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This paper presents an artificial neural network (ANN)-based approach for online monitoring of a voltage
stability margin (VSM) in electric power systems. The VSM is calculated by estimating the distance from
the current operation state to the maximum voltage stability limit point according to the system loading
parameter. Using the Gram–Schmidt orthogonalization process along with an ANN-based sensitivity
technique, an efficient feature selection method is proposed to find the fewest input variables required
to approximate the VSM with sufficient accuracy and high execution speed. Many algorithms have
already been proposed in the literature for voltage stability assessment (VSA) using neural networks;
however, the main drawback of the previously published works is that they need to train a new neural
network when a change in the power system topology (configuration) occurs. Therefore, the possibility of
employing a single ANN for estimating the VSM for several system configurations is investigated in this
paper. The effectiveness of the proposed method is tested on the dynamic models of the New England
39-bus and the southern/eastern (SE) Australian power systems. The results obtained indicate that the
proposed scheme provides a compact and efficient ANN model that can successfully and accurately
estimate the VSM considering different system configurations as well as operating conditions, employing
the fewest possible input features.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the major blackouts caused by voltage collapse [1], the
voltage stability problem has become one of the most significant
challenges in the planning and operation of the modern electric
power systems. Voltage instability is usually characterized by an
initial and progressive decrease in voltage magnitudes until a
sharp rapid decline occurs; however, in some cases, the voltage
magnitudes prior to undergoing the sharp change lie in a permis-
sible range and the operators may observe no advance warning sig-
nal until large changes in the system state occurs [2]. Therefore,
over the past several years, massive efforts have been devoted to
the development of practical measures of the distance from the
current operating state to the voltage collapse point, thereby pro-
viding an early warning of a critical situation.

Existing methods for voltage stability analysis are usually clas-
sified into static methods (such as PV curves and modal analysis),
and dynamic methods (such as time domain simulation) [3]. The
static approaches are based on the steady state power flow model
of the power systems and many aspects of voltage stability prob-
lems can effectively be analyzed using these methods; however,
such simplified approaches usually lead to unreliable results as
shown in [4]. In order to get a much more realistic picture of the
voltage stability phenomena, it is necessary to take system dynam-
ics into account. On the other hand, the application of dynamic
methods may be too time-consuming for online use.

Using artificial neural networks (ANNs) would be an attractive
alternative to overcome the aforementioned problems. ANNs are
information processing systems inspired by the way biological
neural systems process data. Application of neural networks to
power system problems is an area of growing interest [5]. The
main reasons are the ability of ANNs to learn complex non-linear
relationships and their modular structures, which allows parallel
processing [6].

Proposed methods in the past for online voltage stability mon-
itoring using ANNs have led to acceptable results. As summarized
in Table 1, the majority of the published works in the literature are
based on the multi-layered perceptron (MLP) neural networks [7–
14], while the other methods rely on the Radial Basis Function
(RBF) networks [15–20].

The previously published approaches often require a large num-
ber of input variables [13,14,18]. Having a large number of inputs
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Table 1
Comparison of the proposed methods for voltage stability monitoring using ANNs.

Proposed method ANN type ANN inputs ANN output(s) Considering different system
configurations

Employed method for
feature selection

Method of Ref. [7] MLP Active and reactive line flows VSMa Separate ANNs for each configuration Principal component
analysis (PCA),
Contingency analysis

Method of Ref. [8] MLP Bus net active and reactive
powers and generators reactive
power

Minimum energy
margin

Separate ANNs for each configuration Sensitivity analysis

Method of Ref. [9] MLP Load active and reactive powers VSM A separate ANN for each configuration Regression-based
sensitivity analysis

Method of Ref. [10] MLP Active and reactive line flows and
bus voltages

VSM A separate ANN for each configuration Principal component
analysis (PCA), K-means
clustering

Method of Ref. [11] MLP Bus voltage magnitudes and
phase angles

VSM A single ANN for different
configurations

Sequential forward
selection

Method of Ref. [12] MLP, Self-
organizing
map (SOM)

Bus voltage magnitudes, phase
angles and injected active and
reactive powers

VSM and real
part of critical
eigenvalues

A single ANN for different
configurations or A separate ANN for
each configurations

Self-organizing map
(SOM) ANN

Method of Ref. [13] MLP Load buses voltage magnitude
and active and reactive powers

VSM A separate ANN for each specified bus –

Method of Ref. [14] MLP Voltage magnitudes, active and
reactive powers of generator and
load buses

L-index Two separate ANNs one for normal
condition and the other for
contingency conditions

–

Method of Ref. [15] RBF Voltage magnitude of PV buses
and total system load

Probability of
voltage collapse

– –

Method of Ref. [16] RBF Load active and reactive powers Voltage
performance
index

A separate ANN for each cluster of
input pattern

Class separability index
and Correlation
conditions

Method of Ref. [17] RBF MVA flows in selected critical
lines

VSM A single ANN for different
configurations

–

Method of Ref. [18] RBF Load active and reactive powers VSM A single ANN for different
configurations

–

Method of Ref. [19] RBF Dominant features of the voltage
profile extracted by wavelet
transform

