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In this paper, the anchor points in DEA, as an important subset of the set of extreme efficient points of the
production possibility set (PPS), are studied. A basic definition, utilizing the multiplier DEA models, is
given. Then, two theorems are proved which provide necessary and sufficient conditions for characteriza-
tion of these points. The main results of the paper lead to a new interesting connection between DEA and
sensitivity analysis in linear programming theory. By utilizing the established theoretical results, a suc-
cessful procedure for identification of the anchor points is presented.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction Since the set of anchor points is a subset of the set of extreme
Nowadays, Data Envelopment Analysis (DEA) is one of the most
popular tools for efficiency analysis in multiple input-multiple out-
put framework of the production theory (see Cooper, Seiford, &
Tone, 2007; Emrouznejad, Parker, & Tavares, 2008). As can be seen
in the DEA literature, the anchor points play a vital role in DEA the-
ory and applications. Thanassoulis and Allen (1998) used the con-
cept of these points, at first, for the generation of unobserved
DMUs and extending the DEA frontier. Bougnol and Dulá (2009)
defined these points formally as production possibilities which
give the transition from the Pareto-efficient frontier to the free-dis-
posability portion of the boundary of the production possibility set
(PPS). Rouse (2004) utilized this notion for identifying prices for
health care services. Bougnol and Dulá (2009) used the geometrical
properties of the anchor points to design and test an algorithm for
their identification under variable returns to scale (VRS) assump-
tion of the production technology. In a recently published paper,
Thanassoulis, Kortelainen, and Allen (2011) provided another
method for identifying the anchor points based upon the radial
efficiency scores and slack variables at the optimal solution of
envelopment models. They have used this concept for improving
envelopment under multiple inputs and outputs in a VRS technol-
ogy. See also Bougnol (2001) and Allen and Thanassoulis (2004) for
more details about the notion and applications of the anchor
points.
efficient points, the first step for obtaining the anchor points is
obtaining the extreme efficient points. There are different algo-
rithms to do this. See Charnes, Cooper, and Thrall (1991) and
Dulá and López (2006) among others.

In this paper, a basic definition of anchor points, based upon the
optimal solutions of the multiplier DEA models and the supporting
hyperplanes of the PPS, is given. This definition is close to that gi-
ven by Bougnol and Dulá (2009). Afterwards, it is proved that a
DMU under consideration is an anchor point if and only if by
increasing some input or decreasing some output the new unob-
served point is located on the boundary of the production possibil-
ity set. Due to this result, we obtain a characterization of the
anchor points using input-oriented and output-oriented models.
Then, utilizing the established theoretical results, an approach for
identification of the anchor points is introduced. The presented
approach follows the problem from a different standpoint, and
determines the anchor points using some sensitivity analysis tech-
niques, while the existing methods do this by obtaining all extreme
efficient points of some polyhedrals or by resolving LP problems. It
is interesting from a theoretical point of view too, because it pro-
vides a new connection between the DEA and sensitivity analysis
in linear programming.

The rest of the paper unfolds as follows: Section 2 contains
some preliminaries. In Section 3, some basic theoretical results
are addressed. In Section 4, sensitivity analysis in linear program-
ming theory is utilized to provide a new procedure for identifica-
tion of the anchor points. Section 5 is devoted to conclusions;
and the proofs of the main results are given in Appendix A of the
ar pro-
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paper. Appendix B provides two initial simplex tableaus for two
studied LP problems.

