and
challenging problem. This design would require the
reengineering of suitable signal transduction and regulation
systems [6-9]. Because transcriptional regulation is the
most well studied regulatory system in bacteria, it may be
a good starting point for those interested in the design
of such systems [10-12]. In fact, the recent experimental
evolution of E. coli under changing environments has
provided evidence of regulatory network rearrangements
that allow anticipatory behavior [13]. However, the de novo
design of a genome that can adapt to changing environ-
ments may be very challenging. A simpler alternative is
to alter a pre-existing genome by reshuffling its genes
in such a way that its behavior is maintained. In particular,
this problem can be treated computationally if restricted
to the re-design of the global transcriptional network
for an organism for which sufficient transcriptomic
information is available.
To evolve new genomes in silico, a necessary first

condition is to define a biologically meaningful fitness
function that allows changes that are introduced during
the evolution process to be evaluated. How can such a
fitness function be defined? We will assume that a given
transcriptomic expression profile would determine the
protein and metabolite concentrations of the cell, thus
the biomass composition would ultimately result from the
transcriptome. This can also be rationalized by arguing
that natural selection results in nearly optimal biomass
production by favoring regulation pathways that confer
optimal levels of gene expression in a given environment.
Consequently, we will construct a fitness function that will
enforce the maintenance of the wild-type transcriptomic
response. Like that, we would obtain the similar molecular
composition in the cell under a given environment, while
having a refactored genome. Interestingly, it has recently
been shown that the transcriptomic expression profile
is a good predictor of instantaneous cell growth in Sac-
charomyces cerevisiae [14]. Assuming that this relation-
ship is true for other organisms, it can be hypothesized
that the expression profile of a given system determines
cell growth.

We can evaluate the validity of this hypothesis by
analyzing the effect of mutations on the growth of a
wild-type strain. Notably, this evaluation still requires
the accurate prediction of a genome-scale expression
profile. More modifications to the genome will lead to
less growth and more differences in the expression profile.
Therefore, we have used an automated methodology
for designing a genome based on an in silico evolution
process; the methodology uses similarity to a wild-type
transcriptional profile as its fitness function, which provides
the variation of cell growth. Furthermore, it is possible to
construct regulatory network models that accurately predict
the global transcriptional profile for some organisms
[15,16]. These regulatory network models can be used
to predict the growth of cells with modified transcriptional
networks, thereby providing the fitness function required
to evaluate their performance under diverse environmen-
tal conditions [17].
In this paper, we describe a methodology for generating

nucleotide sequences of a genome that produce cells with
targeted physiological responses to a set of environments.
For this, we firstly use our previous integration of current
known transcriptomic and signaling data into a global
model consisting of differential equations, allowing the
assignment of parameters to promoter and transcription
factor (TF) coding sequences [17]. We begin the Results
section by examining the outcome of this model construc-
tion and its corresponding properties. Next, we perform
the computational design of the TRN with the aim of
refactoring the E. coli regulation to simplify its internal
structure by reducing the number of operons. Contrary
to previous work [17], the rewiring of the TRN is done by
ensuring the generation of a suitable nucleotide sequence.
We found that we could dramatically reduce the number
of operons while maintaining the organism’s response
to fluctuating environments. We also analyzed other
properties of the synthetic TRN, such as its topology and
adaptation to varying environments. We then generated a
genome sequence for the TRN. Finally, in the Discussion
section, we examine some design principles that can be
inferred from our results and future experimental ap-
plications of this work.

Results and discussion
Our methodology to generate a refactorized genome
sequence consists on three steps: i) reverse engineering
the genomic transcriptional regulation network (GTRN)
of wild-type E. coli, ii) the design of a rewired GTRN with
the targeted behavior by evolutionary computation, and
iii) the design of a nucleotide sequence for a genome
implementing the GTRN. For the first step, we inferred
the wild-type GTRN by using extensive transcriptomic
and signaling data. For the second step, we use an evo-
lutionary algorithm with a fitness function that would
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create a selection for transcriptomic profiles behaving as
much as possible to the wild-type under selected environ-
mental changes. Finally, we will create some rules that
would allow choosing the appropriate genetic elements.