VSM A single ANN for different
configurations

Principal component
analysis (PCA)

Method of Ref. [20] RBF Active and reactive line flows L-index A separate ANN for each configuration Mutual information

a VSM: The MW distance from the base operating point to the critical collapse point.
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not only increases the size of the ANN, but also raises the cost as
well as the time required for future data collection. In this paper,
a fast and efficient method for reducing the number of input vari-
ables is proposed. Here, the Gram–Schmidt orthogonalization pro-
cess is first employed to reduce the number of input variables, and
then the neural network-based sensitivity technique proposed in
[21] is used to find the minimum number of features required to
make a good estimation of a voltage stability margin (VSM). The
VSM is defined as the distance from the current operation state
to the maximum voltage stability limit point (voltage collapse
point) according to the system loading parameter.

In practice, a power system may face with a wide range of con-
tingencies during its actual operating conditions such as unex-
pected line outages. When a contingency takes place, the system
topology (configuration) changes and the trained ANN may fail to
provide an accurate estimate of the VSM as it would be unable to
capture the input–output relationship properly. Research works
presented in [7–9,20], employ a separate ANN to estimate the
VSM for each system configuration (contingency). For a large
power system, with a huge number of potentially credible contin-
gencies, training a separate ANN for each resulting configuration
would be a demanding task. Therefore, in the present study, all sin-
gle line outages are analyzed and ranked in descending order in
terms of their VSMs and then a single MLP ANN is employed to
estimate the VSM for the base case operating conditions and for
a selected number of the worst case contingencies.

The proposed online voltage stability monitoring scheme is ap-
plied to the New England 10-machine, 39-bus test power system
and the simplified southern/eastern (SE) Australian power system,
considering high order dynamic models for the generators along
with their automatic voltage regulators (AVRs). Since the voltage
collapse phenomenon is highly affected by reactive power genera-
tion limits of the synchronous machines [22], the reactive power
generation limits are also imposed in this paper. The MATLAB-
based free and open source software tool PSAT (Power System Anal-
ysis Toolbox) [23] is used in this paper to obtain the required train-
ing and/or testing patterns for the ANNs by performing the
continuation power flow (CPF) method on both test systems,
whereas the proposed neural network models are implemented
in MATLAB.

The rest of the paper is organized as follows: the use of VSM for
voltage stability monitoring is described in Section 2. Section 3
gives an introduction to the MLP neural networks and presents
the methodology of the proposed method. Section 4 describes
the employed method for selecting the worst case contingencies.
Details of the method used for reducing the number of input fea-
tures are explained in Section 5. Case studies are given in Section
6, and finally, Section 7 concludes the paper.
2. Voltage stability margin

Voltage instability results from the attempts of loads to draw
more power than can be delivered by the transmission and gener-
ation systems [24]. Suppose that a sample power system is operat-
ing stably at a certain loading level. Fig. 1 shows the variation of
the voltage magnitude of a particular load bus in the system
against a loading parameter k, representing an independent system
parameter that is slowly varied, such as active and reactive loads
and/or active generation dispatch. For the system loading below
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the maximum, there are two solutions, one with higher voltage
(stable), and the other with lower voltage (unstable). As the system
loading increases following a certain direction, these solutions ap-
proach each other and finally coalesce at a critical point. This nose
point or saddle-node bifurcation (SNB) point corresponds to the
maximum transmissible power [25]. Increasing the system loading
beyond this point could lead the entire system to voltage collapse.

In this paper, the voltage stability margin (VSM) is defined as
the distance from the current operating state to the voltage col-
lapse point according to the system loading parameter; therefore,
as illustrated in Fig. 1, for calculating this margin, the SNB point
should be located.

As reported in the literature, the SNB point can be identified
using either direct or continuation methods [26–28]. Direct meth-
ods find this point by solving an augmented system of equations.
These methods have been shown to be efficient and accurate in
locating the saddle node bifurcation points [26,28]; however, they
need a good initial guess and may fail if all the system limits are
considered [28].

Continuation methods, by contrast, do not have the mentioned
limitations and also provide more information. Starting from an
initial point, these methods trace the equilibrium points of a power
system state as its parameters change in a quasi-continues man-
ner. Continuation methods are robust and accurate, but they are
computationally expensive, especially for large power systems
[28,29]. Artificial neural networks provide an attractive alternative
to overcome the problem of computational burden of the continu-
ation algorithms, since after training, an ANN can estimate its out-
puts very fast due its parallel architecture.

 

 

3. Artificial neural network design

An artificial neural network is an information processing system
that has certain performance characteristics in common with bio-
logical neural networks [30]. In this study, a multi-layered feedfor-
ward neural network topology is employed. This network, also
called multi-layered perceptron (MLP), is the most popular neural
network in use today. An MLP neural network consists of one input
layer, one output layer and one or more hidden layers. The number
of neurons in the input and output layers are, respectively, equal to
the number of inputs and outputs, while a trial-and-error proce-
dure is usually employed to determine the number of neurons in
the hidden layers. Each neuron is connected to other neurons
through communication links, each with an associated weight.
The weights represent information being used to solve a problem
and have to be determined by a learning (training) algorithm
Fig. 1. Illustration of the voltage stability margin (VSM).
[30]. The MLP neural networks are usually trained in a supervised
manner with a highly popular algorithm known as the error back-
propagation [31]. This algorithm is simply a gradient descent-
based method to minimize the total squared error of the output
computed by the net. However, the conventional back-propagation
method is often too slow for many practical problems; thus, in this
paper the resilient back-propagation technique, which is one of the
fast training algorithms, is employed to accelerate the training pro-
cess. This training algorithm is thoroughly described in [32].