2. Preliminaries

Suppose that we have a set of n peer DMUs, fDMUj; j ¼ 1
; . . . ;ng, such that each DMUj produces multiple outputs
yrj ðr ¼ 1; . . . ; sÞ utilizing multiple inputs xij ði ¼ 1; . . . ;mÞ. We as-
sume that xij > 0 (for all i; j) and yrj > 0 (for all r; j). Also, we assume
that there is not any duplicated DMU. Furthermore, let
xj ¼ ðx1j; . . . ; xmjÞT and yj ¼ ðy1j; . . . ; ysjÞ

T .
Considering DMUo as the unit under assessment, the BCC

efficiency measure of DMUo, in input orientation is obtained by
solving the following model. Note that, DMUo is an observed
DMU, i.e., o 2 f1; . . . ;n}.

hBCC
o ¼min h;

s:t:
Xn

j¼1

kjxj 6 hxo;

Xn

j¼1

kjyj P yo;

Xn

j¼1

kj ¼ 1;

kj P 0; 8j:

ð1Þ

The above model is called the envelopment form of the BCC model.
In the above model, ðk; hÞ is the decision variables vector. The vector
k is named the intensity vector and the optimal value of h, denoted
by hBCC

o , exhibits the ‘‘input-oriented BCC-efficiency score’’ of the
unit under assessment.

Considering ðu;v ;u0Þ as the vector of dual variables, the dual of
the above model, which is called the multiplier form of the BCC
model, is as follows:

hBCC
o ¼max uyo þ uo;

s:t: vxo ¼ 1;
uyj � vxj þ uo 6 0; 8j;

ðu;vÞP 0;
uo free in sign:

ð2Þ

The DMUo is called input-oriented BCC-weakly efficient (radially
efficient), if hBCC

o ¼ 1. It is worth mentioning that hBCC
o 2 ð0;1�.

The BCC output-oriented models in envelopment and multiplier
forms can be expressed as follows, respectively:

uBCC
o ¼max uo;

s:t:
Xn

j¼1

kjxj 6 xo;

Xn

j¼1

kjyj P uoyo;

Xn

j¼1

kj ¼ 1;

kj P 0; 8j;

ð3Þ

uBCC
o ¼min vxo � uo;

s:t: uyo ¼ 1;
uyj � vxj þ uo 6 0; 8j;

u P 0;
v P 0;
uo free in sign:

ð4Þ
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In the above two output-oriented models, 1
uBCC

o
is called the ‘‘output-

oriented BCC-efficiency score’’ of the unit under assessment. Here,
uBCC

o P 1, and so the output-oriented BCC-efficiency score belongs
to ð0;1�. Developing an example demonstrating 1

uBCC
o

– hBCC
o is not

difficult.
The DMUo is called output-oriented BCC-weakly efficient (radi-

ally efficient), if uBCC
o ¼ 1.

The definition below introduces the notion of extreme efficient
DMUs. Notice that in the present paper all input–output values of
the observed DMUs are positive.

Definition 1. The DMUoðxo; yoÞ, is called an extreme efficient DMU,
if it is an extreme point of the production possibility set (PPS).
Here, we consider the PPS under variable returns to scale
assumption of technology, denoted by Tv , which is expressed as
follows:

Tv ¼ ðx; yÞ :
Xn

j¼1

kjxj 6 x;
Xn

j¼1

kjyj P y P 0;
Xn

j¼1

kj ¼ 1; kj P 0;

(

j ¼ 1; . . . ;n

)
:

Hereafter, we denote the set of extreme efficient points of Tv by
E.
3. Some basic results

As can be seen in the DEA literature (see Allen & Thanassoulis,
2004; Bougnol, 2001; Bougnol & Dulá, 2009; Rouse, 2004; Thanas-
soulis et al., 2011), the anchor points play a vital role in DEA theory
and application. These points delineate the Pareto-efficient frontier
of the PPS ðTv Þ from the free-disposability portion of the boundary.
The anchor points are usually production points with small or big
size of input–output factors. These points are far from the central
part of the efficiency frontier. As can be seen from Theorem 1 of
the present paper and the results given by Bougnol and Dulá
(2009), the role of some input–output factors in efficiency situation
of these units is not considerable.