GTRN of E. coli
We used a recent genome-wide model of E. coli gene
transcription in response to selected external signals to
predict changes in cell growth after genome modifica-
tion [17]. Such model was inferred from experimental
data and the, InferGene inference methodology [15], which
is used to obtain kinetic parameters from experimental
steady-state data. The model contains 4,298 non-redun-
dant genes, 330 of which are putative TFs. As detailed
in the Methods, this model is described by ordinary
differential equations for the transcription level of each
gene and its transcription regulation. This model allows
the assignment of mathematical parameters to promoters
and TF sequences, which we have assumed to be inde-
pendent of genomic context (Figure 1A). In our previous
work [17], we showed that we could predict experimental
growth rates by assigning transcriptional parameters to
genome regulatory sequences. Such assignment allows
us to predict the TRN model after reshuffling genetic
elements (Figure 2; see Methods).

Evolutionary design of a rewired GTRN
Instead of trying to solve the challenging problem of
evolving a genome for better growth, which would require

a greater degree of accuracy for our fitness function, we
attempted to reorganize the genome of E. coli while
maintaining its functionality wild-type. We rearranged the
TRN in terms of regulatory complexity and modularity.
We applied our automatic design methodology [17] to
perform the genome refactoring in a way that we could
later provide a corresponding nucleotide sequence. This
entails the rearrangement of the operon structure while
maintaining the organism’s original behavior. We modify
the GTRN by modifying the placement of genes and
altering the promoter regulation, but we do it without
loosing the connection with a nucleotide sequence. For
instance, the operator sites of many promoter sequences
are known, and their mutation to neutral sequences would
presumably eliminate the regulation of the promoter. This
genetic modification could be implemented in such a way
that, once the optimal GTRN is found, we could design
the suitable nucleotide sequence of such promoters
(Figure 1B). The algorithm proceeds in successive rounds
of genetic modifications and selection of a collection of
independent GTRNs (typically 10 “cells” or simulations),
a general strategy in evolutionary computation. Genetic
modifications consist of the rearrangement of the certain
genome regions of the nucleotide sequence of the wild-
type genome, and selection is based on two criteria that
determine the cellular growth rate and the modularity
of the GTRN. Alternate phases of genetic modifications
and selection are performed to evolve the GTRNs and
obtain networks achieving the specified function. The

Figure 1 Computational approach for the automated design of synthetic genome sequences. (A) Steps designed to construct the
regulatory network of E. coli required to sense environmental changes. (B) A scheme of the algorithm used to re-design the E. coli TRN [17]. The
wild-type genome was used as the starting point for an optimization process based on Monte Carlo Simulated Annealing. During the in silico
evolution, we modified gene regulation (Figure 2) and computed the resulting genome fitness as a function combining the genome modularity
and the distance between the gene expression levels of the re-engineered and wild-type genomes.
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mutation operator is conceived such that we could
later produce the corresponding nucleotide sequence.
According to the genome regions to be rearranged,
some rules are described in Figure 3 to determine the
rearranged nucleotide sequences (Figure 4).

Methodology for producing a genome sequence for a GTRN
We will design now a genome sequence associated to a
given GTRN (to “compile” the GTRN into a nucleotide
sequence, using the computer analogy) by following an
iterative procedure. We will start with the wild-type

genome sequence, where a given base pair could belong
to two possible types of genomic regions: the ones that
will be kept fixed and those that could be rearranged
(Figure 3A). For the former, we defined an intergenic spacer
as a genome region that comprises three biological parts: i)
a promoter region of a given operon, ii) a ribosome binding
site (RBS) for the first cistron, and iii) the terminator region
of the upstream operon. We choose to keep fixed the RBS
sequence of the first gene of each operon because the
5’UTR sequence may not be well characterized and it may
overlap with the promoter. To infer the RBS sequence, we