3.1. Selection of input variables

Proper selection of the input variables is a crucial factor for the
success of neural networks. Almost all voltage collapse incidents
have occurred in heavily loaded systems. Furthermore, research
has shown that voltage stability is strongly influenced by system
loads [33,34]. On the other hand, synchronous generators are a pri-
mary source of the reactive power and are to a great extent,
responsible for maintaining a good voltage profile across the power
system [24]; therefore, the following seems to be a suitable set of
input variables for predicting the VSM:

� Voltage magnitudes and generated active powers of the PV
buses.
� Active and reactive powers of all the system loads.
� Generated reactive powers of all the system generators.
� Generated active power of the slack bus.

3.2. Generation of training patterns

In both test systems used in this paper, for generating training
and/or testing patterns of the MLP ANNs, active and reactive pow-
ers of all system loads as well as voltage magnitudes of PV buses
are varied randomly within specified ranges of their base case val-
ues. Here, it is assumed that the range of variations of the voltage
magnitudes of all the PV buses is bounded from 0.9 to 1.1 times
their corresponding base case values. It is further assumed that
both real and reactive loads at all buses vary in the range of 0.7
to 1.2 times their corresponding base values, according to the fol-
lowing relations:

VPVi0
ðkÞ ¼ VPVib

ð0:9þ 0:2ei
VPV
ðkÞÞ

PLi0
ðkÞ ¼ PLib

ð0:7þ 0:5ei
PL
ðkÞÞ

QLi0
ðkÞ ¼ Q Lib

ð0:7þ 0:5ei
QL
ðkÞÞ

ð1Þ

where PLi0
ðkÞ, QLi0

ðkÞ and VPVi0
ðkÞ are, respectively, the load active

power, load reactive power and the PV bus voltage magnitude at
the ith bus for the kth training pattern. Also, PLib

, QLib
, and VPVib

de-
note, respectively, the base case load active power, load reactive
power and the PV bus voltage magnitude at the ith bus, and e de-
notes a uniformly distributed random number within [0,1]. All
the system loads are modeled as constant power loads and load
changes are picked up by all the system generators based on their
base case generated active powers. Each randomly generated set
of operating conditions is then verified by a conventional power
flow program to make sure that each of the cases provides a feasible
power flow solution. The cases, for which the power flow does not
meet the steady state operating requirements, are removed.

For each verified operating point, the voltage stability margin is
then calculated using a continuation power flow method. During
this continuation process, the real and reactive powers of all sys-
tem loads are increased maintaining their power factors fixed as
in the base case loading condition. Each generator is assigned a
participation factor of the load demand based on its initial gener-
ated active power and the parameter k is used to simulate the
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Fig. 2. Steps used for neural network pattern generation.
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active and reactive power load increases throughout the system as
follows:

PLi
ðkÞ ¼ PLi0

½1þ k�
Q Li
ðkÞ ¼ QLi0

½1þ k�
PGi
ðkÞ ¼ PGi0

½1þ kKGi�
ð2Þ

where KGi is the distributed slack bus variable. The VSM is defined
as the distance from the base case operating point to the voltage
collapse point according to the system loading parameter k. The
VSM is expressed by:

VSM ¼ jSMj � jS0j
jS0j

ð3Þ

where jSM j and jS0j denote the maximum and the base case values of
the total system apparent power consumed, respectively. For a
power system with n buses, the voltage stability margin can be cal-
culated as:

VSM ¼ jSMj � jS0j
jS0j

¼
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

Li max
þ Q2

Li max

q
�
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

Li0
þ Q 2

Li0

q
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

Li0
þ Q 2

Li0

q ð4Þ

Using (2), PLi max and QLi max are obtained by:

PLi max ¼ PLi0
½1þ kmax�

Q Li max ¼ Q Li0
½1þ kmax�

ð5Þ

where PLi max and QLi max denote the maximum load active power and
the maximum load reactive power at the ith bus, respectively. Also,
kmax shows the maximum system loading parameter. Putting PLi max

and QLi max from (5) into (4), one can easily show that the VSM is in-
deed equal to kmax. In other words, we have:

VSM ¼ kmax ð6Þ

Therefore, the calculated VSM is used as the target output for
the training and/or testing patterns. The above procedure is re-
peated to generate a sufficient number of training and/or testing
patterns for the proposed neural network. Fig. 2 shows the overall
steps used for the ANN pattern generation.