Anchor points were first used by Thanassoulis and Allen (1998).
More developments about the anchor points from both conceptual
and applied points of view have been done by Bougnol (2001),
Rouse (2004), Bougnol and Dulá (2009), and Thanassoulis et al.
(2011). They used the properties of the anchor points to design
and test some algorithms for their identification in Tv . In this sec-
tion, we address some basic results for identifying the anchor
points of Tv . The first method, which results from some notions
and corollaries given by Bougnol and Dulá (2009), works based
upon the multiplier models.

Since Tv is a polyhedral in Rmþs, the hyperplanes supporting to
this set can be expressed as Hðu;v ;uoÞ ¼ fðx; yÞ j uy� vxþ uo ¼ 0g, in
which ðu;vÞ – 0 is the normal vector of the hyperplane, and �uo is
its level value. Recall that, the hyperplane Hðu;v ;uoÞ supports Tv at
ð�x; �yÞ 2 Tv if u�y� v�xþ uo ¼ 0 and uy� vxþ uo 6 0 for each
ðx; yÞ 2 Tv .

The following definition introduces the concept of anchor
points in Tv . In this definition, E denotes the set of extreme efficient
DMUs. In fact, this property comes from Result 1 in Bougnol and
Dulá (2009).

Definition 2. (Bougnol & Dulá, 2009). Let DMUo ¼ ðxo; yoÞ be the
unit under consideration. DMUo is called an anchor point if
ðxo; yoÞ 2 E and it is located on a supporting hyperplane of Tv , say
Hðu;v ;uoÞ, such that at least one component of the normal vector
ðu;vÞ is zero.
ntifying the anchor points in DEA using sensitivity analysis in linear pro-
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It is known that Hðu;v ;u0Þ is a hyperplane supporting to Tv at
ðxo; yoÞ 2 E if and only if a positive multiplier of ðu;v ;u0Þ is an
optimal solution to Model (2), see Cooper et al. (2007). Based
upon this fact and the above definition (Result 1 in Bougnol &
Dulá, 2009), the following optimization problems can be used
for testing whether DMUo ¼ ðxo; yoÞ 2 E is an anchor point or
not:

u�k ¼min uk; ð5Þ

s:t:
Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ uo 6 0; 8j – o; ð5:1Þ

Xs

r¼1

uryro �
Xm

i¼1

v ixio þ uo ¼ 0; ð5:2Þ

Xs

r¼1

ur þ
Xm

i¼1

v i ¼ 1; ð5:3Þ

ur P 0; r ¼ 1; . . . ; s; ð5:4Þ
v i P 0; i ¼ 1; . . . ;m; ð5:5Þ

for k 2 f1; . . . ; sg; and

v�t ¼min v t ; ð6Þ

s:t:
Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ uo 6 0; 8j – o; ð6:1Þ

Xs

r¼1

uryro �
Xm

i¼1

v ixio þ uo ¼ 0; ð6:2Þ

Xs

r¼1

ur þ
Xm

i¼1

v i ¼ 1; ð6:3Þ

ur P 0; r ¼ 1; . . . ; s; ð6:4Þ
v i P 0; i ¼ 1; . . . ;m; ð6:5Þ

for t 2 f1; . . . ;mg. Now, defining vo ¼minfu�1; . . . ;u�s ; v�1; . . . ;v�mg, we
have the following central result. The proof of this theorem is given
in Appendix A.
Theorem 1. DMUo 2 E is an anchor point if and only if vo ¼ 0.

For obtaining vo, solving mþ s LP problems is required, which
can be computationally expensive. But, it is worthwhile to note
that when the optimal objective value corresponding to one of
the above LP models becomes zero, then DMUo 2 E is an anchor
point and it is not necessary to solve other linear programs.
Although the above mentioned approach may not be suitable com-
putationally, this method gives a (weak) hyperplane which makes
DMUo anchor point. In the next section, a new approach is given
which works invoking the sensitivity analysis techniques.