Figure 2 Four types of transcriptional modifications during the optimization process that affect the gene expression of the ith gene.
(A) a gene moves to other operon, (B and C) addition or deletion of tandem promoters, and (D) replace a tandem promoter (see Methods
section named “Automatic genome design: rules for mutation and selection”). All genetic perturbations are represented by the regulatory scheme
with their corresponding ODE before (left) and after (right) the genome modification. Color boxes represent mathematical terms added or
removed from the ODEs to simulate gene expression of the ith gene after the genetic modification.
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considered the sequence fragment from the +1 position
(transcription start) to the start codon. In some cases,
the starting transcription is unknown and, consequently,
we defined the RBS taking 60 base pairs (bp) from the 5’
UTR upstream the start codon. In addition, we also
found 5’ UTRs in which the size of the nucleotide sequence
was less than 15 bp and, to enlarge the RBS sequence,
we included an additional 60 bp. Although leaderless
translation is known to occur in E. coli [18], we still
consider such 5’UTR. Although it is well known that

the sequence and structure of the 5’UTR has a strong
influence in translation initiation, we assume that the
natural sequence upstream the start codon is already
optimized for expression. When open reading frames
(ORFs) move to other operons, they will loose their ori-
ginal RBS. As new RBS, we choose to add the same RBS
sequence to any ORF arriving to the same destination op-
eron. For this, we could either use a standardized RBS se-
quence or we could choose another sequence, such as the
RBS from first ORF contained in that operon. In this later
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Figure 3 Refactorization process of synthetic genome sequences. (A) Wild-type E. coli genome sequence showing the fixed genome
sequence and the regions to be rearranged during the refactorization. Genome region defined as intergenic spacer (B) and regions that can be
rearranged (C). Overlapping between a promoter region and an ORF (D).
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blue arrows represent the rest of the wild-type (A) and refactored (B) genome.
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case, we append the inferred RBS sequence for the
first ORF to each ORF of the subsequent cistrons (Fig-
ure 3B). Any other automated protocol to produce
RBS sequences will also be limited in accuracy because
we did not model the translation rates for our ORFs. By
using the same RBS for every ORF in the destination
operon, we better match our model assumptions (equal
expression levels for every cistron). This is limited by
the fact that i) ORFs downstream an operon will have
lower translation levels and ii) we did not consider
post-transcriptional regulation elements. Our algorithm
could be extended to remove post-transcriptional elements
by codon re-optimizing the ORFs and by using RBS without
regulatory elements. In addition, we could extend our mo-
del by using high-throughput protein copy number data.
Then, we collected nucleotide sequences of all ORFs

of E. coli genome by identifying their start and end from
RegulonDB (version 5) [19]. We systematically added a
stop codon (TAA) at the end of each ORF to define that
genome region as a part of the genome susceptible to be
rearranged, as a module, in another part of the genome
(Figure 3C). In RegulonDB, we identified some overlaps
between ORFs and promoter regions from operons
located in different strands (Figure 3D). For those cases,
we separated both operons to be rearranged considering
that certain ORF sequences include small portions of
promoter regions.
Figure 3 lists the possible genetic modifications, which

consist of gene rearrangement (Figure 4) and addition/
deletion/replacement of tandem promoters, and their
translation into the equations. A gene can move to
another operon (Figure 2A), downstream (upstream if
in the reverse orientation) ORFs that did not move.
This changes the equation for such gene to a new one
with the regulatory function corresponding to the promoter
of the arriving operon. This type of moves do not change
very much the regulatory network and we added a genetic
move that would construct a combinatorial promoter
by appending two promoters in tandem (Figure 2B).
This allows creating a much complex combinatorial
regulation, without having a precise knowledge of the
operator sites. We assume that it could always be possible
to further optimize a suitable spacer to minimize promoter
interference while having a 5’UTR for the transcript of
the first promoter with similar translation initiation
rates than the 5’UTR of the second promoter. Tandem
promoter engineering has been used recently to design
NOR gates [20]. We can also delete (Figure 2C) or replace
(Figure 2D) a tandem promoter.