4. Contingency analysis

A power system is subjected to a wide range of disturbances
during its actual operating conditions, and the occurrence of a dis-
turbance is sometimes followed by removal of the faulted element
resulting in a new system configuration; therefore, it is essential
for the trained ANN to be able to estimate the VSM for different
system configurations. One simple idea is to train a separate ANN
for each considered topology. This method is shown to have prom-
ising results [7–9,20]; however, using this approach in a practical
system requires the knowledge of the post-contingency system
configuration. Furthermore, for a large power system, with a huge
number of potentially credible contingencies, training a separate
ANN for each resulting configuration would be a demanding task.
In this paper, a single ANN is trained for several system
configurations.

The security of the power system is commonly defined based on
the single contingency (N�1) criterion, meaning normal system
minus one element. However, it is impractical and unnecessary
to train the neural network for all possible contingencies; there-
fore, contingencies should be ranked using a suitable voltage sta-
bility criterion to identify the most critical situations under
voltage collapse point of view. The margin between the current
operating point and the voltage collapse point is the most com-
monly used index for voltage stability analysis and the majority
of the proposed contingency analysis methods in the literature,

 

 

are based on this index [35,36]. In the present study, all single line
outages are first analyzed and ranked in descending order in terms
of their VSMs, and then a single neural network is trained to esti-
mate the VSM for the base case operating conditions and for a se-
lected number of the worst case contingencies.
5. Reduction of input variables

Power system measurements are very redundant and the num-
ber of variables is extremely high. Thus, restricting the input space
to a small subset of the available input variables has obvious eco-
nomic benefits in terms of data storage, computational require-
ments and cost of future data collection [37]; furthermore,
reducing the number of input variables leads to better model
understanding in some cases. The optimal input variable set will
contain the fewest input variables required to describe the



Fig. 3. The Gram–Schmidt orthogonalization process.
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behavior of the output target, with a minimum degree of
redundancy and with no uninformative variables [38]. One simple
approach to find the optimal subset is to evaluate all possible
combinations of the input variables. This approach may be feasible
when the dimension of the input set is low, but as the dimension
increases, it becomes unfeasible. There are a wide variety of
methods for selecting a reduced number of input features. A simple
method, particularly useful in practice, is the Gram–Schmidt
orthogonalization process. This method is a forward selection
algorithm which ranks the input set by adding progressively
features, which correlate to the target in the space orthogonal to
the already selected features [37].

Let column Xk ¼ ½xk1; xk2; . . . ; xkM�T denote the values taken by
the kth feature for all patterns, in which there are M patterns. Also,
suppose that Y ¼ ½y1; y2; . . . ; yM�

T is the vector of calculated values
for the target output. In each cycle of the Gram–Schmidt process,
the following correlation coefficients need to be computed [39].
These coefficients determine the strength of relationship between
the input features and the target output:

cos2ðXk;YÞ ¼
ðXk � YÞ2

kXkk2kYk2 ; k ¼ 1; . . . ;N ð7Þ

where N is the total number of features, and ðXk � YÞ defines the in-
ner product between the vectors Xk and Y . Also, kk2 denotes the sec-
ond norm.

As depicted in Fig. 3, in the first iteration, the vector Xk for
which the correlation coefficient given by Eq. (7) is the biggest is
selected as the most relevant feature. The remaining candidate in-
puts and the output vector are then projected into the subspace (of
the dimension N�1) of the selected feature to discard the part of
the concept that is explained by the first selected vector. Then, in
the next iteration, the most relevant projected feature is selected
among those features not selected in the previous iteration, and
the N�2 remaining features are projected into the subspace of
the first two ranked vectors. Finally, when all the N input vectors
are ranked, the algorithm terminates.

After ranking the input variables by the above procedure, the
fewest input features, required to describe the behavior of the out-
put of the ANN are selected. Furthermore, to make sure that those
selected features are indeed the most relevant ones, the influence
of each of them on the training process of the ANN is examined
through the neural network-based sensitivity technique proposed
in [21]. The irrelevant features are then removed from the reduced
input set. The algorithm is computationally efficient and tends to
result in the selection of relatively small set of input features.

 

 

6. The simulation results

The New England 10-machine 39-bus test system [40] and the
simplified southern/eastern (SE) Australian power system [41],
with high order dynamic models for the synchronous generators
along with their AVRs are used here to demonstrate the proposed
scheme for online voltage stability monitoring. Generators reactive
power limits are known as the key factors that greatly affect the
voltage stability [42]; therefore, the generators reactive power lim-
its are also imposed in this paper. The MATLAB-based free and
open source software tool PSAT [23] along with its source codes
are employed to find the voltage stability margin by using the con-
tinuation power flow (CPF) method on both test systems.

For each test system, a single ANN is trained to estimate the
VSM for the base case operating conditions and for a selected num-
ber of the worst case contingencies. In order to examine the gener-
alization capability of the proposed neural networks, the root
mean-squared error (RMSE) between the actual VSM and the esti-
mated VSM by the trained ANN is calculated. This performance
measure is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NP

XNP

p¼1
ðactual VSMðpÞ � estimated VSMðpÞÞ2

r
ð8Þ

where p represents the pattern number, and NP denotes the total
number of patterns in the corresponding set (training or testing).
The neural network toolbox of MATLAB, Mathworks Inc., is used
for training the proposed MLP ANNs [43]. All the computations
are performed on a personal computer with 2-GHz Intel Core 2
Duo processor and 2 GB of RAM running MATLAB 7.8.