4. Identifying anchor points utilizing sensitivity analysis

In this section, we utilize the sensitivity analysis techniques in
linear programming theory to identify the anchor points. It has
advantages from an applied point of view. Furthermore, it is inter-
esting theoretically, because provides a new link between linear
programming theory and performance analysis (DEA).

The following theorem provides a characterization of anchor
points based upon the weak-efficiency of ðxo þ ei; yoÞ or
xo; yo � yro

2 er
� �

in output-orientation or input-orientation, respec-
tively. This result helps us in providing the sensitivity analysis
techniques in sequel. The proof of Theorem 2 is given in
Appendix A.
Please cite this article in press as: Mostafaee, A., & Soleimani-damaneh, M. Ide
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Theorem 2. DMUo ¼ ðxo; yoÞ 2 E is an anchor point if and only if one
of the following conditions holds:
(i) ðxo þ ei; yoÞ is output-oriented BCC-weakly efficient, for some
i 2 f1; . . . ;mg,

(ii) xo; yo � yro
2 er

� �
is input-oriented BCC-weakly efficient, for some

r 2 f1; . . . ; sg.

Regarding the above theorem, for checking that ‘‘whether
DMUo ¼ ðxo; yoÞ is an anchor point or not’’ we should check two
conditions (i) and (ii). For surveying conditions (i) and (ii), evaluat-
ing ðxo þ ei; yoÞ and xo; yo � yrto

2 er
� �

for all i; r may be required. To do
this, Models (1) and (3) assessing ðxo þ ei; yoÞ and xo; yo � yro

2 er
� �

should be solved. But, for reducing the computational require-
ments, we do not solve Models (1) and (3) from scratch. We use
sensitivity analysis techniques in linear programming theory to
do this.

Consider LP problem (3) evaluating ðxo; yoÞ. Suppose that the
Simplex method has produced an optimal basis B by solving this
LP. We shall describe how to make use of optimality conditions
(primal–dual relationships) for finding the output-oriented effi-
ciency measure of ðxo þ ek; yoÞ without solving the following LP
problem from scratch:

uþk ¼max u; ð7Þ

s:t:
Xn

j¼1

kjxij þ sþi ¼ xio; 8i – k; ð7:1Þ

Xn

j¼1

kjxkj þ sþk ¼ xko þ 1; ð7:2Þ

�
Xn

j¼1

kjyrj þ s�r þuyo ¼ 0; 8r; ð7:3Þ

Xn

j¼1

kj ¼ 1; ð7:4Þ

sþi ; s
�
r ; kj P 0; 8i; j; r: ð7:5Þ

The initial simplex tableau for Problem (7) can be seen in Appendix
B (Table 1).

Comparing Models (3) and (7), it is seen that Model (7) is gotten

by replacing the right-hand-side vector
xo

0
1

0
@

1
A in Model (3) by

xo þ ek

0
1

0
@

1
A. Therefore, denoting the simplex right-hand-side of

models (3) and (7) by �b and �bnew, respectively, �b ¼ B�1
xo

0
1

0
@

1
A will

be replaced by �bnew ¼ B�1
xo þ ek

0
1

0
@

1
A. The new simplex right-

hand-side can be calculated without explicitly evaluating

B�1
xo þ ek

0
1

0
@

1
A. This is evident by noting that

�bnew ¼B�1

xoþek

0
1

0
B@

1
CA¼B�1

xo

0
1

0
B@

1
CAþB�1

ek

0
0

0
B@

1
CA¼ B�1

xo

0
1

0
B@

1
CAþB�1asþ

k
¼ �bþB�1asþ

k
;

in which asþ
k

denotes the column corresponding to sþk in the techno-

logical matrix of Problem (3). Also, �asþ
k

:¼ B�1asþ
k
¼ B�1

ek

0
0

0
@

1
A is the
ntifying the anchor points in DEA using sensitivity analysis in linear pro-
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column corresponding to variable sþk in the optimal simplex tableau.