Prediction of a refactored E. coli genome sequence with
wild-type behavior in changing environments
We used the implemented evolutionary process to
design refactored genomes containing only genetic

building blocks that exist within the wild-type E. coli
genome. The transcriptional regulation landscape that we
explored contained all possible genome reconfigurations
that could result from regrouping a set of genes under
the control of a wild-type promoter. In Figure 5A, we
observed a large reduction in the complexity of the
refactored TRN quantified in terms of the ratio between
the number of regulatory interactions (Ξ < 0.14; p < 0.001)
and the number of operons (Θ < 0.14; p < 0.001) for the
refactored and wild-type TRN, using a design function
based on scoring the expression of stress genes (Methods).
The nucleotide sequence of a refactored genome using
this design function is provided in Additional file 1.
Analogously, we found that limiting only the expression
of genes coding for enzymes or genes related to defense
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(triangles) or the entire genome (circles). Error bars represent
standard deviations of scores obtained from 10 independent.

Carrera and Jaramillo BMC Systems Biology 2013, 7:108 Page 6 of 12
http://www.biomedcentral.com/1752-0509/7/108



and adaptation in the design produced larger reductions
in complexity (Ξ < 0.18, Θ < 0.19 and Ξ < 0.23, Θ < 0.23,
respectively; p < 0.001 in all cases).
To enlarge the genome design landscape, we allowed

the addition of a maximum of three promoters in tandem
to modify the regulation of a given operon (ethods). We
determined a set of E. coli promoters that were potential
candidates to operate in tandem (sometimes using a
suitable spacer sequence to isolate them). We selected
the entire promoter library (27 promoters) used by Isalan
et al. (2008) to exhaustively explore the effect of multiple
genome rewirings on growth rate [10]. We also included
all E. coli promoters that are regulated by fewer than two
master regulator TFs, as defined by Isalan et al. (2008).

Consequently, we considered 272 promoters susceptible
to tandem incorporation. Figure 5A shows that the largest
reductions in complexity were achieved using designs that
consider stress genes in the objective function (Ξ < 0.20,
p < 0.001; Θ < 0.19, p < 0.001). Surprisingly, as shown in
Figure 5B, few operons from the refactored genomes
needed a promoter to be added in tandem to modify the
gene expression provided by their wild-type promoter.
Only 15 operons within the refactored genomes required
the addition of two tandem promoters to guarantee
that gene expression could adapt to changes in the
environment. Such refactored genomes were characterized
by operons that captured genes with similar functionality
(Figure 6).

Figure 6 Functional similarity (blue diamonds), depending on operon size, and a histogram showing the functional similarity (blue bars)
of genes in the operons of genomes refactored under selective pressure on the expression of genes coding for enzymes (A and B,
respectively), stress genes (C and D, respectively) and the whole genome (E and F, respectively). Notice that red squares and bars represent
random evolutionary processes. Error bars show the minimum and maximum value of functional similarity of all operons with a given size
(A, C and E) and represent standard deviation of operon frequency (B, D and F) for 10 evolutionary processes.
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Analysis of biochemical adaptation to varying
environments of the refactored genome sequences
Two sets of environments were simulated to explore single
environmental perturbations: (i) a set of 100 random
perturbations that varied oxygen availability from a
fully anaerobic environment to an environment with a
rate that was 4-fold greater than the optimal flux value
(75 mmol g-1 h-1) and (ii) a set of 100 perturbations
that changed the availability of glucose as the carbon
source, ranging from the negative value of the optimal
uptake flux to the positive value (i.e., -20 mmol g-1 h-1

to 20 mmol g-1 h-1).
We tested adaptation in refactored genomes by consid-

ering the previous four types of selective pressure in the
expression score. Interestingly, genomes that incorporated
tandem promoters achieved low adaptation errors under
single environmental perturbations (Figure 7A) (average
optimality degree: 〈ξ〉 < 0.021) and over-optimality was
even achieved by genomes designed with selection pres-
sure based on genes with enzymatic activity (〈ξ〉 < −0.019)
or related to defense processes (〈ξ〉 < −0.010). By contrast,
genomes that were refactored without the design speci-
fication of tandem promoter addition had high error
adaptation (〈ξ〉 > 0.762), except for those refactored
considering stress genes. Furthermore, we tested the
adaptation of genomes designed under multiple perturba-
tions and concluded that evolved genomes that included
tandem promoters exhibited over-optimality independent
of the objective function imposed in the design. By con-
trast, genomes refactored by only re-organizing wild-type
genes had adaptation errors as large as 〈ξ〉 = 79.8%
(Figure 7B).