6.1. The simulation results for the New England 39-bus test system

The single-line diagram of the New England 10-machine 39-bus
test system is shown in Fig. 4. The bus and line data of the system
can be found in [40]. This system consists of 29 PQ buses, 46 lines
and 10 synchronous machines equipped with IEEE type-1 voltage
regulators. All machines are presented by their 4th order dynamic
model. Only 19 buses in the system have nonzero real and reactive
loads that were modeled as constant power loads. Bus 1 was taken
as the slack bus and its voltage magnitude and angle were assumed
to be fixed. The remaining generator buses (i.e., buses 2–10) were
taken as the PV buses having specified voltage magnitudes and
generated active powers. Based on the explanations mentioned
in Section 3.1, the following system operating conditions were se-
lected as the initial input variables for an MLP ANN to estimate the
VSM in the New England 39-bus system:

� Voltage magnitudes and generated active powers of all 9 PV
buses.
� Active and reactive powers of all 19 system loads.



Fig. 4. Single-line diagram of the New England 39-bus test system.
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� Generated reactive powers of all 10 system generators.
� Generated active power of the slack bus.

Therefore, the proposed neural network architecture has 67
(9 + 9 + 19 + 19 + 10 + 1) inputs, while its output is the voltage sta-
bility margin.

As mentioned before, we want to estimate the VSM for both the
base case configuration and for a selected number of severe contin-
gences. To identify the most sever contingences, contingency anal-
ysis was carried out for all single line outages in the New England
39-bus system, and then five contingencies were selected as the
most critical ones. The selected contingencies along with their cor-
responding VSMs in the base case loading condition are shown in
Table 2. Therefore, our aim here is to estimate the VSM for a total
of six system configurations, i.e., for the base case plus five severe
configurations. The CPF method was then employed to obtain the
required training and/or testing patterns for the ANN.
Table 2
Set of the selected contingencies for the New England 39-bus test system.

Contingency no. Description VSM

1 Outage of the line between bus 15 and bus 16 0.2600
2 Outage of the line between bus 32 and bus 33 0.2936
3 Outage of the line between bus 37 and bus 38 0.3080
4 Outage of the line between bus 21 and bus 22 0.3082
5 Outage of the line between bus 31 and bus 32 0.3086
Base case All transmission lines are in service 0.3644
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Fig. 5. Voltage magnitude versus loading parameter (k) curve for bus-12 in the New
England 39-bus test system.
As an example, Fig. 5 shows the complete PV curve for bus-12 in
the New England 39-bus test system produced by the PSAT, which
employs the CPF method. In this figure, the variation of bus-12
voltage magnitude against the system loading parameter is plot-
ted. Here, k = 0 corresponds to the base case loading condition;
as the system loading increases, the bus voltage decreases and sys-
tem equilibrium points approach to the nose point of the curve. As
can be seen in Fig. 5, the voltage stability margin (i.e., kmax) for the
base case loading condition in the New England 39-bus test system
is therefore equal to 0.365 p.u.

Using the procedure described in Section 3.2, 950 random pat-
terns were generated for each of the above-mentioned six system
configurations, from which 750 patterns were chosen as the train-
ing patterns and the remaining 200 patterns were chosen as the
testing patterns for the proposed MLP ANN. Therefore, a total
amount of 4500 (6 * 750) patterns were collected as the training
patterns, and a total amount of 1200 (6 * 200) as the testing pat-
terns to estimate the VSM considering multiple configurations
using a single MLP ANN in the New England 39-bus test system.
Before training, the input and output data patterns were scaled
so that they fell in the range [�1,1].

Two cases were considered for training the proposed ANN. In
the first case, all the above-mentioned 67 variables were used as
the ANN inputs; while in the second case, training was performed
using a reduced set of input variables. Results obtained for both
cases are described below.

6.1.1. Training the ANN using all inputs in the New England system
To train an MLP ANN, we need to choose a proper structure for

the neural network along with suitable activation functions for its
neurons. Here, after several trials an MLP neural network with one
input layer consisting of 67 inputs, one hidden layer including 8
neurons, and one output layer was employed to estimate the
VSM for the multiple configurations in the New England 39-bus
test system. Moreover, hyperbolic tangent transfer functions were
chosen for the hidden layer neurons and a linear transfer function
was used for the output neuron.

In Table 3, the error goal, the Mean-Squared Error (MSE) be-
tween the actual VSM and the estimated VSM in the training phase
along with the RMSE obtained for the testing patterns are given.
The proposed MLP ANN was trained using the resilient back-prop-
agation method, which is one of the fastest techniques for training
large neural networks. It took about 2.15 s with 48 epochs on aver-
age to train the proposed MLP ANN. It should be noted that other
fast training algorithm, such as Levenberg–Marquardt could be
employed to train the proposed MLP ANN [44].