So, �bnew ¼ �bþ �asþ
k

. Since in the optimal simplex tableau the objective

row is nonnegative ðzj � cj P 0Þ for all variables, the only possible
violation of optimality is that the new vector �bnew may have some
negative components. The variable u is a basic variable in B, be-
cause the optimal value of u is always greater than or equal to
one. Two different cases may occur.

Case (A) : �bnew P 0: In this case, B remains optimal for Problem (7),
and the values of the basic variables are �bnew ¼ �bþ �asþ

k
.

This case is further divided into two subcases. (Notice
that u is a basic variable.)

Subcase A1 : The component of �asþ
k
¼ B�1

ek

0
0

0
@

1
A corresponding

to u, denoted by �au;sþ
k

, is 0.

Subcase A2 : �au;sþ
k
> 0.

Note that �au;sþ
k

is not negative because the optimal value of LP (7) is
greater than or equal to one.
In subcase A1, B remains optimal basis for Problem (7) and the
optimal value of u in Model (7) remains one. So, the unobserved
DMU ðxo þ ek; yoÞ is output-oriented BCC-weakly efficient, i.e., con-
dition (i) is happened. Hence, in this subcase DMUo is an anchor
point.
In subcase A2, B remains optimal basis for Problem (7) and the
optimal value of u in Model (7) is greater than one. So, the unob-
served DMU ðxo þ ek; yoÞ is not output-oriented BCC-weakly effi-
cient, i.e., condition (i) is not happened for considered k. Notice
that, in this subcase we cannot say whether DMUo is anchor point
or not.
Case (b): �bnew j 0. In this case, the dual simplex algorithm

(Bazaraa, Sherali, & Shetty, 1993) is used to obtain a
new optimal solution for Model (7) by getting feasibility.
After implementing the dual simplex algorithm, if the
new optimal value of u is equal to one, then
ðxo þ ek; yoÞ is output-oriented BCC-weakly efficient
(and hence, DMUo is an anchor point); otherwise (i.e.,
if the new optimal value of u is greater than one),
ðxo þ ek; yoÞ is not output-oriented BCC-weakly efficient,
i.e., condition (i) does not happen for considered k (and
hence, here too we cannot say whether DMUo is anchor
point or not).

If condition (i) holds, then the DMUo is an anchor point; other-
wise we check condition (ii). For checking condition (ii), we use the
sensitivity analysis techniques similar to the above discussion.
Here, the optimality conditions for the following LP are examined:

hþt ¼min h;

s:t:
Xn

j¼1

kjxij þ sþi � hxio ¼ 0; 8i;

Xn

j¼1

kjyrj � s�r ¼ yro; 8r – t;

Xn

j¼1

kjytj � s�t ¼
yto

2
;

Xn

j¼1

kj ¼ 1;

sþi ; s
�
r ; kj P 0; 8i; j; r:

ð8Þ

The initial simplex tableau for Problem (8) can be seen in Appendix
B (Table 2).
Please cite this article in press as: Mostafaee, A., & Soleimani-damaneh, M. Ide
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The right-hand-side of the above model is obtained by adding

the vector
0

� yto
2 et

0

0
@

1
A to that in Model (1), and �bnew ¼ �bþ yto

2
�as�t

.

Note that here in subcase A2, the component of �as�t
corresponding

to h is negative.
If condition (ii) holds, then DMUo is an anchor point; otherwise

DMUo is not an anchor point (note that we checked conditions (i)
and (ii) so far), and the procedure terminates.

The following remark decreases the computational require-
ments of the above procedure in some situations strongly.

Remark 1. In checking condition (i), if in optimal tableau of Model
(3) one of the input-slack variables, say sþk , is a basic variable, then
�bnew ¼ �bþ �asþ

k
P 0 and �au;sþ

k
¼ 0. Hence subcase A1 is happened.