Conclusions
Biological consequences of computational genome
refactorization
Genome organization can be simplified without disrupting
the response of the genome to environmental changes
In this study, we have developed a computational frame-
work for the design of bacterial genomes that are able to
respond to changes in environmental conditions. We
used transcriptomic data to infer a continuous model for
the transcription of all E. coli genes [17], which we then
used to assign appropriate parameters to promoter and
TF coding sequences. By assuming that these parameters
do not depend on genomic context in most cases, we
proposed our first methodology for the automatic design
of genome rearrangements under changing environments.
Our results demonstrate that it is possible to refactorize
the genome of E. coli, achieving an 86% reduction in
the number of regulatory interactions and operons,
while maintaining the ability to physiologically adapt to
environmental changes. We found that the refactored

genomes contain operons that encode several genes
with similar functionality. This is an important result,
given that the fitness function imposed to evaluate genome
performance did not consider gene function. This agrees
with the experimental observation that genes within an op-
eron have similar functions [21]. Moreover, these genomes
acquired the ability to adapt more rapidly to environmental
changes, probably as a direct consequence of the reduced
number of regulatory elements.
The refactored genomes satisfied the main design spe-

cification, which was to maintain the global physiological
response under both optimal and changing environments.
In addition, we found that there was an increase in the
complexity of the internal structure related to the signal
transduction for all refactored genomes. More specifically,
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genomes that evolved under the most extreme environ-
ments required a greater re-organization of critical genes
under promoters that could sense greater numbers of
environmental interactions. Interestingly, genomes that
were refactored under stressful environments showed
higher clustering coefficients than those that evolved under
more permissive environments. An intuitive explanation
for this observation relies on the differences in the selective
pressures imposed by both types of environments. Survival
and replication in a stressful environment represents hard
selection, requiring the coordinated expression of all genes
involved in survival. By contrast, replicating in a permissive
environment may be equated to soft selection and therefore
does not require the coordination of expression because
the cells remain able to exploit some components of their
environment.
One important application of our results is the ability

to infer some principles of genome design. In particular,
we studied the refactored genomes that had achieved
over-optimality or lost optimality. We tested the antici-
patory ability of our refactored genomes by computing
their optimality using transcriptomic fitness with the same
set of genes used in the refactorization process. Interest-
ingly, we found that refactored genomes achieved greater
optimality degrees than those of wild-type genomes for
both single and multiple environmental perturbations.

Extension of this methodology to other organisms
The methodology presented here could be extended to
other organisms for which quantitative TRN and signal
transduction models can be inferred (Figure 8) [22]. The
models should be able to predict genomic transcriptional
profiles under several external conditions in order to con-
struct a transcriptomic fitness function. The computational
refactorization of the genome of a given organism requires
the following information: (i) genome annotation, (ii) a
high-throughput gene expression data capturing genetic
and environmental diversity, (iii and iv) datasets of tran-
scriptional interactions (gene vs. TF) and two-component
signal transduction pathways (TF vs. EF) that have been
experimentally verified. Further extensions would have
to consider the influence of other factors such as 3D
localization [6], post-transcriptional regulation [23] and
post-translational regulation in prokaryotes [24], or
chromatin regulation [25] in eukaryotes. With growing
availability of quantitative proteomics data [26], it will
be pivotal to include variables representing protein copy
number of the TFs into these models.