As can be seen in Table 3, the proposed MLP ANN could estimate
its target (i.e., the VSM) with a very small RMSE value for the test-
ing patterns, proving the generalization accuracy of the trained
MLP ANN for the New England 39-bus test system. To see this bet-
ter, the estimated VSM and the corresponding actual VSM in the
New England 39-bus are compared in Fig. 6, for 20 out of 1200 test-
ing patterns due to limited space. It is observed from this figure
that the trained MLP ANN has estimated the actual VSM with rea-
sonable accuracy under different system configurations as well as
operating conditions. Moreover, in comparison to CPF method
which takes about 2 s to calculate the VSM, the trained ANN esti-
mates this margin almost instantaneously.

6.1.2. Training the ANN using the reduced set of inputs in the New
England system

The results obtained in Section 6.1.1 confirmed that for the New
England 39-bus test system, the VSM could be estimated using an
MLP ANN with 67 inputs with reasonable accuracy. However, there
are redundant variables that do not bring new information into
the model. Using the Gram–Schmidt orthogonalization process



Table 3
Summary of the neural networks training results for the New England 39-bus system.

Case no. Neural network output Number of inputs Number of hidden neurons MSE for training patterns RMSE for testing patterns

1 VSM 67 8 0.005 0.0190
2 VSM 5 8 0.005 0.0196
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Fig. 6. Comparison of ANN estimated VSM and the corresponding actual VSM for
different configurations of the New England system using all input variables.
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Fig. 7. Comparison of ANN estimated VSM and the corresponding actual VSM for
different configurations of the New England system using the reduced input
variables.
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described in Section 5, the above-mentioned 67 input variables
were ranked, and then 7 variables were selected as the important
features to train another MLP ANN to estimate the VSM. In addi-
tion, the ANN-based sensitivity technique described in [21] was
employed to obtain the final reduced features among those 7 vari-
ables selected by the Gram–Schmidt orthogonalization procedure.

To perform that ANN-based sensitivity technique, each of the 7
mentioned features is removed from the inputs one at a time, and
an MLP neural network using the remaining 6 features is trained
with the same 4500 training patterns as used in Section 6.1.1.
The relevant features would then be those features that removing
each of them from the neural network inputs, makes the neural
network a long time to converge. In addition, the testing results
of the newly trained network would be very poor for the case of
important features. In other words, for a given selected feature
set, the inclusion of one of the remaining features would increase
the performance of the trained neural network if it were a salient
one.

Employing that ANN-based sensitivity technique, 5 out of 7 fea-
tures were identified as the most relevant features for training the
proposed MLP ANN. The features were as follows:

� Generated reactive power of the generator at bus 3.
� Voltage magnitudes at buses 2, 3 and 4.
� Generated active power of the slack bus.

The question that now arises is why the above selected features
are the most relevant ones. To address this issue, we need to iden-
tify the weakest buses in the New England test system. As shown
in [29], since the tangent vector, which is defined as dV=dk, con-
verges to the zero right eigenvector at the bifurcation point, hence
the largest entries on this vector correspond to the buses that are
critical to maintain voltage stability. Therefore, identifying the
weakest buses is as easy as choosing the buses that has the largest
differential changes in the voltage magnitude dV , at the bifurcation
point. The 10 weakest buses identified via this tangent vector ap-
proach are specified in Fig. 4. As shown in this figure, generators
at bus 2 and bus 3 are indeed the nearest machines to the critical
area in the New England 39-bus test system; this means that, if the
system loading increases further, they are more prone to voltage
collapse. Therefore, the generated reactive powers and voltage
magnitudes of these buses are very informative input variables.
The generated active power of the slack bus also contains some
important information regarding the base case generated active
power and transmission losses; therefore, this feature is chosen
as one of the most relevant input variables as well. The aforesaid
reasoning not only answers the above question but also confirms
the effectiveness of the proposed method.

Another MLP ANN was employed to estimate the VSM in the
New England 39-bus test system with the same 4500 training pat-
terns as in Section 6.1.1, using the above-mentioned 5 features as
the ANN inputs and the VSM as its output. Here, the employed
MLP ANN architecture was the same as that used in Section
6.1.1. The proposed MLP ANN was again trained using the resilient
back-propagation method. It took about 3.18 s with 153 epochs on
average to train the proposed MLP ANN. The error goal, the MSE
between the actual VSM and the estimated VSM in the training
phase along with the RMSE obtained for testing patterns of the
trained MLP, are also shown in Table 3.

As can be seen in Table 3, the proposed MLP ANN could estimate
its target with a very small RMSE value for the testing patterns. The
estimated VSM and the corresponding actual VSM in the New Eng-
land 39-bus system using those selected 5 features as the ANN in-
puts are compared in Fig. 7, for 20 out of 1200 testing patterns. As
illustrated in this figure, the trained MLP ANN has again estimated
the VSM with reasonable accuracy under different system configu-
rations as well as operating conditions. In comparison to the case
of Section 6.1.1, the neural network training time has increased
and its prediction accuracy has decreased here; however, reducing
the number of inputs to just 5 features has resulted in a compact
and efficient ANN model in this case.