Thus, we stop with decision that ðxo; yoÞ is an anchor point. In
checking condition (ii), this remark is also valid and helpful.

To sum up, in this section we provided a new method for
checking that whether a DMU is anchor point or not. The presented
procedure gives a new connection between the sensitivity analysis
techniques in linear programming theory and DEA. It is interesting
theoretically. From a computational point of view, in the method
given in this section, we do not solve the DEA models for checking
the efficiency position of ðxo þ ek; yoÞ and xo; yo �

yto
2 et

� �
from

scratch. Also, in this method finding all extreme points of any
polyhedral is not required. Furthermore, from an applied point of
view, the introduced procedure automatically gives the weak
supporting hyperplane which makes DMUo anchor point.
5. Conclusions

Anchor points build an important class of extreme efficient
points in DEA. These points define the transition from the Pareto-
efficient frontier to the free-disposability portion of the frontier
of the PPS, as introduced by Bougnol and Dulá (2009). On the other
hand, these points define the transmittance from the Pareto-effi-
ciency to weak efficiency. The properties, applications, and identi-
fication of these points have been studied by some authors,
including Bougnol (2001), Allen and Thanassoulis (2004), Rouse
(2004), Bougnol and Dulá (2009), and Thanassoulis et al. (2011).
In this paper, we dealt with these points from a different point of
view, and provided some main theorems for characterization of
these points. Utilizing these theoretical results, a procedure has
been introduced for identification of the anchor points. In this
method, solving the LP problems from scratch is not required
and the sensitivity analysis tools from linear programming theory
are utilized. In fact, it provides a new connection between the DEA
and sensitivity analysis in linear programming theory.

Reduction in the computational requirements of the methods
given for identification of the anchor points can be worth studying
in future. Also, it seems that the connection between the anchor
points and super-efficiency models (see Andersen & Petersen,
1993; Banker & Chang, 2000; Chen, 2005; Soleimani-damaneh,
Jahanshahloo, & Foroughi, 2006; Tone, 2002) can be a worthwhile
direction for future research.
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Appendix A. The proofs

Theorem 1. DMUo 2 E is an anchor point if and only if vo ¼ 0.
Proof. Let ðxo; yoÞ be an anchor point. Then, by Definition 2, it is
located on a supporting hyperplane of Tv , say Hðu;v ;uoÞ, such that
at least one component of the normal vector ðu;vÞ is zero (notice
that ðu;vÞ– 0). Since

Hðu;v;uoÞ ¼ fðx; yÞ : uy� vxþ u0 ¼ 0g

supports Tv at ðxo; yoÞ, we have

uyo � vxo þ u0 ¼ 0;

uy� vxþ u0 6 0; 8ðx; yÞ 2 Tv : ð9Þ

Setting

ð�u; �v ; �u0Þ¼
uPs

r¼1 urþ
Pm

i¼1 v i
;

vPs
r¼1 urþ

Pm
i¼1 v i

;
u0Ps

r¼1 urþ
Pm

i¼1 v i

� �
;

we get

�uyo � �vxo þ �u0 ¼ 0; ð10Þ

and

Xs

r¼1

�ur þ
Xm

i¼1

�v i ¼ 1: ð11Þ

Furthermore, since ðxj; yjÞ 2 Tv for each j, inequality (9) leads to

�uyj � �vxj þ �u0 6 0; 8j ¼ 1;2; . . . ;n: ð12Þ

Since ðxo; yoÞ 2 Tv , by presentation of Tv (possibility axiom),
ðxo þ ei; yoÞ 2 Tv for each i. Therefore, according to Eqs. (9) and (10),

0 P �uyo � �vðxo þ eiÞ þ �u0 ¼ ��v i; 8i ¼ 1;2; . . . ;m:

Hence �v P 0. Since ðxo; yoÞ 2 Tv and yo > 0, by presentation of Tv

(possibility axiom), xo; yo � yro
2 er

� �
2 Tv for each r. Therefore, accord-

ing to Eqs. (9) and (10),

0 P �u yo �
yro

2
er

� �
� �vxo þ �u0 ¼ �

yro

2
�ur; 8r ¼ 1;2; . . . ; s:

Hence �u P 0. Since ð�u; �vÞP 0, because of Eqs. (10)–(12), the vector
ð�u; �v ; �u0Þ is a feasible solution to both LPs (5) and (6) in which at
least one component of the vector ð�u; �vÞ is zero. Without loss of gen-
erality, assume that �u1 ¼ 0. According to the constraint u P 0 in LP
(5) and since its objective function is minimization, �u1 ¼ 0 implies
u�1 ¼ 0. Therefore, vo ¼ 0.

To prove the converse, let vo ¼ 0. Without loss of generality,
assume that vo ¼ u�1. Therefore, there exists a vector ðu�;v�;u�0Þ
satisfying

u�1 ¼ 0; ð13Þ

u�yj � v�xj þ u�o 6 0; 8j ¼ 1;2; . . . ;n; ð14Þ

u�yo � v�xo þ u�o ¼ 0; ð15Þ
Xs

r¼1

u�r þ
Xm

i¼1

v�i ¼ 1; ð16Þ

u� P 0; ð17Þ

v� P 0: ð18Þ

Considering arbitrary ðx; yÞ 2 Tv , there exists k 2 Rn such that

Xn

j¼1

kjxj 6 x;
Xn

j¼1

kjyj P y P 0;
Xn

j¼1

kj ¼ 1; k P 0: ð19Þ
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Multiplying (14) by kj and summing the obtained inequalities over j,
implies

u�
Xn

j¼1

kjyj � v�
Xn

j¼1

kjxj þ u�o 6 0: ð20Þ

By (19) and (20), we have u�y� v�xþ u�o 6 0. Also, by (16),
ðu�;v�Þ– 0. Since ðx; yÞ 2 Tv is arbitrary and due to (15), the hyper-
plane Hðu� ;v� ;u�oÞ supports Tv at ðxo; yoÞ, while u�1 ¼ 0. Therefore, ðxo; yoÞ
is an anchor point because of Definition 2. h
Theorem 2. DMUo ¼ ðxo; yoÞ 2 E is an anchor point if and only if one
of the following conditions holds:

(i) ðxo þ ei; yoÞ is output-oriented BCC-weakly efficient, for some
i 2 f1; . . . ;mg,

(ii) ðxo; yo � yro
2 erÞ is input-oriented BCC-weakly efficient, for

some r 2 f1; . . . ; sg.
Proof. Let ðxo; yoÞ be an anchor point. Then there exits a vector
ðu�;v�;u�oÞ satisfying constraints (6.1)–(6.5) in which v�k ¼ 0 for
some k 2 f1; . . . ;mg or u�t ¼ 0 for some t 2 f1; . . . ; sg.

Case 1. v�k ¼ 0 for some k 2 f1; . . . ;mg. We have two possible
subcases:

Case 1.1:
u� – 0: In this subcase, defining b ¼ u�yo, we have b > 0 and
ntifyin
0.1016/
u�

b
yj �

v�
b

xj þ
u�o
b
� 0; 8j;

u�

b
yo ¼ 1; and

v�
b
ðxo þ ekÞ �

u�o
b
¼ 1:
Hence u�
b ;

v�
b ;

u�o
b

� �
is a feasible solution to Model (4) when assessing

ðxo þ ek; yoÞ and the value of the objective function at this feasible
solution equals 1. This implies that ðxo þ ek; yoÞ is output-oriented
BCC-weakly efficient. Note that, by possibility axiom, we have
ðxo þ ek; yoÞ 2 Tv .
Case 1.2:
u� ¼ 0: In this case, v� – 0. Defining a ¼ v�xo, we have a > 0 and

similar to the above, it can be shown that u� ¼ 0; v�
a ;

u�o
a

� �
is a feasi-

ble solution to Model (2) when assessing xo; yo � yro
2 er

� �
and the

value of the objective function at this feasible solution equals 1.
This implies that xo; yo � yro

2 er
� �

is input-oriented BCC-weakly
efficient.