Experimentally testable predictions
Proposition of a testable refactored E. coli genome sequence
This work also provides a generic procedure to generate
a gene sequence for a synthetic E. coli genome with a

targeted transcriptomic response, which we exemplify
by proposing a genome that could be engineered by
assembling known elements (see Additional file 1). For
this quantitative prediction of a designed genome, we
propose combining known promoter regions and tran-
scriptional regulators such that the transcriptional profile
could reasonably be predicted. To create more complex
promoters, we propose taking advantage of their modu-
larity and fusing some of them in tandem, and choosing
a set of promoters for which transcriptional interference
[27] would be minimized. Notice that the E. coli genome
contains 166 non-overlapping tandem promoter pairs
[27]. As sequence repetition could create ectopic re-
combination events, some care will have to be taken in
experimental testing. In addition, wild-type transcrip-
tion terminators are not completely efficient and are
sometimes even absent; therefore, some terminators
may have to be replaced by stronger ones (probably
synthetic, to avoid repetitive sequences). The neglect of
non-transcriptional regulation may produce unexpected
behavior in certain environments, but this could be
remedied by selecting alternative conditions. Other
undesired behaviors could be alleviated by suitable
randomization of the nucleotide sequence with the re-
striction of maintaining the desired functionality (e.g.,
the ribosome-binding site or protein coding sequence).

Application to experimental genome engineering
Our computational procedure could also be adapted to
the particular needs of experimentalists who are willing
to create major gene rearrangements in genomes using
in vivo techniques. The recent advances in genome en-
gineering (such as the use of the CRISPR technology) may
enable synthetic biologists to produce large insertions,
deletions or inversions in the genome [28]. Usually, tar-
geted random mutagenesis followed by screening is used
[29], but this methodology is tedious when a specific locus
is to be targeted, and only a small number of successive
modifications (N) would be practical. Therefore, it would
be particularly useful for the genome engineer to know in
advance the most suitable sequence of experiments to
introduce genome modifications. In E. coli, this could be
readily done by appropriately adapting the “mutational”
moves used by our in silico evolution methodology. Such
moves should be restricted to their genome rearrangement
technologies available at the laboratory. Then, one could
computationally explore all possible evolutionary paths of
N moves that would give the highest fitness under specific
dynamic environments. The experimentalist could then
engineer the genome by implementing the N consecutive
experiments suggested by the algorithm. This computa-
tional procedure could also incorporate the constraint that
each intermediate genome should be viable.
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Methods
Genome-scale model
We constructed a TRN of the wild-type genome that
was able to predict gene regulation at the transcriptional
and environmental levels. For this, we adopted a linear
model based on differential equations describing the
time dynamics of each mRNA [17] in order to infer real
kinetic parameters for promoter and TF sequences.
Thus, the mRNA dynamics from the ith gene, yi, is
given by dyi/dt = αi +

P
j β ijy j +

P
kγ ikΔvk − δiyi, where ai

represents its constitutive transcription rate, bij represents
the regulatory effect that gene j has on gene i, γik repre-
sents the effect that environmental factor (EF), i.e. the
metabolic uptake factor k, has on the expression of
gene i, Δvk = (vk−v

opt
k ) is the difference between the uptake

factor measured under a given environmental condition,
vk, and the uptake factor measured in the optimal environ-
mental condition, voptk , and di represents the degradation
and dilution rate constant (Figure 1A).

Automatic genome design: fitness function
The main variables required for automatic genome design
are the same as those required for any evolutionary
algorithm [17]: (i) An initial genome, (ii) evolutionary
steps represented by changes in the genome and (iii) a
fitness function to evaluate the performance of each
mutant genome (Figure 1B). For the first step, we used the
genome of the model bacterium E. coli. The second
step was achieved by dissecting the bacterial genome
into elementary modules, to which evolutionary rules
were applied [30].

One design approach that we used involved the in silico
refactorization of the nucleotide sequence of the E. coli
genome, a process where we pursued two goals simul-
taneously: (i) simplifying the internal structure of E. coli
and (ii) maintaining the external system function. To
maximize the modularity of the system and thus simplify
the TRN, we defined a measure based on the entropy
of the genome [17]. We also aimed to maximize the
similarity of the expression profiles of the wild-type
and refactored genomes for a set of extreme environments
and for a set of critical genes that guarantee the func-
tionality of the refactored system. We used the TRN
model integrated with signal transduction to measure
that similarity.