6.2. The simulation results for the simplified model of SE Australian
power system

Fig. 8 shows the single-line diagram of the southern/eastern
(SE) Australian power system. This system consists of 28 PQ buses,
164 transmission lines and 14 power stations of 2 to 12 units. All
the system generators are represented by their 4th order dynamic
models and are equipped with different excitation systems accord-
ing to the data provided in [41]. Only 28 buses in the system have
nonzero real and reactive loads. All the system loads were modeled
as the constant powers. Bus 204 was taken as the slack bus and its



Fig. 8. Single-line diagram of the southern/eastern (SE) Australian power system.
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voltage magnitude and voltage angle were assumed to be fixed.
The remaining 13 generator buses were taken as the PV buses hav-
ing specified voltage magnitudes and generated active powers. The
system also has 5 static VAR compensators (SVCs), 4 shunt capac-
itors, and 3 shunt reactors. Here, the following system operating
conditions were selected as the initial input variables for an MLP
ANN to estimate the VSM in the SE Australian power system:

� Voltage magnitudes and generated active and reactive powers
of all 13 PV buses.
� Active and reactive powers of all 28 system loads.
� Generated active and reactive powers of the slack bus.
� Generated reactive powers of 5 SVCs, 4 shunt capacitors, and 3

shunt reactors.
� Voltage magnitudes of 5 buses at which the SVCs are connected.

Thus, the proposed ANN has 114 (13 + 13 + 13 + 28 + 28 + 2 +
5 + 4 + 3 + 5) inputs, while its output is the voltage stability
margin.

Similar to the pervious test system, here we want to estimate
the VSM for both the base case configuration and for a selected
number of severe contingences. Contingency analysis was again
carried out for all the single line outages in the SE Australian power
system to identify the most sever contingences, and then seven
contingencies were chosen as the most critical ones. The selected
contingencies and their corresponding VSMs are shown in Table 4.
Our aim here is to estimate the VSM for the base case and for the
seven severe configurations. In addition, The CPF method was
again employed to obtain the required training and/or testing pat-
terns for the VSM.

As an example, Fig. 9 shows the complete PV curve for bus-409
in the SE Australian power system, produced by PSAT that employs
the CPF method. The figure shows the variation of bus-409 voltage
magnitude against the system loading parameter. Here, k = 0 corre-
sponds to the base case loading condition; as the system loading
increases, the bus voltage decreases and the system equilibrium
points approach to the nose point of the curve. As is evident from
Fig. 9, the voltage stability margin (i.e., kmax) for the base case load-
ing condition in the SE Australian power system is equal to 0.37
p.u.

Using the procedure described in Section 3.2, 950 random pat-
terns were generated for each of the above-mentioned eight sys-
tem configurations, from which 750 patterns were chosen as the
training patterns and the remaining 200 patterns, were chosen as
the testing patterns. Therefore, a total amount of 6000 (8 * 750)
patterns were used as the training patterns, and 1600 (8 * 200) pat-
terns as the testing patterns to estimate the VSM considering mul-
tiple configurations using a single MLP ANN. Here, it was assumed
that the variations of the voltage magnitudes of the SVC buses are
bounded from 0.9 to 1.1 times their corresponding base case val-
ues. Before training, the input and output data patterns were
scaled so that they fell in the range [�1,1].



Table 4
Set of the selected contingencies for the SE Australian power system.

Contingency no. Description VSM

1 Outage of the line between bus 408 and bus 410 0.1733
2 Outage of the line between bus 303 and bus 304 0.1957
3 Outage of the line between bus 303 and bus 305 0.2077
4 Outage of the line between bus 405 and bus 409 0.2726
5 Outage of the line between bus 307 and bus 308 0.2870
6 Outage of the line between bus 409 and bus 411 0.3079
7 Outage of the line between bus 410 and bus 411 0.3144
Base case All transmission lines are in service 0.3701
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Fig. 9. Voltage magnitude versus loading parameter (k) curve for bus-409 in the SE
Australian power system.
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Fig. 10. Comparison of ANN estimated VSM and the corresponding actual VSM for
different configurations of the SE Australian power system using all input variables.
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Similar to the pervious test system, two cases were considered
for training the proposed ANN in the SE Australian power system.
In the first case, all the above-mentioned 114 variables were used
as the ANN inputs; while in the second case, training was per-
formed using a reduced set of input variables.
6.2.1. Training the ANN using all inputs in the SE Australian system
As mentioned before, to train an MLP ANN, a proper structure

for the neural network along with suitable activation functions
for its neurons should be determined. Here, after several trials an
MLP neural network with one input layer consisting of 114 inputs,
two hidden layers including 12 and 8 neurons each, and one output
neuron was employed to estimate the VSM for the selected config-
urations in the SE Australian power system.

In Table 5, the error goal, the Mean-Squared Error (MSE) be-
tween the actual VSM and the estimated VSM in the training phase
along with the RMSE obtained for the testing patterns are given.
The resilient back-propagation method was again used to train
the proposed MLP ANN. It took about 8.1 s with 132 epochs on
average to train the proposed MLP ANN.

As can be seen in Table 5, the proposed MLP ANN could estimate
its target (i.e., the VSM) with a very small RMSE value for the test-
ing patterns, proving the generalization accuracy of the trained
MLP ANN for the SE Australian power system. To ease comparison,
the estimated VSM and the corresponding actual VSM are com-
pared in Fig. 10 for 20 out of 1200 testing patterns. As shown in
Table 5
Summary of the neural networks training results for the SE Australian power system.