Case 2. u�t ¼ 0 for some t 2 f1; . . . ; sg. In this case, similar to the
previous case, it can be shown that (i) or (ii) occurs.

Conversely, if case (i) or case (ii) happens, then ðxo þ ek; yoÞ or
xo; yo �

yro
2 er

� �
is located on the boundary of Tv (see Lemma 8 in

Soleimani-damaneh, Jahanshahloo, Mehrabian, & Hasannasab,
2009). Therefore, ðxo; yoÞ is an anchor point because of Corollary
1 in Bougnol and Dulá (2009). h

Appendix B. The initial simplex tableaus

In the simplex tableaus given in this section, RHS means ‘‘Right
Hand Side’’. Ri variables are artificial variables which are required
to obtain the initial BFS. Here we have used the Big-M method to
find the initial BFS, and so in these tables M is a positive sufficiently
large number (see Bazaraa, Jarvis, & Sherali, 1990; Soleimani-
damaneh et al., 2006) (see Tables 1 and 2).
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Table 1
The initial simplex tableau related to Problem (8).

Z k1 � � � kn sþ1 � � � sþk � � � sþm s�1 � � � s�s u R RHS
Z 1 �M � � � �M 0 � � � 0 � � � 0 0 � � � 0 �1 0 �M

sþ1 0 x11 � � � x1n 1 � � � 0 � � � 0 0 � � � 0 0 0 x1o

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

sþk 0 xk1 � � � xkn 0 � � � 1 � � � 0 0 � � � 0 0 0 xko þ 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

sþm 0 xm1 � � � xmn 0 � � � 0 � � � 1 0 � � � 0 0 0 xmo

s�1 0 �y11 � � � �y1n 0 � � � 0 � � � 0 1 � � � 0 y1o 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

s�s 0 �ys1 � � � �ysn 0 � � � 0 � � � 0 0 � � � 1 yso 0 0
R 0 1 � � � 1 0 � � � 0 � � � 0 0 � � � 0 0 1 1

Table 2
The initial simplex tableau related to Problem (9).

Z k1 � � � kn sþ1 � � � sþm s�1 � � � s�t � � � s�s h R1 � � � Rt � � � Rs Rsþ1 RHS
Z 1 m1 � � � mn 0 � � � 0 �M � � � �M � � � �M �1 0 � � � 0 � � � 0 0 Z

sþ1 0 x11 � � � x1n 1 � � � 0 0 � � � 0 � � � 0 �x1o 0 � � � 0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

sþm 0 xm1 � � � xmn 0 � � � 1 0 � � � 0 � � � 0 �xmo 0 � � � 0 � � � 0 0 0
R1 0 y11 � � � y1n 0 � � � 0 �1 � � � 0 � � � 0 0 1 � � � 0 � � � 0 0 y1o

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Rt 0 yt1 � � � ytn 0 � � � 0 0 � � � �1 � � � 0 0 0 � � � 1 � � � 0 0 y1o
2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Rs 0 ys1 � � � ysn 0 � � � 0 0 � � � 0 � � � �1 0 0 � � � 0 � � � 1 0 yso

Rsþ1 0 1 � � � 1 0 � � � 0 0 � � � 0 � � � 0 0 0 � � � 0 � � � 0 1 1

In this table, mj denotes the reduced cost of kj , equal to mj ¼ M
Ps

r¼1 yrj þ 1
� �

. Also, Z stands for the value of the objective function at the current BFS, equal to
Z ¼ M

Ps
r¼1;r–t yro þ 1

� �
þ yto

2 .
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