Automatic genome design: rules for mutation and selection
Considering these two aims, we developed an optimiz-
ation algorithm based on the mutation rules to refactorize
the wild-type E. coli genome (Figure 2 and 3). Genes that
are controlled by constitutive promoters were not involved
in the design. These genes could always be refactored
in a straightforward way by assuming that they could
be collapsed into large operons regulated by a gradient
of different expression levels (produced by a library of
several constitutive promoters or using tuned ribosome-
binding sites).
Our algorithm searches possible reconfigurations of the

global transcriptional regulation of E. coli such that the
resulting modular genome contains all genes in a minimal
set of operons, thus decreasing the number of transcrip-
tional regulatory elements, and with the constraint that
the overall gene expression of the refactored genome shall
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Figure 8 Requirements and extended methodology for the computational refactorization of an organism.
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be as close to the wild-type as possible. We used Monte
Carlo Simulated Annealing to perform the optimization
in the space of all possible refactored transcriptional
networks. The size of this combinatorial space is governed
by the previously characterized variability in the E. coli
natural promoters, and the diversity of synthetic promoters
was obtained during the optimization process. As the
starting condition, we assumed that the expression of
each gene was controlled only by its natural promoter.
The three following mutational steps were possible: (i)
move gene gi belonging to operon op and regulated by
non-constitutive promoter Pi to another operon op’
regulated by a different non-constitutive promoter Pp
without adding regulatory operators to Pp (Figure 3A). We
imposed the mathematical function from the promoter Pp
(fp) in the ordinary differential equation (ODE) describing
the expression of gene gi (orange box in Figure 3A).
(ii) Add or remove a promoter in tandem position, Pt
(Figure 3B and C, respectively), in an operon (containing
gi) controlled by the promoter Pi. In terms of the set of
ODEs describing gene expression, we add or remove
the term ft associated to the tandem promoter (green
box in Figure 3B and C, respectively) in the ODE of gene
gi. Promoters added in tandem to a given transcription
unit could be removed or replaced by other promoters.
Finally (iii) replace a promoter in tandem position (con-
trolling gene expression of gi), Pt, by another promoter
suggested to act as a tandem promoter, Pt’ (Figure 3D). In
that way, we substituted the mathematical term associated
to Pt (ft; green box in Figure 3D) by Pt’ (ft’; purple box in
Figure 3D). Note that the probability of removing/adding
a promoter in tandem was set to be much larger than the
probability of replacing one promoter in tandem with
another promoter (e.g., 10-fold).
Then, we simulate the expression behavior of the newly

created genome and compute its new objective function
(Snew), which depends on the full transcriptome predicted
under a set of environments and the new modular
organization of the operons. If the suggested mutation
improves S (Snew ≥ S), then it is accepted. Otherwise, it
is accepted with probability e S−Snewð Þ=T , where T is a
Boltzmann temperature parameter that decreases expo-
nentially with the number of iterations. Hereafter, we loop
back and introduce a new transcriptional modification.

Genome optimality degree in changing environments and
functional analysis of refactored genomes
We assumed that cell fitness could be estimated in terms
of the Sexp objective function. This allowed the study of
genome adaptation under changing environments in one
(Δvk = i ≠ 0 and Δvk ≠ i = 0) or multiple (Δvk ≠ 0 ∀ k) direc-
tions [31]. To do this, we defined the optimality degree,
ξΔvk , in a target environment characterized by Δv∗k and

different from the optimal environment as the difference
between Sexp evaluated in an environment containing
Δvk = 0 (i.e., fitness in the optimal condition) and that
evaluated in the target environment containing Δv∗k.
Hence, we distinguished between positive and negative
error adaptation corresponding to environmental states
where cell fitness achieved sub- or over-optimal growth,
respectively.
Genes contained in the operons of all refactored genomes

were functionally identified using 184 biological functions
in GO [32]. We defined the degree of functional similarity,
Φop, of a given operon, op, as the ratio between the
maximum number of genes with the same functionality
and the operon size. We imposed Φop = 0 for those operons
containing only one gene because more than one gene was
needed to assess functional similarity; all operons in the
wild-type genome therefore received a score of 0.

Additional file

Additional file 1: It includes three files: Nucleotide sequence
(FASTA and GeneBank files) and SBML model for the refactored E.
coli genome shown in Figure 5A (non tandem promoter addition
(light bars) and, fitness based on the set of stress-related genes).
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