Case
no.

Neural network
output

Number of
inputs

Number of first hidden layer
neurons

N
ne

1 VSM 114 12 8
2 VSM 11 12 8
this figure, the trained MLP ANN has estimated the actual VSM
with reasonable accuracy under different system configurations
as well as operating conditions. Moreover, in comparison to CPF
method which takes about 4 s to calculate the VSM for the SE Aus-
tralian power system, the trained ANN estimates this margin al-
most instantaneously.

6.2.2. Training the ANN using the reduced set of inputs in the SE
Australian system

The results obtained in Section 6.2.1 indicated that the VSM for
the SE Australian test system could be estimated fairly accurately
by using an MLP ANN with 114 inputs. However, as stated earlier,
there are redundant variables that do not bring new information
into the model. Therefore, the above-mentioned 114 input vari-
ables were ranked using the Gram–Schmidt orthogonalization pro-
cess, and then 15 variables were selected as the important features.
Furthermore, the ANN-based sensitivity technique described in
[21] was again employed to obtain the final reduced features
among those 15 variables selected by the Gram–Schmidt orthogo-
nalization process.

Employing that ANN-based sensitivity technique, 11 out of 15
features were identified as the most relevant features for training
the proposed MLP ANN. The features were as follows:

� Generated reactive power of the generator at bus 301.
� Voltage magnitudes at the buses 302, 401, 404 and 509.
� Generated reactive power of the shunt capacitor at bus 409.
� Generated reactive powers of the SVCs at buses 313, 412, 507,

and 509.
� Reactive power of the load at bus 409.

Using a similar reasoning as that mentioned in Section 6.1.2 for
New England 39-bus test system, it could be verified that the above
selected features are indeed the most important features. There-
fore, another MLP ANN was employed to estimate the VSM in the
SE Australian power system with the same 6000 training patterns
as in Section 6.2.1, using the above-mentioned 11 features as the
ANN inputs and the VSM as its output. Here, the employed MLP
ANN architecture was the same as that used in Section 6.2.1. The
resilient back-propagation method was again used for training
umber of second hidden layer
urons

MSE for training
patterns

RMSE for testing
patterns

0.01 0.047
0.01 0.035
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Fig. 11. Comparison of ANN estimated VSM and the corresponding actual VSM for
different configurations of the SE Australian power system using the reduced input
variables.
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the proposed MLP NN. It took about 10.5 s with 261 epochs on
average to train the proposed MLP ANN. In Table 5, the error goal,
the MSE between the actual VSM and the estimated VSM in the
training phase and the RMSE obtained for the testing patterns for
the trained MLP ANN are also shown.

As can be seen in Table 5, the proposed MLP ANN could estimate
its target (i.e., the VSM) with a very small RMSE value for the test-
ing patterns, proving the generalization accuracy of the trained
MLP ANN for the SE Australian power system. The estimated
VSM and the corresponding actual VSM in the SE Australian power
system with those selected 11 features as the ANN inputs are com-
pared in Fig. 11 for 20 out of 1200 testing patterns. It is evident
from this figure that the trained MLP ANN has estimated the actual
VSM with reasonable accuracy under different system configura-
tions as well as operating conditions. In comparison to the case
of Section 6.2.1, the neural network training time has slightly in-
creased here; however, its prediction accuracy has improved sig-
nificantly. Therefore, removing the redundancy between variables
has resulted in better estimation of the VSM by the trained MLP
ANN.
7. Conclusions

Nowadays, voltage stability problem has become a major con-
cern for the power system planners and operators. In online appli-
cations, system operators must be able to quickly recognize the
potentially dangerous situations leading to voltage collapse to take
the required remedial actions. Therefore, online voltage stability
monitoring is becoming an important part of the modern day en-
ergy management systems (EMS). Furthermore, employing numer-
ical simulation techniques to monitor the voltage stability status of
a power system is computationally expensive even by using to-
day’s modern computers. To cope with these problems, in this pa-
per, an artificial neural network (ANN)-based approach was
presented for online estimation of a voltage stability margin
(VSM). Unlike many of the previously published works, which em-
ployed a separate ANN for different contingences, a new scheme
for online estimation of the VSM for several system configurations
by using only one ANN was presented in this paper. In addition,
based on the Gram–Schmidt orthogonalization process and an
ANN-based sensitivity technique, a systematic way of selecting
the fewest system features as the neural networks inputs, was
presented.

Numerical results were obtained on the New England 10-ma-
chine 39-bus test system and the SE Australian system by using
high order dynamic models for the generators along with their
automatic voltage regulators (AVRs), and by imposing their reac-
tive power generation limits. Using the proposed feature selection
algorithm, the number of the ANN inputs was reduced to less than
10% of the initially selected features in both test systems. The re-
sults obtained confirmed that reducing the number of ANN inputs,
not only has some obvious benefits in terms of the computational
requirements as well as cost of the future data collection, but also
could improve the generalization accuracy of the trained neural
network.
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